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ABSTRACT
We explicitly compute the least degree of generators of all symbolic
powers of the defining ideal of Fermat-like configuration of lines in P3

C,
except for the second symbolic powers, where we provide bounds for
them. We will also explicitly compute those numbers for ideal determining
the singular locus of the arrangement of lines given by the pseudoreflec-
tion group A3. As direct applications, we verify Chudnovsky’s(-like)
Conjecture, Demailly’s(-like) Conjecture and Harbourne-Huneke
Containment problem as well as calculate the Waldschmidt constant and
(asymptotic) resurgence number.
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1. Introduction

Let n � 3 and In be the ideal in C½x, y, z,w� generated by:

g1 ¼ ðxn � ynÞðzn � wnÞxy, g2 ¼ ðxn � ynÞðzn � wnÞzw
g3 ¼ ðxn � znÞðyn � wnÞxz, g4 ¼ ðxn � znÞðyn � wnÞyw
g5 ¼ ðxn � wnÞðyn � znÞxw, g6 ¼ ðxn � wnÞðyn � znÞyz

which we will refer as Fermat-like ideal. This ideal corresponds to the restricted Fermat arrange-

ment of planes in P3, where the correspondent variety is the union of all lines with multiplicity
at least 3, i.e., there are at least 3 planes passing through each line. Fermat-like ideals were first
introduced by Malara and Szpond in their work [29] in an effort to provide counterexamples in

higher dimension to the famous containment Ið3Þ � I2: It can be seen as an analog of Fermat
ideals in higher dimension. For more information about Fermat ideals, we refer interested readers
to [12, 25, 30–32].

In this manuscript, we will discover many similarities between these ideals and Fermat ideals
in terms of the least degree of generators (or initial degree) of their symbolic powers, denoted by
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aðIðkÞn Þ, Waldschmidt constants âðInÞ, and expectedly, (asymptotic) resurgence numbers. Moreover,
the verification to certain Harbourne-Huneke containment of them can also be decided purely by
the knowledge of the aforementioned numerical invariants. This work is a continuation of our
paper [31] where we answer those questions for Fermat ideals. Our results on Fermat-like ideals
are the following:

Theorem 1.1 (Propositions 3.1, 3.5, Theorems 3.2, 3.3, 3.4). Let n � 3 be an integer and Fermat-
like ideal In in C½x, y, z,w� as described above. Then:

1. For n � 5, aðIðmÞ
n Þ ¼ 2nm for all m � 3:

2. aðIðmÞ
4 Þ ¼ 8m for all m � 3 and m 6¼ 5:

3. aðIð3kÞ3 Þ ¼ 18k for k � 1, aðIð3kþ1Þ
3 Þ ¼ 18kþ 8 and aðIð3kþ2Þ

3 Þ ¼ 18kþ 16 for k � 0:

4. 4nþ 2 � aðIð2Þn Þ � 4nþ 4 ¼ aðI2nÞ:
5. âðInÞ ¼ 2n:

This gives the almost complete answer to the question of the least degree of generators of
almost all symbolic powers of the defining ideal of Fermat-like configuration of lines in P3

C and
bounds only for the case when m¼ 2. Note that for each m, n the least generating degree of sym-
bolic power of the Fermat-like ideal is twice as large as that of Fermat ideal in almost all cases
(and are expected to be in all cases as suggested by Macaulay2 computation [20]).

One important problem that has attracted a lot of attention recently is the containment prob-
lem, namely, to determine the set of pairs (m, r) for which IðmÞ � Ir for a given ideal I. Following
the celebrated results in [14, 26, 27] that IðmÞ � Ir whenever m � hr, where h is the big height of
I, the resurgence qðIÞ is introduced in [4], and the asymptotic resurgence q̂ðIÞ is introduced in
[23] in order to study the pairs (r, m) numerically and has turned out to be very useful
invariants.

qðIÞ :¼ sup

�
m
r
: IðmÞ 6� Ir

�

q̂ðIÞ :¼ sup

�
m
r
: IðmtÞ 6� Irt for t � 0

�
:

It is well-known that over a regular ring, 1 6 qðIÞ 6 h, where h denotes the big height of I,
that is the maximum height of its associated primes. As noted in [21, Remark 2.7], the Stable
Harbourne Conjecture, namely, Iðhr�hþ1Þ � Ir for r � 0, follows immediately whenever qðIÞ < h:
In that case, we say that I has expected resurgence [22]. We show that the defining ideals of the
singular locus of the line arrangements corresponds to the group A3 and B3 have expected resur-
gence and strongly predict that the same applies to In.

Another motivation for computing the least degree of generators of their symbolic powers is
to provide more evidence for ideals that satisfy Chudnovsky-like inequality and Demailly-like
inequality as well as Harbourne-Huneke Containment and stable containment. This motivation
stems from the previous work by Bisui, Grifo, H�a and the author, see [2, Section 3] and contain-
ment in [1]. Similar to the Fermat ideals, the verification and failure of the containment for In
can be checked purely by their numerical invariants including the least degree of generators of
symbolic powers, the regularity, or the resurgence number and the maximal degree of generators.
As direct applications, we will provide some evidence for classes of ideals beyond points that sat-
isfy certain Harbourne-Huneke Containment (a similar question appears as 3.1 in [2, Section 3],
that all Fermat-like ideals satisfy the Harbourne-Huneke Containment. Note that the big height of
the ideal In is 2 for each n, see the description of In in section 3.
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Corollary 1.2 (Corollary 3.8). The Fermat-like ideals verify the following Harbourne-Huneke con-
tainment (see [24, Conjecture 2.1] for ideal of points)

Ið2rÞn � mrIrn, 8r:

As another direct application of these computations, we will give affirmed examples for ques-
tion 3.2 in [2, Section 3], that all Fermat-like ideals satisfy the Chudnovsky-like inequality and
Demailly-like inequality.

Corollary 1.3. Fermat-like ideals satisfy Demailly-like inequality (and hence, Chudnovsky-like
inequality)

âðInÞ � aðIðmÞ
n Þ þ h� 1
mþ h� 1

for all m, where h¼ 2.

Along the way, we give the free resolution, Castelnuovo-Mumford regularity formula for In as
a step toward investigating Harbourne-Huneke containment and computing (asymptotic) resur-
gence number for In.

In previous work [31], we investigate the above questions for Fermat ideals. In particular, the
Fermat ideal for 7 points can be seen as ideal of the singular locus of the arrangement of lines
given by the pseudoreflection group Gð2, 2, 3Þ ¼ D3: We continue to study the defining ideal of
the singular locus of the arrangement of lines given by the group Gð1, 1, 4Þ ¼ A3 in this paper
and give some discussion for group Gð2, 1, 3Þ ¼ B3 (see [9] for description of these groups and
related line arrangements). These are 3 groups that have correspondent ideals with small degree
of generators, that had to be considered separately in the result involving Harbourne containment
in [9, Proposition 6.3]. It turns out interestingly that the ideal corresponding to the group A3 is
the same as that of group D3 in term of least degree of generators of symbolic powers,
Waldschmidt constant, (asymptotic) resurgence numbers; and hence, satisfies Chudnovsky’s
Conjecture and Demailly’s Conjecture as well as Harbourne-Huneke Containment, stable
Harbourne Containment and some stronger containment.

Theorem 1.4. Let J be the ideal of the singular locus of the arrangement of lines given by the group
Gð1, 1, 4Þ ¼ A3. Then

1. aðJð2kÞÞ ¼ 5k for all k � 2 and aðJð2ÞÞ ¼ 6:
2. aðJð2kþ1ÞÞ ¼ 5kþ 3 for all k � 0:
3. âðJÞ ¼ 5

2 :

4. qðJÞ ¼ q̂ðJÞ ¼ 6
5 :

Similar to the Fermat ideals and Fermat-like ideals, the verification and failure of the contain-
ment J can be checked purely by their numerical invariants including the least degree of genera-
tors of symbolic powers, the regularity, or the resurgence number and the maximal degree
of generators.

Corollary 1.5. The ideal J in theorem 1.4 verifies the following containment and stable
containment

1. Harbourne-Huneke containment (see [24, Conjecture 2.1])

Jð2rÞ � mr Jr, 8r
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2. Harbourne-Huneke containment (see [24, Conjecture 4.1.5])

Jð2r�1Þ � mr�1Jr, 8r � 1

3. A stronger containment Jð2r�2Þ � mrJr, 8r � 5

We work over the field of complex numbers but our results hold over any algebraically closed
field of characteristic 0.

2. Preliminaries

Let R ¼ C½x0, :::, xN � be the homogeneous coordinate ring of PN , and let m be its maximal
homogeneous ideal. For a homogeneous ideal I � R, let aðIÞ denote the least degree of a non-
zero homogeneous polynomial in I, and let

IðmÞ :¼
\

p2AssðR=IÞ
ImRp \ R

denote its m-th symbolic power.
The Waldschmidt constant of I is defined to be the limit and turned out to be the infimum

âðIÞ :¼ lim
m!1

aðIðmÞÞ
m

¼ inf
m!1

aðIðmÞÞ
m

In studying ideals defining sets of points in PN , Chudnovsky’s Conjecture gives a lower bound
for aðIðmÞÞ in term of aðIÞ,N and m as follows.

Conjecture 2.1 (Chudnovsky). Let I be the defining ideal of a set of points in PN
C. Then, for all

n � 1,

aðIðnÞÞ
n

� aðIÞ þ N � 1
N

It is also natural to ask if the Chudnovsky-like inequality is still true for a homogeneous radical
ideal I, for example, if we replace N by big height h of I. Many partial results are known for
Chudnovsky’s Conjecture, for example, in [1, 4, 10, 13, 16, 18, 19, 24]. Recently, the conjecture
was proved for a very general set of points in [13, 18], for a general set of sufficiently many points
in [1], and for small numbers of general points in [3]. On the other hand, Chudnovsky-like

inequality was verified for a set of very general lines in P3 in [11]. There is also result that for
any homogeneous ideal I, ideal IðtÞ satisfies Chudnovsky-like inequality for all t � 0, see [18]. A
defining ideal of fat points with equi-multiplicity at least 2 is also shown to satisfy Chudnovsky-
like inequality, see [1]. The following generalization is due to Demailly [8].

Conjecture 2.2 (Demailly). Let I be the defining ideal of a set of points in PN
C. Let m 2 N be any

fixed integer. Then, for all n � 1,

aðIðnÞÞ
n

� aðIðmÞÞ þ N � 1
mþ N � 1

Demailly’s Conjecture for N¼ 2 was proved by Esnault and Viehweg [16]. In higher dimension,
Demailly’s Conjecture holds for a very general set of sufficiently many points (the number of

points depends on m) in [28] and for a general set of kN points in PN [6]. In [2], the conjecture
was proved for a general set of sufficiently many points (also depends on m). We also raise a
question [2, Question 3.2] for ideal that verified Demailly-like inequality and show some exam-

ples of such ideals including: defining ideal of a codimension h star configuration in PN , generic
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determinantal ideals, determinantal ideals of symmetric matrices and Pfaffian ideals of skew sym-
metric matrices.

The resurgence number qðIÞ is introduced in [4] as

qðIÞ :¼ sup

�
m
r
: IðmÞ 6� Ir

�

and the asymptotic resurgence q̂ðIÞ is introduced in [23] as

q̂ðIÞ :¼ sup

�
m
r
: IðmtÞ 6� Irt for t � 0

�

in effort to study the containment problem numerically, namely, the pairs (m, r) such that IðmÞ �
Ir: It is a celebrated result in [14, 26, 27] that IðhrÞ � Ir for codimension h ideal I. In another
effort to improve this containment for ideal of points and study Chudnovsky’s Conjecture and
Demailly’s Conjecture, Harbourne and Huneke in [24] conjectured that the defining ideal I for
any set of points in PN satisfies some stronger containment

IðNmÞ � mmðN�1ÞIm, and IðNm�Nþ1Þ � mðm�1ÞðN�1ÞIm,

for all m P 1: We also raise a question [2, Question 3.1] for other classes of ideals that satisfies
some version of Harbourne-Huneke Containment (replacing N by h) and showed some examples
including the ideals mentioned in previous paragraph. Note that suitable version of stable
Harbourne-Huneke Containment (or even infinitely many such containment) would imply
Chudnovsky’s and Demailly’ Conjecture (or Demailly-like inequality), for example, see [2]. On
the other hand, the resurgence always satisfies qðIÞ P 1, and over a regular ring, the resurgence
of a radical ideal is always at most the big height h. As noted in [21, Remark 2.7], the Stable
Harbourne Conjecture Iðhr�hþ1Þ � Ir for r � 0 follows immediately whenever qðIÞ < h: In that
case, we say that I has expected resurgence [22].We refer interested readers to [5] for more infor-
mation about the Waldschmidt constant, resurgence number, containment between symbolic and
ordinary powers of ideals.

3. Ideal of restricted Fermat configuration of lines in P3

Recall that Fermat-like ideal In is the ideal generated by

g1 ¼ ðxn � ynÞðzn � wnÞxy, g2 ¼ ðxn � ynÞðzn � wnÞzw
g3 ¼ ðxn � znÞðyn � wnÞxz, g4 ¼ ðxn � znÞðyn � wnÞyw
g5 ¼ ðxn � wnÞðyn � znÞxw, g6 ¼ ðxn � wnÞðyn � znÞyz

From [29], geometrically, In is the defining ideal of the union of lines with multiplicity at least 3
of the Fermat arrangement of flats (planes) in P3, denoted by Hj, j ¼ 1, :::, 6n, that is defined by
the vanishing of the polynomial:

Fn ¼ ðxn � ynÞðzn � wnÞðxn � znÞðyn � wnÞðxn � wnÞðyn � znÞ
There are 4n2 þ 6 lines, denoted by Lj, j ¼ 1, :::, 4n2 þ 6, in the above restricted Fermat configur-
ation of lines. Notice also that from this description, each of 6n planes Hj passes through exactly
2nþ 1 lines, for example, the plane x ¼ �y passes through the line defined by (x, y), n lines
defined by ðx� �y, x� �kzÞ and n lines defined by ðx� �y, y� �kwÞ for k ¼ 0, :::n� 1, where � is
an n�root of 1.

Algebraically, let fn ¼ ðxn � ynÞðzn � wnÞ, gn ¼ ðxn � znÞðyn � wnÞ, hn ¼ ðxn � wnÞðyn � znÞ and
Kn ¼ ðfn, gnÞ, we can write

In ¼ Kn \ ðx, yÞ \ ðx, zÞ \ ðx,wÞ \ ðy, zÞ \ ðy,wÞ \ ðz,wÞ
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and since fn, gn form a regular sequence, for any m � 1 we have

IðmÞ
n ¼ Km

n \ ðx, yÞm \ ðx, zÞm \ ðx,wÞm \ ðy, zÞm \ ðy,wÞm \ ðz,wÞm

In particular, for each n, the ideal In is a radical ideal with big height 2. In the following, we will
compute the initial degree of symbolic powers of In. Recall our main strategy in previous work

[31], we will study a subsequence of aðIðmÞ
n Þ, which gives us information about âðInÞ, then use

this to calculate other aðIðmÞ
n Þ:

Proposition 3.1. For n � 3, we have âðInÞ ¼ 2n:

Proof. For every m � 1, since IðmÞ
n � Km

n , we have aðIðmÞ
n Þ � aðKm

n Þ ¼ 2nm: Thus, âðInÞ � 2n:
On the other hand, since hn ¼ gn � fn 2 Kn, we have Fmn ¼ f mn gmn h

m
n 2 K3m

n : Furthermore, since

nm � 3m, Fmn 2 ðx, yÞ3m \ ðx, zÞ3m \ ðx,wÞ3m \ ðy, zÞ3m \ ðy,wÞ3m \ ðz,wÞ3m so Fmn 2 Ið3mÞ
n , hence

aðIð3mÞ
n Þ � 6nm for every m � 1: Therefore âðInÞ � 2n and it follows that âðInÞ ¼ 2n: w

Now following exactly the same argument as those of [31, Section 3] we have the following
two results:

Theorem 3.2. For n � 5, we have

aðIðmÞ
n Þ ¼ 2nm

for all m � 3:

Proof. The proof is identical to that of [31, Theorem 3.1]. The idea is that we have

fngnhnðfn, gnÞm�3 � IðmÞ
n for 3 � m � n and that ðfngnhnÞkðfn, gnÞkðn�3Þ�a � Iðkn�aÞ for

k � 2, 0 � a � n� 1: w

Theorem 3.3. For n¼ 4, for all m � 3 but m 6¼ 5,

aðIðmÞ
4 Þ ¼ 8m

Proof. The proof is identical to that of [31, Theorem 3.2]. The idea is the same as that of above

theorem. For m¼ 5, we can check by the same argument that the element yzf4g24h
2
4 2 Ið5Þ4 :

Macaulay2 computation [20] suggests that, in fact, aðIð5Þ4 Þ ¼ 42: w

Now we calculate the least degree of generators of symbolic powers for I3.

Theorem 3.4. For n¼ 3 and for m � 1 we have the following

1. aðIð3mÞ
3 Þ ¼ 18m for m � 1,

2. aðIð3mþ1Þ
3 Þ ¼ 18mþ 8 for m � 0,

3. aðIð3mþ2Þ
3 Þ ¼ 18mþ 16 for m � 0:

Proof.

1. Since âðI3Þ ¼ 6, aðIð3mÞ
3 Þ � 18m for m � 1: As we saw earlier, Fm3 2 Ið3mÞ

3 for m � 1 so

aðIð3mÞ
3 Þ � 18m and thus aðIð3mÞ

3 Þ ¼ 18m for m � 1:

2. Suppose that there is m � 1 such that aðIð3mþ1Þ
3 Þ � 18mþ 7: Then there is a divisor D of

degree 18mþ 7 vanishing to order at least 3mþ 1 along every line of 42 lines Li in the
restricted Fermat configuration. Intersecting D with any of the 18 planes Hj, j ¼ 1, :::, 18,
since each planes Hj contains exactly 7 lines, suppose that D doesn’t contain Hj then by the
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generalized Bezout Theorem, the intersection of D and Hj is of dimension 1 and degree
18mþ 7, which is a contradiction since 18mþ 7 < 7ð3mþ 1Þ:

Thus we conclude that each Hj is a component of D for all j ¼ 1, :::, 18: Hence, there exists a
divisor D0 ¼ D�P18

j¼1 Hj of degree 18ðm� 1Þ þ 7 vanishing to order at least 3ðm� 1Þ þ 1 along

every line Li. Repeating this argument m times we get a contradiction with aðI3Þ ¼ 8: Thus

aðIð3mþ1Þ
3 Þ � 18mþ 8 for all m � 1: On the other hand, it easy to see that, f m3 gm3 h

mþ1
3 yz 2 Ið3mþ1Þ

3

so aðIð3mþ1Þ
3 Þ � 18mþ 8 for all m � 1: Therefore, aðIð3mþ1Þ

3 Þ ¼ 18mþ 8 for all m � 1:

3. By identical argument to previous case and the fact that aðIð2Þ3 Þ ¼ 16, we have that

aðIð3mþ2Þ
3 Þ � 18mþ 16 for all m � 1: Since the element f mþ1

3 gmþ1
3 hm3 xyzw 2 Ið3mþ2Þ

3 we have
that aðIð3mþ2ÞÞ � 18mþ 16 for all m � 1:

w

From above computation, we showed that for each m, n, the least generating degree of sym-
bolic power of the Fermat-like ideal is twice as large as that of Fermat ideal [31] in almost all
cases (we have not shown for m¼ 2, but it is expected to be the case as well).

Proposition 3.5. For all n � 3, 4nþ 2 � aðIð2Þn Þ � 4nþ 4:

Proof. We know that aðIð2Þn Þ � aðI2nÞ ¼ 2ð2nþ 2Þ: Now suppose that aðIð2Þn Þ � 4nþ 1: Then there
is a divisor D of degree 4nþ 1 vanishing to order at least 2 along every line Li in the restricted
Fermat configuration. Since the intersection of D and any plane Hj consists of 2nþ 1 lines to
order at least 2, by generalized Bezout theorem, each Hj is a component of D because
degðDÞ:degðHjÞ ¼ 4nþ 1 < 2ð2nþ 1Þ: This is a contradiction since there are 6n planes and 6n >

4nþ 1 ¼ degðDÞ when n � 3: Therefore, 4nþ 2 � aðIð2Þn Þ � 4nþ 4 for all n � 3: w

Remark 3.6. Macaulay2 computations [20] for n small suggest that aðIð2ÞÞ ¼ 2ð2nþ 2Þ for n � 3:

As mentioned earlier, in [2, Question 3.2], we raise a question to study the Demailly-like
bound for homogeneous ideals. We also give example of classes of ideals that satisfy Demailly-
like inequality. From the above calculations, as a direct consequence, we see that the ideal In also
gives an example for Demailly-like inequality.

Corollary 3.7. For n � 3, the ideal In satisfies Demailly-like inequality

âðInÞ � aðIðmÞ
n Þ þ h� 1
mþ h� 1

for all m � 1 where h is the big height of In.

Proof. Direct from the above calculation with notice that h¼ 2. w

The following containment are also direct consequences of the above calculations.

Corollary 3.8. For every n P 3, restricted Fermat configuration ideal verifies Harbourne-Huneke
containment

Ið2rÞn � mrIrn, 8r

Proof. Since In is a radical ideal with big height 2, by [14], we have Ið2rÞn � Irn, 8r, so the above
containment come from the fact that
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aðIð2rÞn Þ P r þ xðIrnÞ
for all n P 3 and r P 1 (the case r¼ 0 is trivial). Indeed, aðIð2rÞn Þ P 4rn > r þ rð2nþ 2Þ ¼
r þ xðIrnÞ for n P 3: w

In the works of studying containment for ideals of points, or more general, for ideals of
smooth schemes, the result by Bocci and Harbourne ([4, Lemma 2.3.4]), which says that if
aðIðmÞÞ P regðIrÞ then IðmÞ � Ir, turns out to be extremely useful (see for example, [1, 2, 4].
Now we calculate the regularity of the ideal In for all n P 3:

Proposition 3.9. For all n P 3, R=In is Cohen-Macaulay and its minimal graded free resolution is

0 !
Rð�ð2nþ 3ÞÞ4

�

Rð�4nÞ
!u2 Rð�ð2nþ 2ÞÞ6 !u1 R ! R=In ! 0

where u1 ¼ ½g1, g2, g3, g4, g5, g6� and

u2 ¼

�y 0 �w 0 xn�1zn�1

x 0 0 �w �yn�1zn�1

z �w 0 0 �xn�1yn�1

0 �y z 0 �xn�1wn�1

0 x 0 z yn�1wn�1

0 0 x �y �zn�1wn�1

2
6666664

3
7777775

The maximal minors of u2 are multiple of g1, :::, g6 as in Hilbert-Burch theorem.

Proof. Direct calculation give the minors of u2 deleting row 1, 2, 3, 4, 5, 6 are 2g3, �2g6, 2g1,
�2g5, 2g4, �2g2 respectively. Applying [15, Theorem 18.18], we see that In is the ideal generated
by 5	 5 minors of the 6	 5 matrix u2 and since In has codimension 2 which agrees with ð6�
5þ 1Þð5� 5þ 1Þ, R=In is Cohen-Macaulay. In particular, depthðR=InÞ ¼ 2 and by
Auslander–Buchsbaum formula R=In has projective dimension 2. Thus by Hilbert-Burch theorem,
R=In has such minimal graded free resolution. w

The immediate consequence of the above free resolution is the regularity of the ideal In.

Corollary 3.10. For all n P 3, regðInÞ ¼ 4n� 1:

Proposition 3.11. For all m, r such that m
r >

3
2, we have the inequality aðIðmÞ

3 Þ P regðIr3Þ:

Proof. We will apply [7, Theorem 0.6], which states the following:
Let I be an homogeneous ideal of a polynomial ring R over a field, generated in degrees at

most d, such that dimðR=IÞ ¼ 2: Assume that Ip � Rp is a complete intersection for every prime
I � p such that dimR=p ¼ 2: Then

regðI2Þ 6 maxf2regðIÞ, regðIsatÞ þ 2d � 2g
and for r P 3

regðIrÞ 6 maxf3regðIÞ þ ðr � 3Þd, regðIsatÞ þ rd � 2g:
Clearly, dimðR=I3Þ ¼ 2: Since the set of associated primes of I3 is also the set of its minimal
primes which consists of 42 minimal primes Pj where each minimal prime is the defining ideal of
one of a line in the configuration. Since any prime ideal P that contains I3 must contain one Pj,
such prime ideal P with dimðR=PÞ ¼ 2 has to be Pj. Thus, for any prime I � P such that
dimðR=PÞ ¼ 2, ðI3ÞP is a complete intersection. Since regðI3Þ ¼ 11, aðI3Þ ¼ 8 and I3 ¼ Isat3 , by [7,
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Theorem 0.6] we have for r P 3 :

regðIr3Þ 6 maxf3regðI3Þ þ 8ðr � 3Þ, regðI3Þ þ 8r � 2g ¼ maxf33þ 8ðr � 3Þ, 11þ 8r � 2g ¼ 8r þ 9

and regðI23Þ 6 maxf22, 11þ 16� 2g ¼ 25: Thus, for every r P 2 :

regðIr3Þ 6 8r þ 9

Now for
m
r
>

3
2
, i.e, 2m P 3r þ 1, we have aðIðmÞ

3 Þ P 6m P 9r þ 3: Since

9r þ 3 P 8r þ 9 P regðIr3Þ
for all r P 6, it suffices now to check that for r 6 5 and 2m P 3r þ 1 we still have

aðIðmÞ
3 Þ P regðIr3Þ: Indeed,


 When r¼ 1, for m P 2, regðI3Þ ¼ 11 < 16 ¼ aðIð2Þ3 Þ 6 aðIðmÞ
3 Þ:


 When r¼ 2, for m P 4, regðI23Þ 6 25 < 26 ¼ aðIð4Þ3 Þ 6 aðIðmÞ
3 Þ:


 When r¼ 3, for m P 5, regðI33Þ 6 33 < 34 ¼ aðIð5Þ3 Þ 6 aðIðmÞ
3 Þ:


 When r¼ 4, for m P 7, regðI43Þ 6 41 < 44 ¼ aðIð7Þ3 Þ 6 aðIðmÞ
3 Þ:


 When r¼ 5, for m P 8, regðI53Þ 6 49 < 52 ¼ aðIð8Þ3 Þ 6 aðIðmÞ
3 Þ:

w

Corollary 3.12. Suppose that the inequality aðIðmÞ
n Þ P regðIrnÞ implies that IðmÞ

n � Irn.
Then qðI3Þ ¼ 3

2 :

Proof. By [29], Ið3Þn 6� I2n hence, qðI3Þ P
3
2
: By Proposition 3.11, for all m, r such that

m
r
>

3
2
,

we have IðmÞ � Ir: Hence, qðI3Þ 6 3
2
: w

We also deduce the following results as a step toward calculating the resurgence number of In
for n P 4:

Corollary 3.13. If n P 4 then for all m, r such that
m
r
>

3
2
and r P 6, we have the inequal-

ity aðIðmÞ
n Þ P regðIrnÞ:

Proof. By the same argument as that of in the proof of proposition 3.11, In satisfies all conditions
of [7, Theorem 0.6], so we have

regðIrnÞ 6 maxf3ð4n� 1Þ þ ðr � 3Þð2nþ 2Þ, 4n� 1þ rð2nþ 2Þ � 2g ¼ rð2nþ 2Þ þ 6n� 9

for r P 3: Since aðIðmÞ
n Þ P 2nm, for m, r such that

m
r
>

3
2
, i.e., 2m P 3r þ 1 we have

aðIðmÞ
n Þ P nð3r þ 1Þ: Now the inequality

nð3r þ 1Þ P rð2nþ 2Þ þ 6n� 9 () r P
5n� 9
n� 2

¼ 5þ 1
n� 2

,

is true for r P 6 and n P 4: w

Remark 3.14. For n P 4, suppose that the inequality aðIðmÞ
n Þ P regðIrnÞ implies that IðmÞ

n � Irn:

Then the resurgence number qðInÞ can only be one of the following numbers:
3
2
,
5
3
,
7
4
,
8
5
or

9
5
:
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More precisely, among the four containment Ið9Þn � I5n, I
ð7Þ
n � I4n, I

ð5Þ
n � I3n and Ið8Þn � I5n, the ratio

m
r

of the first containment (in that order) that fails is the exact value for qðInÞ, other-

wise, qðInÞ ¼ 3
2
:

In fact, we know that Ið3Þn 6� I2n by [29], hence, qðInÞ 6 3
2
: On the other hand, IðmÞ

n � Irn for all

m, r such that
m
r
>

3
2
and r P 6: The containment are still true if

m
r
>

3
2
for r¼ 1, 2 since

m
r
>

3
2
implies that m P 2r in these cases and In has big height 2. Moreover, if r¼ 3 then

m
r
>

3
2

implies m P 5 and we know that IðmÞ
n � I3n for m P 6: Similarly, if r¼ 4 then

m
r
>

3
2
implies

m P 7 and IðmÞ
n � I4n for m P 8: Lastly, if r¼ 5 then

m
r
>

3
2

implies m P 8 and IðmÞ
n � I5n

for m P 10:

If the following four containment Ið9Þn � I5n, I
ð7Þ
n � I4n, I

ð5Þ
n � I3n and Ið8Þn � I5n all hold, then

IðmÞ
n � Irn for all m, r such that

m
r
>

3
2
(because

3
2
<

8
5
<

5
3
<

7
4
<

9
5
), and it follows that qðInÞ ¼ 3

2
:

Otherwise, suppose Iðm0Þ
n � Ir0n is the first containment that fails among the above four contain-

ment (in order), then qðInÞ P
m0

r0
: For all m, r such that

m
r
>

m0

r0
>

3
2
, we know that either

IðmÞ
n � Irn if

m
r

is not among
5
3
,
7
4
,
8
5
or

9
5
by above result or

m
r

is among
5
3
,
7
4
,
8
5
or

9
5
that is

greater than
m0

r0
, in which IðmÞ

n � Irn hold as well. Either way we have qðInÞ 6 m0

r0
, there-

fore qðInÞ ¼ m0

r0
:

Macaulay2 calculations [20] for n, r small suggests that regðIrnÞ ¼ ðr þ 1ÞaðInÞ � 5 ¼
ðr þ 1Þð2nþ 2Þ � 5, and this would imply aðIðmÞ

n Þ P regðIrnÞ for all
m
r
>

3
2
: It is expected that

qðInÞ ¼ 3
2
for all n P 3:

It is expected that the least generating degree of symbolic power of the Fermat-like ideal is
twice as large as that of the Fermat ideal for each m, n and that they are expected to have the
same (asymptotic) resurgence number for each n. It would be interesting to see if this is still the
case when we generalize the restricted Fermat configuration into higher dimension. It is worth to
note that the above calculation suggests that the Fermat-like ideals have expected resurgence.
Table 1 summarizes all numerical values for the initial degrees of symbolic powers of the ideals
In that we have calculated in this section.

4. Arrangements given by the group A3

In this section, we will deal with ideal J ¼ ðyzðy� zÞ, zxðz � xÞ, xyðx� yÞÞ, which is the ideal of
the singular locus of the arrangement of lines given by the group Gð1, 1, 4Þ ¼ A3: In general,

Table 1. Least degree of generators of symbolic powers of In.

n 3 4 n P 5

m 2 3k 3k þ 1 3k þ 2 2 5 P 3, 6¼ 5 2 P 3
aðIðmÞn Þ 16 18k 18k þ 8 18k þ 16 20 42 4m P 4nþ 2, 6 4nþ 4 2nm
âðInÞ 3 4 n
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given a finite group G � GLnþ1ðCÞ generated by pseudoreflections. By a pseudoreflection we
mean a linear transformation that is not the identity and fixes a hyperplane pointwise and have
finite order. We can regard the generators of G as a hyperplane arrangement where the hyper-
planes are pointwise fixed by the elements of G that are pseudoreflections. It is shown in [9,
Proposition 3.8] that the singular locus (the Jacobian ideal) of the arrangement of lines corres-
pond to Gð1, 1, 4Þ ¼ A3 is given by J. We will see that its least degree of generators of symbolic
powers, Waldschmidt constant, (asymptotic) resurgence number are the same as those of group
D3, see [31, Section 4].

Geometrically, J is the defining ideal of the singular locus of the line arrangement in P2 that
consists of 6 lines Lj whose equations are

x ¼ 0, y ¼ 0, z ¼ 0, x ¼ y, y ¼ z, z ¼ x

These 6 lines intersect at 7 points Pi which are ½1 : 0 : 0�, ½0 : 1 : 0�, ½0 : 0 : 1�, ½1 : 1 : 1�, ½0 : 1 :
1�, ½1 : 0 : 1� and ½1 : 1 : 0� such that the first 4 points lie on 3 lines each and the rest lie on 2 lines
each; and each line contains exactly 3 points.

Algebraically, we can write

J ¼ ððy� zÞðyþ z � xÞ, ðx� yÞðxþ y� zÞÞ \ ðx, yÞ \ ðy, zÞ \ ðz, xÞ
and

JðmÞ ¼ ððy� zÞðyþ z � xÞ, ðx� yÞðxþ y� zÞÞm \ ðx, yÞm \ ðy, zÞm \ ðz, xÞm 8m

Theorem 4.1. For ideal J we have the following

1. âðJÞ ¼ 5
2

2. aðJð2kÞÞ ¼ 5k, for all k � 2:
3. aðJð2kþ1ÞÞ ¼ 5kþ 3, for all k � 0:
4. aðJð2ÞÞ ¼ 6

Proof. By [17, Theorem 2.3], we can check that âðJÞ � 5
2 :

In particular, we have that aðJð2kÞÞ � 5k and aðJð2kþ1ÞÞ � 5kþ 3, for all k � 1: We will show
the reverse by showing there exists some element with the desired degree in the symbolic powers.

Denote K ¼ ððy� zÞðyþ z � xÞ, ðx� yÞðxþ y� zÞÞ and first notice that since

�ðz � xÞðz þ x� yÞ ¼ ðy� zÞðyþ z � xÞ þ ðx� yÞðxþ y� zÞ 2 K

we have that

2xðx� yÞðz � xÞ ¼ ðz � xÞðx� yÞðxþ y� zÞ þ ðx� yÞðz � xÞðz þ x� yÞ 2 K (4.1)

Similarly, yðy� zÞðx� yÞ, zðz � xÞðy� zÞ 2 K: It follows that

ðy� zÞðz � xÞxyz2 ¼ ðy� zÞðz � xÞxy z2 � ðx� yÞ2
� �

þ ðy� zÞðz � xÞxyðx� yÞ2 2 K2 (4.2)
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since

ðy� zÞðz � xÞxy z2 � ðx� yÞ2
� �

¼ xyðy� zÞðyþ z � xÞðz � xÞðz þ x� yÞ 2 K2

and by 4.1

ðy� zÞðz � xÞxyðx� yÞ2 ¼ xðx� yÞðz � xÞyðy� zÞðx� yÞ 2 K2

By 4.1 we also have that

yzðy� zÞ ¼ ðy� zÞzðyþ z � xÞ � ðy� zÞzðz � xÞ 2 K (4.3)

We have the following cases

1. Case 1: when m ¼ 4k: Consider the polynomial F ¼ ½ðy� zÞðz � xÞxyz2�kðx� yÞ2k
ðxþ y� zÞ2k that has degree 10k. By 4.3, ½ðy� zÞðz � xÞxyz2�k 2 K2k so F 2 K4k: On the

other hand, ½ðy� zÞyz2�k 2 ðy, zÞ4k, ½ðz � xÞxz2�k 2 ðz, xÞ4k and ðxyÞ2kðx� yÞ2k 2 ðx, yÞ4k: Thus
F 2 K4k \ ðx, yÞ4k \ ðy, zÞ4k \ ðz, xÞ4k ¼ Jð4kÞ, 8k � 1

2. Case 2: when m ¼ 4kþ 2: We first show that

G ¼ x2y2z2ðx� yÞ2ðy� zÞ2ðz � xÞ2ðxþ y� zÞðyþ z � xÞðz þ x� yÞ 2 Jð6Þ

In fact, ðx� yÞðy� zÞðz � xÞðxþ y� zÞðyþ z � xÞðz þ x� yÞ 2 K3 and by 4.3
x2y2z2ðx� yÞ2ðy� zÞ2ðz � xÞ2 2 K3: It is also clear that G 2 ðx, yÞ6 \ ðy, zÞ6 \ ðz, xÞ6:

The polynomial F ¼ G½ðy� zÞðz � xÞxyz2�kðx� yÞ2kðxþ y� zÞ2k has degree 10ðkþ 1Þ þ 5 and
by case 1

F 2 Jð6ÞJð4kÞ � Jð4ðkþ1Þþ2Þ, 8k � 0

3. Case 3: when m ¼ 4kþ 1: F ¼ xkykþ1z2kþ1ðy� zÞkþ1ðz � xÞkðx� yÞ2kðxþ y� zÞ2k has degree

10kþ 3: By 4.2, xkykz2kðy� zÞkðz � xÞk 2 K2k, by 4.3, yzðy� zÞ 2 K so F 2 K4kþ1: Similar to

case 1, F 2 \ðx, yÞ4kþ1 \ ðy, zÞ4kþ1 \ ðz, xÞ4kþ1 and hence,

F 2 Jð4kþ1Þ, 8k � 0

4. Case 4: when m ¼ 4kþ 3: F ¼ ½ðy� zÞðz � xÞxyz2�kþ1ðx� yÞ2kþ1ðxþ y� zÞ2kþ1 has degree
10kþ 8 and

F 2 K4kþ3 \ ðx, yÞ4kþ3 \ ðy, zÞ4kþ3 \ ðz, xÞ4kþ3 ¼ Jð4kþ3Þ, 8k � 0

Thus, aðJð2kÞÞ � 5k, for all k � 2 and aðJð2kþ1ÞÞ � 5kþ 3, for all k � 0: It follows that statements
(2) and (3) are true and by taking limit as k goes to 1, (1) follows as well. Part (4) can be
checked directly by Macaulay2 or by Bezout theorem argument as follows: We know that
aðJð2ÞÞ � aðJ2Þ ¼ 6: Now suppose that aðJð2ÞÞ � 5: Then there is a divisor D of degree 5 vanishing
to order at least 2 at every point Pi. Since the intersection of D and any line Lj consists of 3
points to order at least 2, we get a contradiction to Bezout theorem because
degðDÞ:degðLjÞ ¼ 5 < 2:3: w

Example 4.2. It is worth to point out that the first immediate application of the above calcula-
tions is the verification of Chudnovsky’s Conjecture and Demailly’s Conjecture, although the gen-
eral case is already known from [16]. Ideal J verifies:
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1. Chudnovsky’s Conjecture âðJÞ � aðJÞþ1
2 :

2. Demailly’s Conjecture âðJÞ � aðJðmÞÞþ1
mþ1 for all m.

Theorem 4.3. The resurgence number and asymptotic resurgence number are:

qðJÞ ¼ q̂ðJÞ ¼ 6
5

Proof. Since J has the same minimal degrees of generators of symbolic powers and same free res-
olutions of all its ordinary powers as those of the ideal of configuration of D3, the proof is identi-
cal to that of ideal of configuration of D3 [31, Proposition 4.2]. w

The above result gives us another example for ideals have expected resurgence. The following
corollaries and remark also follow from the fact that ideal of configuration A3 and D3 share the
same minimal degrees of generators of all symbolic powers, see [31, Section 4].

Corollary 4.4. Ideal J verifies Harbourne-Huneke containment

1. Jð2rÞ � mrJr, 8r:
2. Jð2r�1Þ � mr�1Jr, 8r � 1:

Remark 4.5. The above corollary gives a proof for the case A3 in [9, Proposition 6.3].
In [1, Example 3.7], we showed the stronger containment (which implies both Harbourne-

Huneke) containment

Jð2r�2Þ � mrJr

for r¼ 5 (by Macaulay2) and thus, the same containment holds for all r � 0 by our method. In
particular, from the proof of [1, Theorem 3.1], the containment hold for r � 102 ¼ 100: Here we
see that the containment hold for all r � 5:

Corollary 4.6. For every n � 3, Fermat configuration ideal verifies the following containment

Jð2r�2Þ � mrJr, 8r � 5

Remark 4.7. For r � 4, the above containment fail with the same reason to that of [31,
Remark 4.6].

Table 2 summarizes all numerical values including the initial degrees of symbolic powers as
well as the asymptotic resurgence and resurgence numbers of ideal J that we have calculated in
this section.

The table provide a complete answer to the question in the theory of Hermite interpolation,
that is to determine the least degree of a homogeneous polynomial that vanishes to order m at

the 7 points of the given configuration in P2:

Table 2. Least degree of generators and other invariants related to symbolic powers of J.

m 2 2k 2k þ 1

aðJðmÞÞ 6 5k 5k þ 3
âðJÞ 5/2
qðJÞ ¼ q̂ðJÞ 6/5
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We end this section by calculating the invariant bðJðmÞÞ: As introduced first in [24, Definition
2.2] for homogeneous ideals and later considered for ideal I of a finite set of (fat) points in [25],
bðIÞ is set to be the smallest integer t such that It contains a regular sequence of length two, or
equivalently, is the least degree t such that the zero locus of It is 0-dimensional. It is known that
for ideals of fat points, bðIÞ � xðIÞ [31, Proposition 3.9]. By the same argument to that of [31,
Proposition 4.9] we have the following

Proposition 4.8. For all m � 1, bðJðmÞÞ ¼ 3m and xðJðmÞÞ � 3m:

Proof. The proof is identical to that of [31, Proposition 4.9] since Jm is generated in degree 3m
and each line in this configuration also passed through exactly 3 points in the configuration. w

Remark 4.9. Similar to the Fermat ideals, it is suggested by Macaulay2 that xðJðmÞÞ ¼ 3m:

5. An additional example

Consider ideal J2 ¼ ðyzðy2 � z2Þ, zxðz2 � x2Þ, xyðx2 � y2ÞÞ: Geometrically, J is the defining ideal of
the singular locus of the line arrangement in P2 corresponds to the group Gð2, 1, 3Þ ¼ B3, [9,
Proposition 3.10]. This arrangement consists of 9 lines Lj whose equations are

x ¼ 0, y ¼ 0, z ¼ 0, x ¼ 6y, y ¼ 6z, z ¼ 6x

These 9 lines intersect at 13 points Pi which are ½1 : 0 : 0�, ½0 : 1 : 0�, ½0 : 0 : 1�, ½1 : 1 : 1�, ½�1 : 1 : 1�,
½1 : �1 : 1�, ½1 : 1 : �1�, ½0 : 1 : 1�, ½1 : 0 : 1�, ½1 : 1 : 0�, ½0 : 1 : �1�, ½�1 : 0 : 1� and ½1 : �1 : 0� such
that the first 3 points lie on 4 lines each, the next 4 points lie on 3 lines each and the rest lie on 2
lines each; and each line contains exactly 4 points.

Algebraically, we can write

J2 ¼ K1 \ K2 \ K3 \ K \ ðx, yÞ \ ðy, zÞ \ ðz, xÞ
where K1 ¼ ðx, y2 � z2Þ,K2 ¼ ðy, z2 � x2Þ,K3 ¼ ðz, x2 � y2Þ and K ¼ ðx2 � y2, y2 � z2Þ, or we can
write

J2 ¼ K 0
1 \ K0

2 \ K \ ðx, yÞ \ ðy, zÞ \ ðz, xÞ
where K0

1 ¼ ððy� zÞðyþ z � xÞ, ðx� yÞðxþ y� zÞÞ,K0
2 ¼ ðxþ yþ z, yzðyþ zÞÞ, then for all m

JðmÞ
2 ¼ Km

1 \ Km
2 \ Km

3 \ Km \ ðx, yÞm \ ðy, zÞm \ ðz, xÞm

¼ K
0m
1 \ K

0m
2 \ Km \ ðx, yÞm \ ðy, zÞm \ ðz, xÞm

Note that K \ ðx, yÞ \ ðy, zÞ \ ðz, xÞ is the Fermat ideal with n¼ 2, so we immediately have that

âðJ2Þ � 5
2
: Moreover, computations with Macaulay2 show that aðJð6Þ2 Þ ¼ 21, hence, âðJ2Þ � 7

2
: It

seems that âðJ2Þ would be
7
2
but the aðJðmÞ

2 Þ are tricky to deal with. On the other hand, aðJð3Þ2 Þ ¼
12, by [16], since J2 satisfies Demailly’s Conjecture, we have:

âðJ2Þ � aðJð3Þ2 Þ þ 1
3þ 1

¼ 13
4

Since regðJ2Þ ¼ 6, by [23, Theorem 1.2] we have:

8
7
� aðJ2Þ

âðJ2Þ � q̂ðJ2Þ � qðJ2Þ � regðJ2Þ
âðJ2Þ � 24

13
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In particular, J2 has expected resurgence. Further computations by Macaulay2 show that, Jð7Þ2 6�
J62 , thus,

7
6
� qðJ2Þ: It is interesting to know if qðJ2Þ ¼ 7

6
:

More general, for n � 1, consider the ideal Jn ¼ ðyzðyn � znÞ, zxðzn � xnÞ, xyðxn � ynÞÞ which
will capture J2 and J ¼ J1. Geometrically, Jn corresponds to the configuration of 3nþ 3 lines that
consists of all 3n lines in Fermat configuration and 3 lines x ¼ 0, y ¼ 0, z ¼ 0; and n2 þ 3nþ 3
intersection points. In particular, each line passes through nþ 2 points. Similar to J2, note that Jn
is a subset of the Fermat ideals for n � 2, thus âðJnÞ � n for n � 3:

Remark 5.1. Only by looking at the above lower bound, we easily see that Jn verifies

Chudnovsky’s Conjecture âðJnÞ � aðJnÞþ1
2 for all n. In fact, the case n¼ 1 was verified in previous

sections and n¼ 2 follows from âðJ2Þ � 5
2 : When n � 3, âðJnÞ � n � nþ2þ1

2 :

On the other hand, by [30, Theorem 2.5], since Jn is a strict almost complete intersection ideal
with minimal generators of degree nþ 2 and its module syzygies is generated in degree 1 and
nþ 1, the minimal free resolution of Jrn is:

0 ! Rð�ðnþ 2Þðr þ 1ÞÞ
r
2

� �
!w

Rð�ðnþ 2Þr � 1Þ
r þ 1
2

� �

�

Rð�ðnþ 2Þr � ðnþ 1ÞÞ
r þ 1
2

� � !
u

Rð�ðnþ 2ÞrÞ
r þ 2
2

� �
! Jrn ! 0

for any r � 2, in particular, regðJrnÞ ¼ ðnþ 2Þr þ n for all r � 2: It would be interesting to know

if we can determine aðJðmÞ
n Þ and use them with the knowledge of regðJrnÞ to verify Demailly’s

Conjecture as well as Harbourne-Huneke Containment, stable Harbourne Containment as we did
for Fermat ideals and Fermat-like ideals.

Back to ideal J2, the following proposition (part (2)) gives a proof for the case B3 in [9,
Proposition 6.3].

Proposition 5.2. Ideal J2 verifies Harbourne-Huneke containment

1. Jð2rÞ2 � mrJr2, 8r:
2. Jð2r�1Þ

2 � mr�1Jr2, 8r � 3:

Proof.

1. For all r, Jð2rÞ2 � Jr2, hence, the containment follows since for all r, we have

aðJð2rÞ2 Þ � 13r
2

� r þ 4r ¼ r þ xðJr2Þ

2. First, the containment Jð2r�1Þ
2 � Jr2 for r � 3 follows from the inequality

aðJð2r�1Þ
2 Þ � 13

4
ð2r � 1Þ � 4r þ 2 ¼ regðJr2Þ

for all r � 3: Thus, Jð2r�1Þ
2 � mr�1Jr2 for r � 3 follows from:

aðJð2r�1Þ
2 Þ � 13

4
ð2r � 1Þ � r � 1þ 4r ¼ r þ xðJr2Þ

for all r � 2:
w
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Remark 5.3. Macaulay2 shows that for r¼ 2, aðJð3Þ2 Þ ¼ 12, hence, aðJð3Þ2 Þ � 4:2þ 2 ¼ regðJ22Þ:
Therefore, Jð2r�1Þ

2 � Jr2 for r � 2 and since aðJð2r�1Þ
2 Þ � r þ xðJr2Þ for all r � 2, Jð2r�1Þ

2 � mr�1Jr2,

for r � 2: The case r¼ 1 is obvious. Thus, Jð2r�1Þ
2 � mr�1Jr2, for r � 1:

We end this section with the follow up to the discussion about the invariants b and x for
Fermat ideals in [31] and J ¼ J1 in the previous section.

Proposition 5.4. For all n � 1 and m � 1, bðJðmÞ
n Þ ¼ mðnþ 2Þ and xðJðmÞ

n Þ � mðnþ 2Þ:

Proof. The proof is the same to that of [31, Proposition 3.10] with notice that Jmn is generated in
degree mðnþ 2Þ and each line in this configuration passed through exactly nþ 2 points in the
configuration. w

Remark 5.5. It is also suggested by Macaulay2 [20] that xðJðmÞ
n Þ ¼ mðnþ 2Þ as in the case of

Fermat ideals. It is interesting to know if xðIðmÞÞ ¼ bðIðmÞÞ hold for what radical ideal of points I
in general.
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