

The initial degree of symbolic powers of Fermatlike ideals of planes and lines arrangements

Thái Thành Nguyễn

To cite this article: Thái Thành Nguyễn (2023) The initial degree of symbolic powers of Fermatlike ideals of planes and lines arrangements, Communications in Algebra, 51:1, 29-45, DOI: 10.1080/00927872.2022.2087225

To link to this article: https://doi.org/10.1080/00927872.2022.2087225

Published online: 20 Jun 2022.

Submit your article to this journal $\boldsymbol{\pi}$

Article views: 41

View related articles

View Crossmark data \because

The initial degree of symbolic powers of Fermat-like ideals of planes and lines arrangements

Thái Thành Nguyễn ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Mathematics, Tulane University, New Orleans, Louisiana, USA; ${ }^{\text {b }}$ University of Education, Hue University, Vietnam

Abstract

We explicitly compute the least degree of generators of all symbolic powers of the defining ideal of Fermat-like configuration of lines in $\mathbb{P}_{\mathrm{C}}^{3}$, except for the second symbolic powers, where we provide bounds for them. We will also explicitly compute those numbers for ideal determining the singular locus of the arrangement of lines given by the pseudoreflection group A_{3}. As direct applications, we verify Chudnovsky's(-like) Conjecture, Demailly's(-like) Conjecture and Harbourne-Huneke Containment problem as well as calculate the Waldschmidt constant and (asymptotic) resurgence number.

ARTICLE HISTORY

Received 1 June 2021
Revised 21 April 2022
Communicated by Daniel
Erman

KEYWORDS

Containment problem; Fermat ideals; Fermat lines configuration; ideals of lines; ideals of points; interpolation problem; resurgence number; stable Harbourne-Huneke conjecture; symbolic powers; Waldschmidt constant

2020 MATHEMATICS SUBJECT CLASSIFICATION
14N20; 13F20; 14C20

1. Introduction

Let $n \geq 3$ and I_{n} be the ideal in $\mathbb{C}[x, y, z, w]$ generated by:

$$
\begin{array}{ll}
g_{1}=\left(x^{n}-y^{n}\right)\left(z^{n}-w^{n}\right) x y, & g_{2}=\left(x^{n}-y^{n}\right)\left(z^{n}-w^{n}\right) z w \\
g_{3}=\left(x^{n}-z^{n}\right)\left(y^{n}-w^{n}\right) x z, & g_{4}=\left(x^{n}-z^{n}\right)\left(y^{n}-w^{n}\right) y w \\
g_{5}=\left(x^{n}-w^{n}\right)\left(y^{n}-z^{n}\right) x w, & g_{6}=\left(x^{n}-w^{n}\right)\left(y^{n}-z^{n}\right) y z
\end{array}
$$

which we will refer as Fermat-like ideal. This ideal corresponds to the restricted Fermat arrangement of planes in \mathbb{P}^{3}, where the correspondent variety is the union of all lines with multiplicity at least 3, i.e., there are at least 3 planes passing through each line. Fermat-like ideals were first introduced by Malara and Szpond in their work [29] in an effort to provide counterexamples in higher dimension to the famous containment $I^{(3)} \subseteq I^{2}$. It can be seen as an analog of Fermat ideals in higher dimension. For more information about Fermat ideals, we refer interested readers to [12, 25, 30-32].

In this manuscript, we will discover many similarities between these ideals and Fermat ideals in terms of the least degree of generators (or initial degree) of their symbolic powers, denoted by

[^0]$\alpha\left(I_{n}^{(k)}\right)$, Waldschmidt constants $\hat{\alpha}\left(I_{n}\right)$, and expectedly, (asymptotic) resurgence numbers. Moreover, the verification to certain Harbourne-Huneke containment of them can also be decided purely by the knowledge of the aforementioned numerical invariants. This work is a continuation of our paper [31] where we answer those questions for Fermat ideals. Our results on Fermat-like ideals are the following:

Theorem 1.1 (Propositions 3.1, 3.5, Theorems 3.2, 3.3, 3.4). Let $n \geq 3$ be an integer and Fermatlike ideal I_{n} in $\mathbb{C}[x, y, z, w]$ as described above. Then:

1. For $n \geq 5, \alpha\left(I_{n}^{(m)}\right)=2 n m$ for all $m \geq 3$.
2. $\quad \alpha\left(I_{4}^{(m)}\right)=8 m$ for all $m \geq 3$ and $m \neq 5$.
3. $\alpha\left(I_{3}^{(3 k)}\right)=18 k$ for $k \geq 1, \alpha\left(I_{3}^{(3 k+1)}\right)=18 k+8$ and $\alpha\left(I_{3}^{(3 k+2)}\right)=18 k+16$ for $k \geq 0$.
4. $\quad 4 n+2 \leq \alpha\left(I_{n}^{(2)}\right) \leq 4 n+4=\alpha\left(I_{n}^{2}\right)$.
5. $\hat{\alpha}\left(I_{n}\right)=2 n$.

This gives the almost complete answer to the question of the least degree of generators of almost all symbolic powers of the defining ideal of Fermat-like configuration of lines in \mathbb{P}_{C}^{3} and bounds only for the case when $m=2$. Note that for each m, n the least generating degree of symbolic power of the Fermat-like ideal is twice as large as that of Fermat ideal in almost all cases (and are expected to be in all cases as suggested by Macaulay 2 computation [20]).

One important problem that has attracted a lot of attention recently is the containment problem, namely, to determine the set of pairs (m, r) for which $I^{(m)} \subseteq I^{r}$ for a given ideal I. Following the celebrated results in $[14,26,27]$ that $I^{(m)} \subseteq I^{r}$ whenever $m \geq h r$, where h is the big height of I, the resurgence $\rho(I)$ is introduced in [4], and the asymptotic resurgence $\hat{\rho}(I)$ is introduced in [23] in order to study the pairs (r, m) numerically and has turned out to be very useful invariants.

$$
\begin{aligned}
& \rho(I):=\sup \left\{\frac{m}{r}: I^{(m)} \nsubseteq I^{r}\right\} \\
& \hat{\rho}(I):=\sup \left\{\frac{m}{r}: I^{(m t)} \nsubseteq I^{r t} \text { for } t \gg 0\right\} .
\end{aligned}
$$

It is well-known that over a regular ring, $1 \leqslant \rho(I) \leqslant h$, where h denotes the big height of I, that is the maximum height of its associated primes. As noted in [21, Remark 2.7], the Stable Harbourne Conjecture, namely, $I^{(h r-h+1)} \subseteq I^{r}$ for $r \gg 0$, follows immediately whenever $\rho(I)<h$. In that case, we say that I has expected resurgence [22]. We show that the defining ideals of the singular locus of the line arrangements corresponds to the group A_{3} and B_{3} have expected resurgence and strongly predict that the same applies to I_{n}.

Another motivation for computing the least degree of generators of their symbolic powers is to provide more evidence for ideals that satisfy Chudnovsky-like inequality and Demailly-like inequality as well as Harbourne-Huneke Containment and stable containment. This motivation stems from the previous work by Bisui, Grifo, Hà and the author, see [2, Section 3] and containment in [1]. Similar to the Fermat ideals, the verification and failure of the containment for I_{n} can be checked purely by their numerical invariants including the least degree of generators of symbolic powers, the regularity, or the resurgence number and the maximal degree of generators. As direct applications, we will provide some evidence for classes of ideals beyond points that satisfy certain Harbourne-Huneke Containment (a similar question appears as 3.1 in [2, Section 3], that all Fermat-like ideals satisfy the Harbourne-Huneke Containment. Note that the big height of the ideal I_{n} is 2 for each n, see the description of I_{n} in section 3 .

Corollary 1.2 (Corollary 3.8). The Fermat-like ideals verify the following Harbourne-Huneke containment (see [24, Conjecture 2.1] for ideal of points)

$$
I_{n}^{(2 r)} \subseteq \mathfrak{m}^{r} I_{n}^{r}, \quad \forall r .
$$

As another direct application of these computations, we will give affirmed examples for question 3.2 in [2, Section 3], that all Fermat-like ideals satisfy the Chudnovsky-like inequality and Demailly-like inequality.

Corollary 1.3. Fermat-like ideals satisfy Demailly-like inequality (and hence, Chudnovsky-like inequality)

$$
\hat{\alpha}\left(I_{n}\right) \geq \frac{\alpha\left(I_{n}^{(m)}\right)+h-1}{m+h-1}
$$

for all m, where $h=2$.
Along the way, we give the free resolution, Castelnuovo-Mumford regularity formula for I_{n} as a step toward investigating Harbourne-Huneke containment and computing (asymptotic) resurgence number for I_{n}.

In previous work [31], we investigate the above questions for Fermat ideals. In particular, the Fermat ideal for 7 points can be seen as ideal of the singular locus of the arrangement of lines given by the pseudoreflection group $G(2,2,3)=D_{3}$. We continue to study the defining ideal of the singular locus of the arrangement of lines given by the group $G(1,1,4)=A_{3}$ in this paper and give some discussion for group $G(2,1,3)=B_{3}$ (see [9] for description of these groups and related line arrangements). These are 3 groups that have correspondent ideals with small degree of generators, that had to be considered separately in the result involving Harbourne containment in [9, Proposition 6.3]. It turns out interestingly that the ideal corresponding to the group A_{3} is the same as that of group D_{3} in term of least degree of generators of symbolic powers, Waldschmidt constant, (asymptotic) resurgence numbers; and hence, satisfies Chudnovsky's Conjecture and Demailly's Conjecture as well as Harbourne-Huneke Containment, stable Harbourne Containment and some stronger containment.

Theorem 1.4. Let J be the ideal of the singular locus of the arrangement of lines given by the group $G(1,1,4)=A_{3}$. Then

1. $\alpha\left(J^{(2 k)}\right)=5 k$ for all $k \geq 2$ and $\alpha\left(J^{(2)}\right)=6$.
2. $\alpha\left(J^{(2 k+1)}\right)=5 k+3$ for all $k \geq 0$.
3. $\hat{\alpha}(J)=\frac{5}{2}$.
4. $\quad \rho(J)=\hat{\rho}(J)=\frac{6}{5}$.

Similar to the Fermat ideals and Fermat-like ideals, the verification and failure of the containment J can be checked purely by their numerical invariants including the least degree of generators of symbolic powers, the regularity, or the resurgence number and the maximal degree of generators.

Corollary 1.5. The ideal J in theorem 1.4 verifies the following containment and stable containment

1. Harbourne-Huneke containment (see [24, Conjecture 2.1])

$$
J^{(2 r)} \subseteq \mathfrak{m}^{r} J^{r}, \quad \forall r
$$

2. Harbourne-Huneke containment (see [24, Conjecture 4.1.5])

$$
J^{(2 r-1)} \subseteq \mathfrak{m}^{r-1} J^{r}, \quad \forall r \geq 1
$$

3. A stronger containment $J^{(2 r-2)} \subseteq \mathfrak{m}^{r} J^{r}, \quad \forall r \geq 5$

We work over the field of complex numbers but our results hold over any algebraically closed field of characteristic 0 .

2. Preliminaries

Let $R=\mathbb{C}\left[x_{0}, \ldots, x_{N}\right]$ be the homogeneous coordinate ring of \mathbb{P}^{N}, and let \mathfrak{m} be its maximal homogeneous ideal. For a homogeneous ideal $I \subseteq R$, let $\alpha(I)$ denote the least degree of a nonzero homogeneous polynomial in I, and let

$$
I^{(m)}:=\bigcap_{p \in \operatorname{Ass}(R / I)} I^{m} R_{\mathfrak{p}} \cap R
$$

denote its m-th symbolic power.
The Waldschmidt constant of I is defined to be the limit and turned out to be the infimum

$$
\hat{\alpha}(I):=\lim _{m \rightarrow \infty} \frac{\alpha\left(I^{(m)}\right)}{m}=\inf _{m \rightarrow \infty} \frac{\alpha\left(I^{(m)}\right)}{m}
$$

In studying ideals defining sets of points in \mathbb{P}^{N}, Chudnovsky's Conjecture gives a lower bound for $\alpha\left(I^{(m)}\right)$ in term of $\alpha(I), N$ and m as follows.

Conjecture 2.1 (Chudnovsky). Let I be the defining ideal of a set of points in $\mathbb{P}_{\mathbb{C}}^{N}$. Then, for all $n \geq 1$,

$$
\frac{\alpha\left(I^{(n)}\right)}{n} \geq \frac{\alpha(I)+N-1}{N}
$$

It is also natural to ask if the Chudnovsky-like inequality is still true for a homogeneous radical ideal I, for example, if we replace N by big height h of I. Many partial results are known for Chudnovsky's Conjecture, for example, in $[1,4,10,13,16,18,19,24]$. Recently, the conjecture was proved for a very general set of points in [13, 18], for a general set of sufficiently many points in [1], and for small numbers of general points in [3]. On the other hand, Chudnovsky-like inequality was verified for a set of very general lines in \mathbb{P}^{3} in [11]. There is also result that for any homogeneous ideal I, ideal $I^{(t)}$ satisfies Chudnovsky-like inequality for all $t \gg 0$, see [18]. A defining ideal of fat points with equi-multiplicity at least 2 is also shown to satisfy Chudnovskylike inequality, see [1]. The following generalization is due to Demailly [8].
Conjecture 2.2 (Demailly). Let I be the defining ideal of a set of points in $\mathbb{P}_{\mathbb{C}}^{N}$. Let $m \in \mathbb{N}$ be any fixed integer. Then, for all $n \geq 1$,

$$
\frac{\alpha\left(I^{(n)}\right)}{n} \geq \frac{\alpha\left(I^{(m)}\right)+N-1}{m+N-1}
$$

Demailly's Conjecture for $N=2$ was proved by Esnault and Viehweg [16]. In higher dimension, Demailly's Conjecture holds for a very general set of sufficiently many points (the number of points depends on m) in [28] and for a general set of k^{N} points in \mathbb{P}^{N} [6]. In [2], the conjecture was proved for a general set of sufficiently many points (also depends on m). We also raise a question [2, Question 3.2] for ideal that verified Demailly-like inequality and show some examples of such ideals including: defining ideal of a codimension h star configuration in \mathbb{P}^{N}, generic
determinantal ideals, determinantal ideals of symmetric matrices and Pfaffian ideals of skew symmetric matrices.

The resurgence number $\rho(I)$ is introduced in [4] as

$$
\rho(I):=\sup \left\{\frac{m}{r}: I^{(m)} \nsubseteq I^{r}\right\}
$$

and the asymptotic resurgence $\hat{\rho}(I)$ is introduced in [23] as

$$
\hat{\rho}(I):=\sup \left\{\frac{m}{r}: I^{(m t)} \nsubseteq I^{r t} \text { for } t \gg 0\right\}
$$

in effort to study the containment problem numerically, namely, the pairs (m, r) such that $I^{(m)} \subseteq$ I^{r}. It is a celebrated result in $[14,26,27]$ that $I^{(h r)} \subseteq I^{r}$ for codimension h ideal I. In another effort to improve this containment for ideal of points and study Chudnovsky's Conjecture and Demailly's Conjecture, Harbourne and Huneke in [24] conjectured that the defining ideal I for any set of points in \mathbb{P}^{N} satisfies some stronger containment

$$
I^{(N m)} \subseteq \mathfrak{m}^{m(N-1)} I^{m}, \text { and } I^{(N m-N+1)} \subseteq \mathfrak{m}^{(m-1)(N-1)} I^{m}
$$

for all $m \geqslant 1$. We also raise a question [2, Question 3.1] for other classes of ideals that satisfies some version of Harbourne-Huneke Containment (replacing N by h) and showed some examples including the ideals mentioned in previous paragraph. Note that suitable version of stable Harbourne-Huneke Containment (or even infinitely many such containment) would imply Chudnovsky's and Demailly' Conjecture (or Demailly-like inequality), for example, see [2]. On the other hand, the resurgence always satisfies $\rho(I) \geqslant 1$, and over a regular ring, the resurgence of a radical ideal is always at most the big height h. As noted in [21, Remark 2.7], the Stable Harbourne Conjecture $I^{(h r-h+1)} \subseteq I^{r}$ for $r \gg 0$ follows immediately whenever $\rho(I)<h$. In that case, we say that I has expected resurgence [22].We refer interested readers to [5] for more information about the Waldschmidt constant, resurgence number, containment between symbolic and ordinary powers of ideals.

3. Ideal of restricted Fermat configuration of lines in $\mathbb{P}^{\mathbf{3}}$

Recall that Fermat-like ideal I_{n} is the ideal generated by

$$
\begin{array}{ll}
g_{1}=\left(x^{n}-y^{n}\right)\left(z^{n}-w^{n}\right) x y, & g_{2}=\left(x^{n}-y^{n}\right)\left(z^{n}-w^{n}\right) z w \\
g_{3}=\left(x^{n}-z^{n}\right)\left(y^{n}-w^{n}\right) x z, & g_{4}=\left(x^{n}-z^{n}\right)\left(y^{n}-w^{n}\right) y w \\
g_{5}=\left(x^{n}-w^{n}\right)\left(y^{n}-z^{n}\right) x w, & g_{6}=\left(x^{n}-w^{n}\right)\left(y^{n}-z^{n}\right) y z
\end{array}
$$

From [29], geometrically, I_{n} is the defining ideal of the union of lines with multiplicity at least 3 of the Fermat arrangement of flats (planes) in \mathbb{P}^{3}, denoted by $H_{j}, j=1, \ldots, 6 n$, that is defined by the vanishing of the polynomial:

$$
F_{n}=\left(x^{n}-y^{n}\right)\left(z^{n}-w^{n}\right)\left(x^{n}-z^{n}\right)\left(y^{n}-w^{n}\right)\left(x^{n}-w^{n}\right)\left(y^{n}-z^{n}\right)
$$

There are $4 n^{2}+6$ lines, denoted by $L_{j}, j=1, \ldots, 4 n^{2}+6$, in the above restricted Fermat configuration of lines. Notice also that from this description, each of $6 n$ planes H_{j} passes through exactly $2 n+1$ lines, for example, the plane $x=\epsilon y$ passes through the line defined by $(x, y), n$ lines defined by $\left(x-\epsilon y, x-\epsilon^{k} z\right)$ and n lines defined by $\left(x-\epsilon y, y-\epsilon^{k} w\right)$ for $k=0, \ldots n-1$, where ϵ is an n-root of 1 .

Algebraically, let $f_{n}=\left(x^{n}-y^{n}\right)\left(z^{n}-w^{n}\right), g_{n}=\left(x^{n}-z^{n}\right)\left(y^{n}-w^{n}\right), h_{n}=\left(x^{n}-w^{n}\right)\left(y^{n}-z^{n}\right)$ and $K_{n}=\left(f_{n}, g_{n}\right)$, we can write

$$
I_{n}=K_{n} \cap(x, y) \cap(x, z) \cap(x, w) \cap(y, z) \cap(y, w) \cap(z, w)
$$

and since f_{n}, g_{n} form a regular sequence, for any $m \geq 1$ we have

$$
I_{n}^{(m)}=K_{n}^{m} \cap(x, y)^{m} \cap(x, z)^{m} \cap(x, w)^{m} \cap(y, z)^{m} \cap(y, w)^{m} \cap(z, w)^{m}
$$

In particular, for each n, the ideal I_{n} is a radical ideal with big height 2 . In the following, we will compute the initial degree of symbolic powers of I_{n}. Recall our main strategy in previous work [31], we will study a subsequence of $\alpha\left(I_{n}^{(m)}\right)$, which gives us information about $\hat{\alpha}\left(I_{n}\right)$, then use this to calculate other $\alpha\left(I_{n}^{(m)}\right)$.
Proposition 3.1. For $n \geq 3$, we have $\hat{\alpha}\left(I_{n}\right)=2 n$.
Proof. For every $m \geq 1$, since $I_{n}^{(m)} \subset K_{n}^{m}$, we have $\alpha\left(I_{n}^{(m)}\right) \geq \alpha\left(K_{n}^{m}\right)=2 n m$. Thus, $\hat{\alpha}\left(I_{n}\right) \geq 2 n$. On the other hand, since $h_{n}=g_{n}-f_{n} \in K_{n}$, we have $F_{n}^{m}=f_{n}^{m} g_{n}^{m} h_{n}^{m} \in K_{n}^{3 m}$. Furthermore, since $n m \geq 3 m, F_{n}^{m} \in(x, y)^{3 m} \cap(x, z)^{3 m} \cap(x, w)^{3 m} \cap(y, z)^{3 m} \cap(y, w)^{3 m} \cap(z, w)^{3 m}$ so $F_{n}^{m} \in I_{n}^{(3 m)}$, hence $\alpha\left(I_{n}^{(3 m)}\right) \leq 6 n m$ for every $m \geq 1$. Therefore $\hat{\alpha}\left(I_{n}\right) \leq 2 n$ and it follows that $\hat{\alpha}\left(I_{n}\right)=2 n$.

Now following exactly the same argument as those of [31, Section 3] we have the following two results:

Theorem 3.2. For $n \geq 5$, we have

$$
\alpha\left(I_{n}^{(m)}\right)=2 n m
$$

for all $m \geq 3$.
Proof. The proof is identical to that of [31, Theorem 3.1]. The idea is that we have $f_{n} g_{n} h_{n}\left(f_{n}, g_{n}\right)^{m-3} \subseteq I_{n}^{(m)} \quad$ for $\quad 3 \leq m \leq n \quad$ and \quad that $\quad\left(f_{n} g_{n} h_{n}\right)^{k}\left(f_{n}, g_{n}\right)^{k(n-3)-a} \subseteq I^{(k n-a)} \quad$ for $k \geq 2,0 \leq a \leq n-1$.

Theorem 3.3. For $n=4$, for all $m \geq 3$ but $m \neq 5$,

$$
\alpha\left(I_{4}^{(m)}\right)=8 m
$$

Proof. The proof is identical to that of [31, Theorem 3.2]. The idea is the same as that of above theorem. For $m=5$, we can check by the same argument that the element $y z f_{4} g_{4}^{2} h_{4}^{2} \in I_{4}^{(5)}$. Macaulay 2 computation [20] suggests that, in fact, $\alpha\left(I_{4}^{(5)}\right)=42$.

Now we calculate the least degree of generators of symbolic powers for I_{3}.
Theorem 3.4. For $n=3$ and for $m \geq 1$ we have the following

1. $\alpha\left(I_{3}^{(3 m)}\right)=18 m$ for $m \geq 1$,
2. $\alpha\left(I_{3}^{(3 m+1)}\right)=18 m+8$ for $m \geq 0$,
3. $\alpha\left(I_{3}^{(3 m+2)}\right)=18 m+16$ for $m \geq 0$.

Proof.

1. Since $\hat{\alpha}\left(I_{3}\right)=6, \alpha\left(I_{3}^{(3 m)}\right) \geq 18 m$ for $m \geq 1$. As we saw earlier, $F_{3}^{m} \in I_{3}^{(3 m)}$ for $m \geq 1$ so $\alpha\left(I_{3}^{(3 m)}\right) \leq 18 m$ and thus $\alpha\left(I_{3}^{(3 m)}\right)=18 m$ for $m \geq 1$.
2. Suppose that there is $m \geq 1$ such that $\alpha\left(I_{3}^{(3 m+1)}\right) \leq 18 m+7$. Then there is a divisor D of degree $18 m+7$ vanishing to order at least $3 m+1$ along every line of 42 lines L_{i} in the restricted Fermat configuration. Intersecting D with any of the 18 planes $H_{j}, j=1, \ldots, 18$, since each planes H_{j} contains exactly 7 lines, suppose that D doesn't contain H_{j} then by the
generalized Bezout Theorem, the intersection of D and H_{j} is of dimension 1 and degree $18 m+7$, which is a contradiction since $18 m+7<7(3 m+1)$.
Thus we conclude that each H_{j} is a component of D for all $j=1, \ldots, 18$. Hence, there exists a divisor $D^{\prime}=D-\sum_{j=1}^{18} H_{j}$ of degree $18(m-1)+7$ vanishing to order at least $3(m-1)+1$ along every line L_{i}. Repeating this argument m times we get a contradiction with $\alpha\left(I_{3}\right)=8$. Thus $\alpha\left(I_{3}^{(3 m+1)}\right) \geq 18 m+8$ for all $m \geq 1$. On the other hand, it easy to see that, $f_{3}^{m} g_{3}^{m} h_{3}^{m+1} y z \in I_{3}^{(3 m+1)}$ so $\alpha\left(I_{3}^{(3 m+1)}\right) \leq 18 m+8$ for all $m \geq 1$. Therefore, $\alpha\left(I_{3}^{(3 m+1)}\right)=18 m+8$ for all $m \geq 1$.
3. By identical argument to previous case and the fact that $\alpha\left(I_{3}^{(2)}\right)=16$, we have that $\alpha\left(I_{3}^{(3 m+2)}\right) \geq 18 m+16$ for all $m \geq 1$. Since the element $f_{3}^{m+1} g_{3}^{m+1} h_{3}^{m} x y z w \in I_{3}^{(3 m+2)}$ we have that $\alpha\left(I^{(3 m+2)}\right) \leq 18 m+16$ for all $m \geq 1$.

From above computation, we showed that for each m, n, the least generating degree of symbolic power of the Fermat-like ideal is twice as large as that of Fermat ideal [31] in almost all cases (we have not shown for $m=2$, but it is expected to be the case as well).
Proposition 3.5. For all $n \geq 3,4 n+2 \leq \alpha\left(I_{n}^{(2)}\right) \leq 4 n+4$.
Proof. We know that $\alpha\left(I_{n}^{(2)}\right) \leq \alpha\left(I_{n}^{2}\right)=2(2 n+2)$. Now suppose that $\alpha\left(I_{n}^{(2)}\right) \leq 4 n+1$. Then there is a divisor D of degree $4 n+1$ vanishing to order at least 2 along every line L_{i} in the restricted Fermat configuration. Since the intersection of D and any plane H_{j} consists of $2 n+1$ lines to order at least 2, by generalized Bezout theorem, each H_{j} is a component of D because $\operatorname{deg}(D) \cdot \operatorname{deg}\left(H_{j}\right)=4 n+1<2(2 n+1)$. This is a contradiction since there are $6 n$ planes and $6 n>$ $4 n+1=\operatorname{deg}(D)$ when $n \geq 3$. Therefore, $4 n+2 \leq \alpha\left(I_{n}^{(2)}\right) \leq 4 n+4$ for all $n \geq 3$.

Remark 3.6. Macaulay 2 computations [20] for n small suggest that $\alpha\left(I^{(2)}\right)=2(2 n+2)$ for $n \geq 3$.
As mentioned earlier, in [2, Question 3.2], we raise a question to study the Demailly-like bound for homogeneous ideals. We also give example of classes of ideals that satisfy Demaillylike inequality. From the above calculations, as a direct consequence, we see that the ideal I_{n} also gives an example for Demailly-like inequality.
Corollary 3.7. For $n \geq 3$, the ideal I_{n} satisfies Demailly-like inequality

$$
\hat{\alpha}\left(I_{n}\right) \geq \frac{\alpha\left(I_{n}^{(m)}\right)+h-1}{m+h-1}
$$

for all $m \geq 1$ where h is the big height of I_{n}.
Proof. Direct from the above calculation with notice that $h=2$.
The following containment are also direct consequences of the above calculations.
Corollary 3.8. For every $n \geqslant 3$, restricted Fermat configuration ideal verifies Harbourne-Huneke containment

$$
I_{n}^{(2 r)} \subseteq \mathfrak{m}^{r} I_{n}^{r}, \quad \forall r
$$

Proof. Since I_{n} is a radical ideal with big height 2, by [14], we have $I_{n}^{(2 r)} \subseteq I_{n}^{r}, \forall r$, so the above containment come from the fact that

$$
\alpha\left(I_{n}^{(2 r)}\right) \geqslant r+\omega\left(I_{n}^{r}\right)
$$

for all $n \geqslant 3$ and $r \geqslant 1$ (the case $r=0$ is trivial). Indeed, $\alpha\left(I_{n}^{(2 r)}\right) \geqslant 4 r n>r+r(2 n+2)=$ $r+\omega\left(I_{n}^{r}\right)$ for $n \geqslant 3$.

In the works of studying containment for ideals of points, or more general, for ideals of smooth schemes, the result by Bocci and Harbourne ([4, Lemma 2.3.4]), which says that if $\alpha\left(I^{(m)}\right) \geqslant \operatorname{reg}\left(I^{r}\right)$ then $I^{(m)} \subseteq I^{r}$, turns out to be extremely useful (see for example, [1, 2, 4]. Now we calculate the regularity of the ideal I_{n} for all $n \geqslant 3$.
Proposition 3.9. For all $n \geqslant 3, R / I_{n}$ is Cohen-Macaulay and its minimal graded free resolution is

$$
0 \rightarrow \begin{gathered}
R(-(2 n+3))^{4} \\
R(-4 n)
\end{gathered} \xrightarrow{\varphi_{2}} R(-(2 n+2))^{6} \xrightarrow{\varphi_{1}} R \rightarrow R / I_{n} \rightarrow 0
$$

where $\varphi_{1}=\left[g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}\right]$ and

$$
\varphi_{2}=\left[\begin{array}{ccccc}
-y & 0 & -w & 0 & x^{n-1} z^{n-1} \\
x & 0 & 0 & -w & -y^{n-1} z^{n-1} \\
z & -w & 0 & 0 & -x^{n-1} y^{n-1} \\
0 & -y & z & 0 & -x^{n-1} w^{n-1} \\
0 & x & 0 & z & y^{n-1} w^{n-1} \\
0 & 0 & x & -y & -z^{n-1} w^{n-1}
\end{array}\right]
$$

The maximal minors of φ_{2} are multiple of g_{1}, \ldots, g_{6} as in Hilbert-Burch theorem.
Proof. Direct calculation give the minors of φ_{2} deleting row $1,2,3,4,5,6$ are $2 g_{3},-2 g_{6}, 2 g_{1}$, $-2 g_{5}, 2 g_{4},-2 g_{2}$ respectively. Applying [15, Theorem 18.18], we see that I_{n} is the ideal generated by 5×5 minors of the 6×5 matrix φ_{2} and since I_{n} has codimension 2 which agrees with ($6-$ $5+1)(5-5+1), R / I_{n} \quad$ is Cohen-Macaulay. In particular, $\operatorname{depth}\left(R / I_{n}\right)=2$ and by Auslander-Buchsbaum formula R / I_{n} has projective dimension 2. Thus by Hilbert-Burch theorem, R / I_{n} has such minimal graded free resolution.

The immediate consequence of the above free resolution is the regularity of the ideal I_{n}.
Corollary 3.10. For all $n \geqslant 3, \operatorname{reg}\left(I_{n}\right)=4 n-1$.
Proposition 3.11. For all m, r such that $\frac{m}{r}>\frac{3}{2}$, we have the inequality $\alpha\left(I_{3}^{(m)}\right) \geqslant \operatorname{reg}\left(I_{3}^{r}\right)$.
Proof. We will apply [7, Theorem 0.6], which states the following:
Let I be an homogeneous ideal of a polynomial ring R over a field, generated in degrees at most d, such that $\operatorname{dim}(R / I)=2$. Assume that $I_{p} \subseteq R_{p}$ is a complete intersection for every prime $I \subseteq p$ such that $\operatorname{dim} R / p=2$. Then

$$
\operatorname{reg}\left(I^{2}\right) \leqslant \max \left\{2 \operatorname{reg}(I), \operatorname{reg}\left(I^{s a t}\right)+2 d-2\right\}
$$

and for $r \geqslant 3$

$$
\operatorname{reg}\left(I^{r}\right) \leqslant \max \left\{3 \operatorname{reg}(I)+(r-3) d, \operatorname{reg}\left(I^{s a t}\right)+r d-2\right\} .
$$

Clearly, $\operatorname{dim}\left(R / I_{3}\right)=2$. Since the set of associated primes of I_{3} is also the set of its minimal primes which consists of 42 minimal primes P_{j} where each minimal prime is the defining ideal of one of a line in the configuration. Since any prime ideal P that contains I_{3} must contain one P_{j}, such prime ideal P with $\operatorname{dim}(R / P)=2$ has to be P_{j}. Thus, for any prime $I \subset P$ such that $\operatorname{dim}(R / P)=2,\left(I_{3}\right)_{P}$ is a complete intersection. Since $\operatorname{reg}\left(I_{3}\right)=11, \alpha\left(I_{3}\right)=8$ and $I_{3}=I_{3}^{s a t}$, by [7,

Theorem 0.6] we have for $r \geqslant 3$:
$\operatorname{reg}\left(I_{3}^{r}\right) \leqslant \max \left\{3 \operatorname{reg}\left(I_{3}\right)+8(r-3), \operatorname{reg}\left(I_{3}\right)+8 r-2\right\}=\max \{33+8(r-3), 11+8 r-2\}=8 r+9$ and $\operatorname{reg}\left(I_{3}^{2}\right) \leqslant \max \{22,11+16-2\}=25$. Thus, for every $r \geqslant 2$:

$$
\operatorname{reg}\left(I_{3}^{r}\right) \leqslant 8 r+9
$$

Now for $\frac{m}{r}>\frac{3}{2}$, i.e, $2 m \geqslant 3 r+1$, we have $\alpha\left(I_{3}^{(m)}\right) \geqslant 6 m \geqslant 9 r+3$. Since

$$
9 r+3 \geqslant 8 r+9 \geqslant \operatorname{reg}\left(I_{3}^{r}\right)
$$

for all $r \geqslant 6$, it suffices now to check that for $r \leqslant 5$ and $2 m \geqslant 3 r+1$ we still have $\alpha\left(I_{3}^{(m)}\right) \geqslant \operatorname{reg}\left(I_{3}^{r}\right)$. Indeed,

- When $r=1$, for $m \geqslant 2, \operatorname{reg}\left(I_{3}\right)=11<16=\alpha\left(I_{3}^{(2)}\right) \leqslant \alpha\left(I_{3}^{(m)}\right)$.
- When $r=2$, for $m \geqslant 4, \operatorname{reg}\left(I_{3}^{2}\right) \leqslant 25<26=\alpha\left(I_{3}^{(4)}\right) \leqslant \alpha\left(I_{3}^{(m)}\right)$.
- When $r=3$, for $m \geqslant 5, \operatorname{reg}\left(I_{3}^{3}\right) \leqslant 33<34=\alpha\left(I_{3}^{(5)}\right) \leqslant \alpha\left(I_{3}^{(m)}\right)$.
- When $r=4$, for $m \geqslant 7, \operatorname{reg}\left(I_{3}^{4}\right) \leqslant 41<44=\alpha\left(I_{3}^{(7)}\right) \leqslant \alpha\left(I_{3}^{(m)}\right)$.
- When $r=5$, for $m \geqslant 8$, $\operatorname{reg}\left(I_{3}^{5}\right) \leqslant 49<52=\alpha\left(I_{3}^{(8)}\right) \leqslant \alpha\left(I_{3}^{(m)}\right)$.

Corollary 3.12. Suppose that the inequality $\alpha\left(I_{n}^{(m)}\right) \geqslant \operatorname{reg}\left(I_{n}^{r}\right)$ implies that $I_{n}^{(m)} \subseteq I_{n}^{r}$. Then $\rho\left(I_{3}\right)=\frac{3}{2}$.

Proof. By [29], $I_{n}^{(3)} \nsubseteq I_{n}^{2}$ hence, $\rho\left(I_{3}\right) \geqslant \frac{3}{2}$. By Proposition 3.11, for all m, r such that $\frac{m}{r}>\frac{3}{2}$, we have $I^{(m)} \subseteq I^{r}$. Hence, $\rho\left(I_{3}\right) \leqslant \frac{3}{2}$.

We also deduce the following results as a step toward calculating the resurgence number of I_{n} for $n \geqslant 4$.
Corollary 3.13. If $n \geqslant 4$ then for all m, r such that $\frac{m}{r}>\frac{3}{2}$ and $r \geqslant 6$, we have the inequality $\alpha\left(I_{n}^{(m)}\right) \geqslant \operatorname{reg}\left(I_{n}^{r}\right)$.

Proof. By the same argument as that of in the proof of proposition 3.11, I_{n} satisfies all conditions of [7, Theorem 0.6], so we have

$$
\operatorname{reg}\left(I_{n}^{r}\right) \leqslant \max \{3(4 n-1)+(r-3)(2 n+2), 4 n-1+r(2 n+2)-2\}=r(2 n+2)+6 n-9
$$

for $r \geqslant 3$. Since $\alpha\left(I_{n}^{(m)}\right) \geqslant 2 n m$, for m, r such that $\frac{m}{r}>\frac{3}{2}$, i.e., $2 m \geqslant 3 r+1$ we have $\alpha\left(I_{n}^{(m)}\right) \geqslant n(3 r+1)$. Now the inequality

$$
n(3 r+1) \geqslant r(2 n+2)+6 n-9 \Longleftrightarrow r \geqslant \frac{5 n-9}{n-2}=5+\frac{1}{n-2},
$$

is true for $r \geqslant 6$ and $n \geqslant 4$.
Remark 3.14. For $n \geqslant 4$, suppose that the inequality $\alpha\left(I_{n}^{(m)}\right) \geqslant \operatorname{reg}\left(I_{n}^{r}\right)$ implies that $I_{n}^{(m)} \subseteq I_{n}^{r}$. Then the resurgence number $\rho\left(I_{n}\right)$ can only be one of the following numbers: $\frac{3}{2}, \frac{5}{3}, \frac{7}{4}, \frac{8}{5}$ or $\frac{9}{5}$.

Table 1. Least degree of generators of symbolic powers of I_{n}.

n			3		4	$n \geqslant 5$				
m	2	$3 k$	$3 k+1$	$3 k+2$	2	5	$\geqslant 3, \neq 5$	2		
$\alpha\left(l_{n}^{(m)}\right)$	16	$18 k$	$18 k+8$	$18 k+16$	20	42	$4 m$	$\geqslant 4 n+2, \leqslant 4 n+4$	$2 n m$	
$\hat{\alpha}\left(l_{n}\right)$			3				4			n

More precisely, among the four containment $I_{n}^{(9)} \subseteq I_{n}^{5}, I_{n}^{(7)} \subseteq I_{n}^{4}, I_{n}^{(5)} \subseteq I_{n}^{3}$ and $I_{n}^{(8)} \subseteq I_{n}^{5}$, the ratio $\frac{m}{r}$ of the first containment (in that order) that fails is the exact value for $\rho\left(I_{n}\right)$, otherwise, $\rho\left(I_{n}\right)=\frac{3}{2}$.

In fact, we know that $I_{n}^{(3)} \nsubseteq I_{n}^{2}$ by [29], hence, $\rho\left(I_{n}\right) \leqslant \frac{3}{2}$. On the other hand, $I_{n}^{(m)} \subseteq I_{n}^{r}$ for all m, r such that $\frac{m}{r}>\frac{3}{2}$ and $r \geqslant 6$. The containment are still true if $\frac{m}{r}>\frac{3}{2}$ for $r=1,2$ since $\frac{m}{r}>$ $\frac{3}{2}$ implies that $m \geqslant 2 r$ in these cases and I_{n} has big height 2. Moreover, if $r=3$ then $\frac{m}{r}>\frac{3}{2}$ implies $m \geqslant 5$ and we know that $I_{n}^{(m)} \subseteq I_{n}^{3}$ for $m \geqslant 6$. Similarly, if $r=4$ then $\frac{m}{r}>\frac{3}{2}$ implies $m \geqslant 7$ and $I_{n}^{(m)} \subseteq I_{n}^{4}$ for $m \geqslant 8$. Lastly, if $r=5$ then $\frac{m}{r}>\frac{3}{2}$ implies $m \geqslant 8$ and $I_{n}^{(m)} \subseteq I_{n}^{5}$ for $m \geqslant 10$.

If the following four containment $I_{n}^{(9)} \subseteq I_{n}^{5}, I_{n}^{(7)} \subseteq I_{n}^{4}, I_{n}^{(5)} \subseteq I_{n}^{3}$ and $I_{n}^{(8)} \subseteq I_{n}^{5}$ all hold, then $I_{n}^{(m)} \subseteq I_{n}^{r}$ for all m, r such that $\frac{m}{r}>\frac{3}{2}$ (because $\frac{3}{2}<\frac{8}{5}<\frac{5}{3}<\frac{7}{4}<\frac{9}{5}$), and it follows that $\rho\left(I_{n}\right)=\frac{3}{2}$. Otherwise, suppose $I_{n}^{\left(m_{0}\right)} \subseteq I_{n}^{r_{0}}$ is the first containment that fails among the above four containment (in order), then $\rho\left(I_{n}\right) \geqslant \frac{m_{0}}{r_{0}}$. For all m, r such that $\frac{m}{r}>\frac{m_{0}}{r_{0}}>\frac{3}{2}$, we know that either $I_{n}^{(m)} \subseteq I_{n}^{r}$ if $\frac{m}{r}$ is not among $\frac{5}{3}, \frac{7}{4}, \frac{8}{5}$ or $\frac{9}{5}$ by above result or $\frac{m}{r}$ is among $\frac{5}{3}, \frac{7}{4}, \frac{8}{5}$ or $\frac{9}{5}$ that is greater than $\frac{m_{0}}{r_{0}}$, in which $I_{n}^{(m)} \subseteq I_{n}^{r}$ hold as well. Either way we have $\rho\left(I_{n}\right) \leqslant \frac{m_{0}}{r_{0}}$, therefore $\rho\left(I_{n}\right)=\frac{m_{0}}{r_{0}}$.

Macaulay2 calculations [20] for n, r small suggests that $\operatorname{reg}\left(I_{n}^{r}\right)=(r+1) \alpha\left(I_{n}\right)-5=$ $(r+1)(2 n+2)-5$, and this would imply $\alpha\left(I_{n}^{(m)}\right) \geqslant \operatorname{reg}\left(I_{n}^{r}\right)$ for all $\frac{m}{r}>\frac{3}{2}$. It is expected that $\rho\left(I_{n}\right)=\frac{3}{2}$ for all $n \geqslant 3$.

It is expected that the least generating degree of symbolic power of the Fermat-like ideal is twice as large as that of the Fermat ideal for each m, n and that they are expected to have the same (asymptotic) resurgence number for each n. It would be interesting to see if this is still the case when we generalize the restricted Fermat configuration into higher dimension. It is worth to note that the above calculation suggests that the Fermat-like ideals have expected resurgence. Table 1 summarizes all numerical values for the initial degrees of symbolic powers of the ideals I_{n} that we have calculated in this section.

4. Arrangements given by the group $\boldsymbol{A}_{\mathbf{3}}$

In this section, we will deal with ideal $J=(y z(y-z), z x(z-x), x y(x-y))$, which is the ideal of the singular locus of the arrangement of lines given by the group $G(1,1,4)=A_{3}$. In general,
given a finite group $G \subseteq \mathrm{GL}_{n+1}(\mathbb{C})$ generated by pseudoreflections. By a pseudoreflection we mean a linear transformation that is not the identity and fixes a hyperplane pointwise and have finite order. We can regard the generators of G as a hyperplane arrangement where the hyperplanes are pointwise fixed by the elements of G that are pseudoreflections. It is shown in [9, Proposition 3.8] that the singular locus (the Jacobian ideal) of the arrangement of lines correspond to $G(1,1,4)=A_{3}$ is given by J. We will see that its least degree of generators of symbolic powers, Waldschmidt constant, (asymptotic) resurgence number are the same as those of group D_{3}, see [31, Section 4].

Geometrically, J is the defining ideal of the singular locus of the line arrangement in \mathbb{P}^{2} that consists of 6 lines L_{j} whose equations are

$$
x=0, y=0, z=0, x=y, y=z, z=x
$$

These 6 lines intersect at 7 points P_{i} which are $[1: 0: 0],[0: 1: 0],[0: 0: 1],[1: 1: 1],[0: 1:$ $1],[1: 0: 1]$ and $[1: 1: 0]$ such that the first 4 points lie on 3 lines each and the rest lie on 2 lines each; and each line contains exactly 3 points.

Algebraically, we can write

$$
J=((y-z)(y+z-x),(x-y)(x+y-z)) \cap(x, y) \cap(y, z) \cap(z, x)
$$

and

$$
J^{(m)}=((y-z)(y+z-x),(x-y)(x+y-z))^{m} \cap(x, y)^{m} \cap(y, z)^{m} \cap(z, x)^{m} \forall m
$$

Theorem 4.1. For ideal J we have the following

1. $\hat{\alpha}(J)=\frac{5}{2}$
2. $\alpha\left(J^{(2 k)}\right)=5 k$, for all $k \geq 2$.
3. $\alpha\left(J^{(2 k+1)}\right)=5 k+3$, for all $k \geq 0$.
4. $\alpha\left(J^{(2)}\right)=6$

Proof. By [17, Theorem 2.3], we can check that $\hat{\alpha}(J) \geq \frac{5}{2}$.

In particular, we have that $\alpha\left(J^{(2 k)}\right) \geq 5 k$ and $\alpha\left(J^{(2 k+1)}\right) \geq 5 k+3$, for all $k \geq 1$. We will show the reverse by showing there exists some element with the desired degree in the symbolic powers.

Denote $K=((y-z)(y+z-x),(x-y)(x+y-z))$ and first notice that since

$$
-(z-x)(z+x-y)=(y-z)(y+z-x)+(x-y)(x+y-z) \in K
$$

we have that

$$
\begin{equation*}
2 x(x-y)(z-x)=(z-x)(x-y)(x+y-z)+(x-y)(z-x)(z+x-y) \in K \tag{4.1}
\end{equation*}
$$

Similarly, $y(y-z)(x-y), z(z-x)(y-z) \in K$. It follows that

$$
\begin{equation*}
(y-z)(z-x) x y z^{2}=(y-z)(z-x) x y\left[z^{2}-(x-y)^{2}\right]+(y-z)(z-x) x y(x-y)^{2} \in K^{2} \tag{4.2}
\end{equation*}
$$

since

$$
(y-z)(z-x) x y\left[z^{2}-(x-y)^{2}\right]=x y(y-z)(y+z-x)(z-x)(z+x-y) \in K^{2}
$$

and by 4.1

$$
(y-z)(z-x) x y(x-y)^{2}=x(x-y)(z-x) y(y-z)(x-y) \in K^{2}
$$

By 4.1 we also have that

$$
\begin{equation*}
y z(y-z)=(y-z) z(y+z-x)-(y-z) z(z-x) \in K \tag{4.3}
\end{equation*}
$$

We have the following cases

1. Case 1: when $m=4 k$. Consider the polynomial $F=\left[(y-z)(z-x) x y z^{2}\right]^{k}(x-y)^{2 k}$ $(x+y-z)^{2 k}$ that has degree $10 k$. By 4.3, $\left[(y-z)(z-x) x y z^{2}\right]^{k} \in K^{2 k}$ so $F \in K^{4 k}$. On the other hand, $\left[(y-z) y z^{2}\right]^{k} \in(y, z)^{4 k},\left[(z-x) x z^{2}\right]^{k} \in(z, x)^{4 k}$ and $(x y)^{2 k}(x-y)^{2 k} \in(x, y)^{4 k}$. Thus

$$
F \in K^{4 k} \cap(x, y)^{4 k} \cap(y, z)^{4 k} \cap(z, x)^{4 k}=J^{(4 k)}, \forall k \geq 1
$$

2. Case 2: when $m=4 k+2$. We first show that

$$
G=x^{2} y^{2} z^{2}(x-y)^{2}(y-z)^{2}(z-x)^{2}(x+y-z)(y+z-x)(z+x-y) \in J^{(6)}
$$

In fact, $\quad(x-y)(y-z)(z-x)(x+y-z)(y+z-x)(z+x-y) \in K^{3} \quad$ and \quad by 4.3 $x^{2} y^{2} z^{2}(x-y)^{2}(y-z)^{2}(z-x)^{2} \in K^{3}$. It is also clear that $G \in(x, y)^{6} \cap(y, z)^{6} \cap(z, x)^{6}$.

The polynomial $F=G\left[(y-z)(z-x) x y z^{2}\right]^{k}(x-y)^{2 k}(x+y-z)^{2 k}$ has degree $10(k+1)+5$ and by case 1

$$
F \in J^{(6)} J^{(4 k)} \subseteq J^{(4(k+1)+2)}, \forall k \geq 0
$$

3. Case 3: when $m=4 k+1$. $F=x^{k} y^{k+1} z^{2 k+1}(y-z)^{k+1}(z-x)^{k}(x-y)^{2 k}(x+y-z)^{2 k}$ has degree $10 k+3$. By 4.2, $x^{k} y^{k} z^{2 k}(y-z)^{k}(z-x)^{k} \in K^{2 k}$, by $4.3, y z(y-z) \in K$ so $F \in K^{4 k+1}$. Similar to case $1, F \in \cap(x, y)^{4 k+1} \cap(y, z)^{4 k+1} \cap(z, x)^{4 k+1}$ and hence,

$$
F \in J^{(4 k+1)}, \forall k \geq 0
$$

4. Case 4: when $m=4 k+3$. $F=\left[(y-z)(z-x) x y z^{2}\right]^{k+1}(x-y)^{2 k+1}(x+y-z)^{2 k+1}$ has degree $10 k+8$ and

$$
F \in K^{4 k+3} \cap(x, y)^{4 k+3} \cap(y, z)^{4 k+3} \cap(z, x)^{4 k+3}=J^{(4 k+3)}, \forall k \geq 0
$$

Thus, $\alpha\left(J^{(2 k)}\right) \leq 5 k$, for all $k \geq 2$ and $\alpha\left(J^{(2 k+1)}\right) \leq 5 k+3$, for all $k \geq 0$. It follows that statements (2) and (3) are true and by taking limit as k goes to ∞, (1) follows as well. Part (4) can be checked directly by Macaulay2 or by Bezout theorem argument as follows: We know that $\alpha\left(J^{(2)}\right) \leq \alpha\left(J^{2}\right)=6$. Now suppose that $\alpha\left(J^{(2)}\right) \leq 5$. Then there is a divisor D of degree 5 vanishing to order at least 2 at every point P_{i}. Since the intersection of D and any line L_{j} consists of 3 points to order at least 2 , we get a contradiction to Bezout theorem because $\operatorname{deg}(D) \cdot \operatorname{deg}\left(L_{j}\right)=5<2.3$.

Example 4.2. It is worth to point out that the first immediate application of the above calculations is the verification of Chudnovsky's Conjecture and Demailly's Conjecture, although the general case is already known from [16]. Ideal J verifies:

Table 2. Least degree of generators and other invariants related to symbolic powers of J.

m	2	$2 k$	$2 k+1$
$\alpha\left(J^{(m)}\right)$	6	$5 k$	$5 k+3$
$\hat{\alpha}(J)$	$5 / 2$		
$\rho(J)=\hat{\rho}(J)$		$6 / 5$	

1. Chudnovsky's Conjecture $\hat{\alpha}(J) \geq \frac{\alpha(J)+1}{2}$.
2. Demailly's Conjecture $\hat{\alpha}(J) \geq \frac{\alpha\left(J^{(m)}\right)+1}{m+1}$ for all m.

Theorem 4.3. The resurgence number and asymptotic resurgence number are:

$$
\rho(J)=\hat{\rho}(J)=\frac{6}{5}
$$

Proof. Since J has the same minimal degrees of generators of symbolic powers and same free resolutions of all its ordinary powers as those of the ideal of configuration of D_{3}, the proof is identical to that of ideal of configuration of D_{3} [31, Proposition 4.2].

The above result gives us another example for ideals have expected resurgence. The following corollaries and remark also follow from the fact that ideal of configuration A_{3} and D_{3} share the same minimal degrees of generators of all symbolic powers, see [31, Section 4].
Corollary 4.4. Ideal J verifies Harbourne-Huneke containment

1. $\quad J^{(2 r)} \subseteq \mathfrak{m}^{r} J^{r}, \quad \forall r$.
2. $\quad J^{(2 r-1)} \subseteq \mathfrak{m}^{r-1} J^{r}, \quad \forall r \geq 1$.

Remark 4.5. The above corollary gives a proof for the case A_{3} in [9, Proposition 6.3].
In [1, Example 3.7], we showed the stronger containment (which implies both HarbourneHuneke) containment

$$
J^{(2 r-2)} \subseteq \mathfrak{m}^{r} J^{r}
$$

for $r=5$ (by Macaulay2) and thus, the same containment holds for all $r \gg 0$ by our method. In particular, from the proof of [1, Theorem 3.1], the containment hold for $r \geq 10^{2}=100$. Here we see that the containment hold for all $r \geq 5$.

Corollary 4.6. For every $n \geq 3$, Fermat configuration ideal verifies the following containment

$$
J^{(2 r-2)} \subseteq \mathfrak{m}^{r} J^{r}, \quad \forall r \geq 5
$$

Remark 4.7. For $r \leq 4$, the above containment fail with the same reason to that of [31, Remark 4.6].

Table 2 summarizes all numerical values including the initial degrees of symbolic powers as well as the asymptotic resurgence and resurgence numbers of ideal J that we have calculated in this section.

The table provide a complete answer to the question in the theory of Hermite interpolation, that is to determine the least degree of a homogeneous polynomial that vanishes to order m at the 7 points of the given configuration in \mathbb{P}^{2}.

We end this section by calculating the invariant $\beta\left(J^{(m)}\right)$. As introduced first in [24, Definition 2.2] for homogeneous ideals and later considered for ideal I of a finite set of (fat) points in [25], $\beta(I)$ is set to be the smallest integer t such that I_{t} contains a regular sequence of length two, or equivalently, is the least degree t such that the zero locus of I_{t} is 0 -dimensional. It is known that for ideals of fat points, $\beta(I) \leq \omega(I)$ [31, Proposition 3.9]. By the same argument to that of [31, Proposition 4.9] we have the following
Proposition 4.8. For all $m \geq 1, \beta\left(J^{(m)}\right)=3 m$ and $\omega\left(J^{(m)}\right) \geq 3 m$.
Proof. The proof is identical to that of [31, Proposition 4.9] since J^{m} is generated in degree 3 m and each line in this configuration also passed through exactly 3 points in the configuration.

Remark 4.9. Similar to the Fermat ideals, it is suggested by Macaulay2 that $\omega\left(J^{(m)}\right)=3 \mathrm{~m}$.

5. An additional example

Consider ideal $J_{2}=\left(y z\left(y^{2}-z^{2}\right), z x\left(z^{2}-x^{2}\right), x y\left(x^{2}-y^{2}\right)\right)$. Geometrically, J is the defining ideal of the singular locus of the line arrangement in \mathbb{P}^{2} corresponds to the group $G(2,1,3)=B_{3}$, [9, Proposition 3.10]. This arrangement consists of 9 lines L_{j} whose equations are

$$
x=0, y=0, z=0, x= \pm y, y= \pm z, z= \pm x
$$

These 9 lines intersect at 13 points P_{i} which are $[1: 0: 0],[0: 1: 0],[0: 0: 1],[1: 1: 1],[-1: 1: 1]$, $[1:-1: 1],[1: 1:-1],[0: 1: 1],[1: 0: 1],[1: 1: 0],[0: 1:-1],[-1: 0: 1]$ and $[1:-1: 0]$ such that the first 3 points lie on 4 lines each, the next 4 points lie on 3 lines each and the rest lie on 2 lines each; and each line contains exactly 4 points.

Algebraically, we can write

$$
J_{2}=K_{1} \cap K_{2} \cap K_{3} \cap K \cap(x, y) \cap(y, z) \cap(z, x)
$$

where $K_{1}=\left(x, y^{2}-z^{2}\right), K_{2}=\left(y, z^{2}-x^{2}\right), K_{3}=\left(z, x^{2}-y^{2}\right)$ and $K=\left(x^{2}-y^{2}, y^{2}-z^{2}\right)$, or we can write

$$
J_{2}=K_{1}^{\prime} \cap K_{2}^{\prime} \cap K \cap(x, y) \cap(y, z) \cap(z, x)
$$

where $K_{1}^{\prime}=((y-z)(y+z-x),(x-y)(x+y-z)), K_{2}^{\prime}=(x+y+z, y z(y+z))$, then for all m

$$
\begin{aligned}
J_{2}^{(m)} & =K_{1}^{m} \cap K_{2}^{m} \cap K_{3}^{m} \cap K^{m} \cap(x, y)^{m} \cap(y, z)^{m} \cap(z, x)^{m} \\
& =K_{1}^{\prime m} \cap K_{2}^{\prime m} \cap K^{m} \cap(x, y)^{m} \cap(y, z)^{m} \cap(z, x)^{m}
\end{aligned}
$$

Note that $K \cap(x, y) \cap(y, z) \cap(z, x)$ is the Fermat ideal with $n=2$, so we immediately have that $\hat{\alpha}\left(J_{2}\right) \geq \frac{5}{2}$. Moreover, computations with Macaulay2 show that $\alpha\left(J_{2}^{(6)}\right)=21$, hence, $\hat{\alpha}\left(J_{2}\right) \leq \frac{7}{2}$. It seems that $\hat{\alpha}\left(J_{2}\right)$ would be $\frac{7}{2}$ but the $\alpha\left(J_{2}^{(m)}\right)$ are tricky to deal with. On the other hand, $\alpha\left(J_{2}^{(3)}\right)=$ 12, by [16], since J_{2} satisfies Demailly's Conjecture, we have:

$$
\hat{\alpha}\left(J_{2}\right) \geq \frac{\alpha\left(J_{2}^{(3)}\right)+1}{3+1}=\frac{13}{4}
$$

Since $\operatorname{reg}\left(J_{2}\right)=6$, by [23, Theorem 1.2] we have:

$$
\frac{8}{7} \leq \frac{\alpha\left(J_{2}\right)}{\hat{\alpha}\left(J_{2}\right)} \leq \hat{\rho}\left(J_{2}\right) \leq \rho\left(J_{2}\right) \leq \frac{\operatorname{reg}\left(J_{2}\right)}{\hat{\alpha}\left(J_{2}\right)} \leq \frac{24}{13}
$$

In particular, J_{2} has expected resurgence. Further computations by Macaulay2 show that, $J_{2}^{(7)} \not \subset$ J_{2}^{6}, thus, $\frac{7}{6} \leq \rho\left(J_{2}\right)$. It is interesting to know if $\rho\left(J_{2}\right)=\frac{7}{6}$.

More general, for $n \geq 1$, consider the ideal $J_{n}=\left(y z\left(y^{n}-z^{n}\right), z x\left(z^{n}-x^{n}\right), x y\left(x^{n}-y^{n}\right)\right)$ which will capture J_{2} and $J=J_{1}$. Geometrically, J_{n} corresponds to the configuration of $3 n+3$ lines that consists of all $3 n$ lines in Fermat configuration and 3 lines $x=0, y=0, z=0$; and $n^{2}+3 n+3$ intersection points. In particular, each line passes through $n+2$ points. Similar to J_{2}, note that J_{n} is a subset of the Fermat ideals for $n \geq 2$, thus $\hat{\alpha}\left(J_{n}\right) \geq n$ for $n \geq 3$.
Remark 5.1. Only by looking at the above lower bound, we easily see that J_{n} verifies Chudnovsky's Conjecture $\hat{\alpha}\left(J_{n}\right) \geq \frac{\alpha\left(J_{n}\right)+1}{2}$ for all n. In fact, the case $n=1$ was verified in previous sections and $n=2$ follows from $\hat{\alpha}\left(J_{2}\right) \geq \frac{5}{2}$. When $n \geq 3, \hat{\alpha}\left(J_{n}\right) \geq n \geq \frac{n+2+1}{2}$.

On the other hand, by [30, Theorem 2.5], since J_{n} is a strict almost complete intersection ideal with minimal generators of degree $n+2$ and its module syzygies is generated in degree 1 and $n+1$, the minimal free resolution of J_{n}^{r} is:

$$
0 \rightarrow R(-(n+2)(r+1))^{\binom{r}{2}} \xrightarrow{\psi} \quad \begin{aligned}
& R(-(n+2) r-1)^{\binom{r+1}{2}} \\
& R(-(n+2) r-(n+1))^{\binom{r+1}{2}}
\end{aligned} \stackrel{\varphi}{\rightarrow} R(-(n+2) r)^{\binom{r+2}{2}} \rightarrow J_{n}^{r} \rightarrow 0
$$

for any $r \geq 2$, in particular, $\operatorname{reg}\left(J_{n}^{r}\right)=(n+2) r+n$ for all $r \geq 2$. It would be interesting to know if we can determine $\alpha\left(J_{n}^{(m)}\right)$ and use them with the knowledge of reg $\left(J_{n}^{r}\right)$ to verify Demailly's Conjecture as well as Harbourne-Huneke Containment, stable Harbourne Containment as we did for Fermat ideals and Fermat-like ideals.

Back to ideal J_{2}, the following proposition (part (2)) gives a proof for the case B_{3} in [9, Proposition 6.3].

Proposition 5.2. Ideal J_{2} verifies Harbourne-Huneke containment

1. $\quad J_{2}^{(2 r)} \subseteq \mathfrak{m}^{r} J_{2}^{r}, \quad \forall r$.
2. $J_{2}^{(2 r-1)} \subseteq \mathfrak{m}^{r-1} J_{2}^{r}, \quad \forall r \geq 3$.

Proof.

1. For all $r, J_{2}^{(2 r)} \subseteq J_{2}^{r}$, hence, the containment follows since for all r, we have

$$
\alpha\left(J_{2}^{(2 r)}\right) \geq \frac{13 r}{2} \geq r+4 r=r+\omega\left(J_{2}^{r}\right)
$$

2. First, the containment $J_{2}^{(2 r-1)} \subseteq J_{2}^{r}$ for $r \geq 3$ follows from the inequality

$$
\alpha\left(J_{2}^{(2 r-1)}\right) \geq \frac{13}{4}(2 r-1) \geq 4 r+2=\operatorname{reg}\left(J_{2}^{r}\right)
$$

for all $r \geq 3$. Thus, $J_{2}^{(2 r-1)} \subseteq \mathfrak{m}^{r-1} J_{2}^{r}$ for $r \geq 3$ follows from:

$$
\alpha\left(J_{2}^{(2 r-1)}\right) \geq \frac{13}{4}(2 r-1) \geq r-1+4 r=r+\omega\left(J_{2}^{r}\right)
$$

for all $r \geq 2$.

Remark 5.3. Macaulay2 shows that for $r=2$, $\alpha\left(J_{2}^{(3)}\right)=12$, hence, $\alpha\left(J_{2}^{(3)}\right) \geq 4.2+2=\operatorname{reg}\left(J_{2}^{2}\right)$. Therefore, $J_{2}^{(2 r-1)} \subseteq J_{2}^{r}$ for $r \geq 2$ and since $\alpha\left(J_{2}^{(2 r-1)}\right) \geq r+\omega\left(J_{2}^{r}\right)$ for all $r \geq 2, J_{2}^{(2 r-1)} \subseteq \mathfrak{m}^{r-1} J_{2}^{r}$, for $r \geq 2$. The case $r=1$ is obvious. Thus, $J_{2}^{(2 r-1)} \subseteq \mathfrak{m}^{r-1} J_{2}^{r}$, for $r \geq 1$.

We end this section with the follow up to the discussion about the invariants β and ω for Fermat ideals in [31] and $J=J_{1}$ in the previous section.
Proposition 5.4. For all $n \geq 1$ and $m \geq 1, \beta\left(J_{n}^{(m)}\right)=m(n+2)$ and $\omega\left(J_{n}^{(m)}\right) \geq m(n+2)$.
Proof. The proof is the same to that of [31, Proposition 3.10] with notice that J_{n}^{m} is generated in degree $m(n+2)$ and each line in this configuration passed through exactly $n+2$ points in the configuration.

Remark 5.5. It is also suggested by Macaulay2 [20] that $\omega\left(J_{n}^{(m)}\right)=m(n+2)$ as in the case of Fermat ideals. It is interesting to know if $\omega\left(I^{(m)}\right)=\beta\left(I^{(m)}\right)$ hold for what radical ideal of points I in general.

Acknowledgments

The author would like to thank his advisor, Tài Huy Hà, for introducing him this subject and giving many helpful suggestions and comments. He also thanks Alexandra Seceleanu, Abu C. Thomas, Benjamin Drabkin, and Paolo Mantero for comments on an early draft of this manuscript. Finally, he thanks the referee for a careful reading of the paper and for many valuable suggestions.

References

[1] Bisui, S., Grifo, E., Hà, H. T., Nguyễn, T. T. (2022). Chudnovsky's conjecture and the stable HarbourneHuneke containment. Trans. Amer. Math. Soc. Ser. B. 9(12):371-394. DOI: 10.1090/btran/103.
[2] Bisui, S., Grifo, E., Hà, H. T., Nguyễn, T. T. (2022). Demailly's conjecture and the containment problem. J. Pure Appl. Algebra 226(4):106863. DOI: 10.1016/j.jpaa.2021.106863.
[3] Bisui, S., Nguyễn, T. T. (2021). Chudnovsky's conjecture and the stable containment for small numbers of general points. arXiv.org:2112.15260
[4] Bocci, C., Harbourne, B. (2009). Comparing powers and symbolic powers of ideals. J. Algebraic Geom. 19(3):399-417. DOI: 10.1090/S1056-3911-09-00530-X.
[5] Carlini, E., Hà, H. T., Harbourne, B., Van Tuyl, A. (2020). Ideals of Powers and Powers of Ideals: Intersecting Algebra, Geometry and Combinatorics, Vol. 27 of Lecture Notes of the Unione Matematica Italiana. Switzerland: Springer International Publishing.
[6] Chang, Y.-L., Jow, S.-Y. (2020). Demailly's conjecture on Waldschmidt constantsfor sufficiently many very general points in \mathbb{P}^{n}. J. Number Theory. 207:138-144.
[7] Chardin, M. (2007). On the behavior of Castelnuovo-Mumford regularity with respect to some functors. arXiv:0706.2731
[8] Demailly, J.-P. (1982). Formules de jensen en plusieurs variables et applications arithmetiques. Bull. Soc. Math. France. 110(1):75-102.
[9] Drabkin, B., Seceleanu, A. (2021). Singular loci of reflection arrangements and the containment problem. Math. Z. 299(1-2):867-895. DOI: 10.1007/s00209-021-02701-1.
[10] Dumnicki, M. (2015). Containments of symbolic powers of ideals of generic points in \mathbb{P}^{3}. Proc. Amer. Math. Soc. 143(2):513-530.
[11] Dumnicki, M., Fashami, M. Z., Szpond, J., Tutaj-Gasińska, H. (2019). Lower bounds for Waldschmidt constants of generic lines in \mathbb{P}^{3} and a Chudnovsky-type theorem. Mediterr. J. Math. 16(53). DOI: 10.1007/ s00009-019-1328-8.
[12] Dumnicki, M., Szemberg, T., Tutaj-Gasińska, H. (2013). Counterexamples to the $I^{(3)} \subseteq I^{2}$ containment. J. Algebra 393:24-29.
[13] Dumnicki, M., Tutaj-Gasińska, H. (2017). A containment result in \mathbb{P}^{n} and the Chudnovsky conjecture. Proc. Amer. Math. Soc. 145(9):3689-3694.
[14] Ein, L., Lazarsfeld, R., Smith, K. E. (2001). Uniform bounds and symbolic powers on smooth varieties. Invent. Math. 144(2):241-225. DOI: 10.1007/s002220100121.
[15] Eisenbud, D. (1995). Commutative Algebra with a View toward Algebraic Geometry, Volume 150 of Graduate Texts in Mathematics. New York: Springer-Verlag.
[16] Esnault, H., Viehweg, E. (1983). Sur une minoration du degré d'hypersurfaces s'annulant en certains points. Math. Ann. 263(1):75-86. DOI: 10.1007/BF01457085.
[17] Farnik, L., Gwoździewicz, J., Hejmej, B., Lampa-Baczyńska, M., Malara, G., Szpond, J. (2017). Initial sequences and Waldschmidt constants of planar point configurations. Int. J. Algebra Comput. 27(06): 717-729. DOI: 10.1142/S0218196717500345.
[18] Fouli, L., Mantero, P., Xie, Y. (2018). Chudnovsky's conjecture for very general points in \mathbb{P}_{k}^{n}. J. Algebra 498:211-227.
[19] Geramita, A. V., Harbourne, B., Migliore, J. (2013). Star configurations in \mathbb{P}^{n}. J. Algebra 376:279-299.
[20] Grayson, D. R., Stillman, M. E. (2009). Macaulay2, a Software System for Research in Algebraic Geometry.
[21] Grifo, E. (2020). A stable version of Harbourne's Conjecture and the containment problem for space monomial curves. J. Pure Appl. Algebra 224(12):106435. DOI: 10.1016/j.jpaa.2020.106435.
[22] Grifo, E., Huneke, C., Mukundan, V. (2020). Expected resurgences and symbolic powers of ideals. J. London Math. Soc. 102(2):453-469. DOI: 10.1112/jlms. 12324.
[23] Guardo, E., Harbourne, B., Van Tuyl, A. (2013). Asymptotic resurgences for ideals of positive dimensional subschemes of projective space. Adv. Math. 246:114-127. DOI: 10.1016/j.aim.2013.05.027.
[24] Harbourne, B., Huneke, C. (2013). Are symbolic powers highly evolved? J. Ramanujan Math. Soc. 28A: 247-266.
[25] Harbourne, B., Seceleanu, A. (2015). Containment counterexamples for ideals of various configurations of points in \mathbb{P}^{N}. J. Pure Appl. Algebra 219(4):1062-1072.
[26] Hochster, M., Huneke, C. (2002). Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147:349-369.
[27] Ma, L., Schwede, K. (2018). Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers. Invent. math. 214(2):913-955. DOI: 10.1007/s00222-018-0813-1.
[28] Malara, G., Szemberg, T., Szpond, J. (2018). On a conjecture of Demailly and new bounds on Waldschmidt constants in \mathbb{P}^{N}. J. Number Theory 189:211-219.
[29] Malara, G., Szpond, J. (2017). Fermat-type configurations of lines in \mathbb{P}^{3} and the containment problem. J. Pure Appl. Algebra 222:2323-2329.
[30] Nagel, U., Seceleanu, A. (2016). Ordinary and symbolic Rees algebras for ideals of Fermat point configurations. J. Algebra 468:80-102. DOI: 10.1016/j.jalgebra.2016.08.011.
[31] Nguyền, T. T. (2021). The least generating degree of symbolic powers of ideals of Fermat configuration of points. arXiv:2101.12308.
[32] Szpond, J. (2020). Fermat-type arrangements. In Stamate D., Szemberg T., eds. Combinatorial Structures in Algebra and Geometry. NSA 2018, Vol 331, Cham: Springer, pp. 161-182.

[^0]: CONTACT Thái Thành Nguyễn Δ tnguyen11@tulane.edu © Department of Mathematics, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118, USA and College of Education, Hue University, Vietnam.

