Synthesis of hierarchical binary core-branch nanocomposite of carbon microspheres@α-Fe₂O₃ for enhancing electrochemical behavior

Ho Van Minh Hai^{1,2}, Nguyen Thi Hong Anh³, Vo The Ky¹, Nguyen Quoc Thang¹, Nguyen Van Cuong^{1*}

¹Faculty of Chemical Engineering, Industrial University of Ho Chi Minh city, 12 Nguyen Van Bao, Go Vap, Ho Chi Minh City 70000, Viet Nam

²Department of Chemistry, University of Sciences, Hue University, 53000, Viet Nam

³Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu, Ho Chi Minh City, 70000, Viet Nam

Submitted August 18, 2022; Revised September 19, 2022; Accepted November 8, 2022

Abstract

A facial strategy for the synthesis of hierarchical binary core-branch carbon microspheres (CMS)@ α -Fe₂O₃ is presented. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), and Brunauer–Emmett–Teller (BET) were used to characterize the structural and morphological properties of the products. XRD diffraction analysis of CMS@ α -Fe₂O₃ reveals the highly crystalline nature of α -Fe₂O₃ in the hierarchical binary core-branch CMS@ α -Fe₂O₃ nanocomposite. Morphological analyses show that the α -Fe₂O₃ shell