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Abstract. Radio frequency identification network planning (RNP) is the issue of
placing readers in a work area so that the readers cover most of the tags, while
satisfying some constraints such as the minimum number of readers used, the
minimum interference, the minimum energy consumption, etc. RNP is assessed
as an NP-hard problem and natural evolution-based approaches are often used to
solve them. The paper proposes an integrated model of placement optimizationAQ1

and redundancy elimination, in which the optimal position of readers is found by
a genetic-based method and the elimination of redundant readers is accomplished
by a filtering policy. Gridding the work area is also analyzed, in which the finerAQ2

the cell size is, the more efficient the reader placement is. The simulation results
show that the cell whose size equal to the radius of the reader’s interrogation area
gives the best efficiency in terms of coverage, amount of used readers and fast
convergence, but it also suffers a little extra interference.AQ3

Keywords: RFID network planning · gridding · cell size · GA-based placement
optimization · redundany elimination

1 Introduction

Radio frequency identification (RFID) technology has demonstrated many outstanding
advantages such as no physical contact, fast transmission, high security and high storage
capacity. Unlike traditional barcode recognition technology, RFID is more widely used
to tag of physical objects for monitoring in many different fields such as healthcare,
supply chain management, logistics, transportation and agriculture. RFID technology is
seen as the foundation for the Internet of Things (IoT), where RFID systems provide the
information infrastructure for large-scale IoT applications [1, 2].

An RFID network consists of a collection of RFID tags, one or more RFID readers
connected, and a central server to store and process collected data. An RFID tag can be
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active, when it has its power supply, or it can be passive, when it has no power source. In
order to respond to an interrogation or transmit its data, a passive RFID tag must draw
power from readers. Passive tags are quite cheap, so they are widely used in reality, such
as public security, traffic control, warehouse monitoring, etc. [3, 4].

Each RFID reader has a limited coverage range, so it is necessary to place them
properly so that the network of RFID readers can cover almost all tags. In addition,
the minimum number of used readers, the minimum interference, the minimum energy
consumption, etc. are other requirements of an RFID system. Finding an appropriate
placement of RFID readers in a work area is known as RFID network planning (RNP)
[5] and solving the issue is often hard work because it is rated as NP-Hard [6]. Therefore,
the methods inspired by natural evolution, such as genetic algorithms, particle swarm
optimization, cuckoo search, etc. are often exploited to solve this problem [7].

The paper proposes an integrated model of placement optimization and redundancy
elimination. A genetic algorithm (GA) is used to find the optimal position of readers
in terms of maximum tag coverage, minimum number of readers used and minimum
interference. For the redundant reader elimination, a policy is proposed to eliminate the
redundant readers without or with little impact on the tag interrogation efficiency. To
reduce the computational complexity, the number of candidate readers to place is to be
limited. The workspace is thus gridded, where each cell is a candidate position to place
a reader. The finer the gridding, the smoother the placement of readers will be, but the
higher the number of candidate positions and the more complicated the calculation. The
paper investigates and analyses some cases of cell size to determine the best gridding.

The main contributions of the article include the following:

(1) proposing an integrated model of GA-based placement optimization and policy-
based redundancy elimination; and

(2) investigating and analyzing the impact of the cell size on the reader placement
efficiency.

The centents of the next sections are as follows. Section 2 presents works related
to the use of GA in solving RNP. Section 3 introduces the proposed model, which
describes in detail finding the optimal reader placement based on GA and removing
redundant readers based on the proposed policies. The implementation and analysis of
simulation results are shown in Sect. 4 and the conclusion is in Sect. 5.

2 Related Works

Since RNP is rated as NP-hard [6], the commonly used methods to solve RNP are based
on natural evolution, in which the genetic algorithm (GA) has attracted much attention
in literature because of its robust and global search. The following are the reviews of
using genetic algorithms in solving RNP.

The first application of GA in solving RNP was proposed by Guan et al. [8], where the
goals are to minimize the number of placed readers, maximize the coverage, minimize
the interference, and guarantee uplink/downlink signals. These goals are formulated into
component objective functions and a fitness function is built as the weighted sum of the
component objective functions. To implement GA, Guan et al. proposed a multilevel

A
ut

ho
r 

Pr
oo

f



An Integrated Model of Placement Optimization 3

encoding model for chromosomes, where level 1 identifies the readers’ position, level
2 identifies the antenna type, and level 3 contains other parameters (such as signal
attenuation). Experimental results on a rectangular area of 120 m2 show only six readers
are needed to cover 92% of a work area, while that proposed by Vasquez et al. [9] requires
up to 7 readers, but covers only 90%.

Similarly, Yang et al. [10] proposed a GA-based solution to the multi-objective RNP
optimization by mapping the planning into the structure of genes, the chromosome
and the operations such as selection, crossover and mutation. This proposal not only
eliminates the search errors of the traditional multi-objective optimization method, but
also provides an effective solution to RNP.

With Botero & Chaouchi [11], RNP is considered with six objectives, including the
minimum overlap area, the minimum number of used readers, the maximum number of
covered tags, the minimum number of readers placed out of the work area, the minimum
number of redundant readers and the minimum number of tags located in the overlap
range. These objectives are formulated as component objective functions and weighted
sum to form the fitness function. The chromosome is encoded as a 21-bit sequence that
carries information about the energy level and readers’ position. Experiments performed
on two propagation models of Friis and ITU in a square area of 20 × 20 m2 show that
ITU model has a smaller coverage, fewer number processing loops and faster processing
time than the Friis model.

Xiong et al. [12] use a genetic algorithm to determine the minimum number of
readers and their optimal reader placement in a work area of 30 × 30 m2 with 99
randomly distributed tags. In the case of using only ten readers, the interrogation area of
readers only covered 76 tags, however, it also outperformed those of the previous studies
that covered only 72 tags. To cover all 99 tags, Xiong’s proposal required 21 readers,
but these was still much less than the previous studies that required 30 readers.

Different from the above studies, Tang et al. [13] consider the case of the hetero-
geneous coverage range. Component objectives including the minimum overlap, reader
collision, and interference are formulated into a multi-objective function. The proposed
algorithm is an improvement of GA by integrating with a divide-and-conquer greedy
heuristic algorithm. The results show that the multi-objective GA achieves better results
than some other recently developed evolution-based methods.

Although the genetic algorithm was successfully applied to RNP, the fixed-length
encoding scheme limits the adjustment of the number of encoded readers in each chro-
mosome. Therefore, Zhang et al. [14] developed a flexible genetic algorithm in which
chromosomes are variable-length, crossover is performed by sub-region swapping and
mutation is based on Gaussian-distribution. The experimental results show that the flex-
ible genetic algorithm achieves higher efficiency, in terms of coverage, interference and
convergence, compared to traditional genetic approaches.

The proposals for applying GA to solve RNP mainly use fixed-length encoding for
chromosomes, but this approach is inefficient in terms of resource usage. The variable-
length encoding approach depending on the number of readers in each candidate solution
presents more advantages, but the sub-region swapping-based crossover approach does
not prove its efficiency in terms of convergence speed. This paper proposes a 2-phase
model, in which Phase 1 uses a GA to find the optimal position of readers according
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to different cell sizes and Phase 2 uses a set of policies of redundancy elimination to
minimize the number of used readers.

3 Integrated Model of Placement Optimization and Redundancy
Elimination

3.1 Description of RFID Network Planning

We consider a work area of size X × Y m2 (e.g. 50 × 50), in which the tags are distributed
evenly and randomly. To limit the number of candidate positions to place readers, the
work area is gridded into cells. Coarse gridding will make the algorithm converge quickly,
but it won’t find the best placement for readers; while finer gridding increases the chances
of finding the optimal placement position, it also increases the computational volume.
The problem is how to determine the best cell size without increasing computational
complexity.

Assuming that the readers are isomorphic with their transmission frequency of
915 MHz, their transmission power of 2 watts (W), their receive power threshold of
0.1 milliwatts (mW), and their equipped scalar antenna with circular coverage, the

antenna coverage radius (r) is determined by r = λ
4π

√
PtGtGr

Pr
, where Pt is the power

transmitted by a reader (2 W), Pr is the power transmitted by a tag (0.1 mW or −10 dBm),
Gt and Gr, are the gain of the reader and the tag (assumed to be 1), and λ is the signal
wavelength (0.3278 m).

By using the above values, the coverage radius (r) of each reader is determined to
be 3.69 m. The hexagonal packing-based approach in [15] is an example of the reader
placement that covers the entire work area with minimal interference. With a radius of
3.69 m, the distance of two consecutive readers is 2 × 3.69 × cos(30°) ≈ 6.4 m, as
shown in Fig. 1. So to cover the entire work area of 50 × 50 m2 we need (50/6.4)2 ≈ 64
readers. This is also the maximum number of readers to use (nmax). However, depending
on the distribution of tags, the number of used readers (n) may be less.

30 o3.69m

 3.20m

reader2reader1

Fig. 1. The circular coverage area is “organised” into a hexagonal cell.

We can choose a smaller cell size to increase the smoothness and flexibility of
placement. However, this increases the number of candidate positions. As shown in
Fig. 2, by reducing the cell size by half (3.2 m), the number of candidate locations
increases to 16 × 16 = 256. This also increases the number of candidate solutions when
n readers are placed on these 256 locations and increases computational complexity.
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Fig. 2. Example of a gridded work area.

The objective of RNP is to find the position of readers so that the minimum number
of used readers and the maximum number of covered tags. Let xi be indexed to determine
the state of reader i, xi = 1 if reader i is used and xi = 0 if reader i is free. The objective
of RNP is to minimize the number of used readers:

f1 =
∑nmax

i=1
xi (1)

subject to cover up to the tags in the work area:

f2 =
∑nmax

i=1
Tixi (2)

where Ti is the number of tags covered by reader i and T is the total number of tags in
the work area.

In addition, the signal-to-interference ratio (SIR) should also be kept to a minimum.
There are two types of interference:

(1) the downlink interference (from reader to tag), which is calculated as the sum of the
peak signals received at tag j from reader i divided by the sum of the above signals
and interference from other readers:

f3 =
∑n

j=1
∑

i∈Rj
max(Di,jxi)∑n

j=1
∑

i∈Rj
max(Di,jxi) + ∑n

j=1
∑

i∈Rj

∑
k∈Sj

max(Di,jxi)
(3)

and the uplink interference (from tag to reader) which is calculated similarly to downlink
interference but in the opposite direction:

f4 =
∑n

j=1
∑

i∈Nj
max(Ui,jxi)∑n

j=1
∑

i∈Nj
max(Ui,jxi) + ∑n

j=1
∑

i∈Nj

∑
k∈Sj

max(Ui,jxi)
(4)
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6 V. H. Le et al.

where Rj is the set of readers i covering tag j (whose distance to tag j is less than the reader
coverage radius) and Sj is the set of readers i generating interference at tag j (assumed
to be readers have the same distance to tag j). Di,j and Ui,j are downlink and uplink
signals received/sent at tag j from reader i. For simplicity, Di,j and Ui,j are considered
as Euclidean distances in coordinates between tag j and reader i.

3.2 Formulation

To solve RNP, an 2-phase model (Fig. 3) is proposed, in which, Phase 1 (the placement
optimization) exploits a genetic algorithm to find the optimal position of n readers and,
Phase 2 (the redundancy elimination) uses some proposed policies to eliminate redundant
readers without or with little effect on tag coverage. Detailed descriptions of Phase 1 and
Phase 2 are presented in the next subsections. In fact, eliminating redundant readers can
reduce tag coverage, so Phase 1 can be repeated several times to fine-tune the position
of used readers. However, before implementing the 2-phase model, the determination
of the best gridding should be made to limit the number of candidate positions when
readers are trying to be placed.

GA-based
placement optimization

Redundancy 
elimination

Determination 
of cell size

Feedback

The best 
position 

Grid of candidate possitions

Work
area

Phase1 Phase2

Fig. 3. The 2-phase model of placement optimization and redundant reader elimination

Phase 1: GA-Based Placement Optimization
A genetic algorithm is a search method inspired by natural evolution, in which good
parental features are passed to offspring. To be able to apply a GA to solve a real prob-
lem, the candidate solutions need to be encoded into chromosomes. Then, evolutionary
operations such as selection, crossover (recombination), and mutation are performed to
produce offspring. The individuals, including parents and offspring, are then selected
to form a new population. The evolution process is repeated until the best individual
is found or the convergence condition is satisfied [16]. The operations are described in
detail as follows.

To formulate RNP into GA, candidate solutions in the phenotype space need to
be mapped to chromosomes in the genotype space. With the goal of determining the
optimal position of readers in a work area, the coordinates of readers on the grid are of
primary interest. In our formulation, each candidate solution is encoded as a sequence
of genes, where 2 consecutive genes represent the coordinate of a reader. As a result,
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An Integrated Model of Placement Optimization 7

the chromosome is represented as a sequence of 2 × n genes, where n is the number of
used readers.

The population needs to be well initiated before performing the algorithm. Initiating
the population involves determining the population size and the initial position of indi-
viduals. This is important because they affect the speed of convergence and the found
optimal solution. For RNP, the initial population is randomly initialized and the number
of individuals per population is 5% of the total of candidate solutions. The initial position
of individuals has a Gaussian distribution.

At each iteration, the selection of parents for crossover, as well as the selection of
individuals for the next generation population, is done based on their fitness. The goal
of RNP is to minimize the number of used readers and is subject to the constraints of
maximum coverage and minimum interference. Therefore, the fitness function is the
weighted sum of the component functions from Eq. (1) to Eq. (4):

fitness = f1w1 + f2w2 + (f3 + f4)w3 (5)

where wk is the weight of the k-th objective function and
∑3

k=1 wk = 1. The best
individual has the greatest fitness.

There are different ways to select parents to crossover, such as: randomly, roulette
wheel-based, tournament-based, etc., among which the roulette wheel-based selection is
the fairest because all individuals have a chance to be selected. Specifically, the selection
probability of each individual is converted to the size of a wheel pie corresponding to its
fitness value. With this approach, the individual with large fitness has a high probability
to be selected (thanks to its large pie), while the individual with small fitness has the low
probability of selection.

Crossover can be single-point, multiple-point or uniform. Multiple-point or uniform
crossover helps “disturb” the position of the readers at each generation, thus the chances
of finding a good position for readers are increased. However, this slows down the
algorithm convergence. Therefore, for RNP, the two-point crossover is chosen for the
first few generations and a single-point crossover for next generations to increase the
chance of global optimization and speed up the convergence.

The mutation is an operation that creates diversity for a population and escapes local
optimal positions. However, to ensure that the mutant is not too different from its parent,
the mutation probability is often chosen to be very small. With RNP, the mutation is in
only one gene with a probability of 0.05. The mutation value must belong to the gridded
work area.

The selection of individuals for a new population is made based on the fitness values
of offspring and their parents, where 30% of elite parents (with the best fitness) are
transferred directly to the new population; the remaining 70% are individuals from the
offspring with the best fitness.
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The algorithm stops when the fitness does not change anymore over a few generations
(e.g. 5 generations), or a given threshold for the maximum number of generations is
reached (e.g. 50). The individual with the best fitness in the current population is selected
as the encoding of the best-found candidate solution.

Phase 2: Redundant Reader Elimination
The output of Phase 1 is the best position for readers. However, there may be some redun-
dant readers whose elimination does not or significantly affects tag coverage. Therefore,
in Phase 2, a set of policies is proposed to eliminate redundant readers and thus reduce
the number of used readers. A reader that is considered to be eliminated or disabled must
meet the following three criteria:

– Eliminating does not or only reduces less than 1% tag coverage but the total coverage
does not reduce below 90%;

– Eliminating can reduce more than 10% of interference; and
– Eliminating does not or only reduce less than 1% of the fitness value.

With the set of redundancy elimination policies, the overall system efficiency is not
significantly affected.

4 Simulation and Analysis

The simulation is performed in a work area of 50 × 50 m2, in which 99 tags were
randomly distributed (Fig. 2). The number of readers used is n = 0.5 × nmax = 32. The
algorithm stops after 50 generations or the fitness does not change after 5 generations.
The fitness function is chosen in Eq. (5). Table 1 describes other simulation parameters.

Table 1. Simulation parameters

Parameters Value

Experimental grid sizes 3.2, 1.6 and 0.8

Individuals/population 8

Selection method Roulette wheel

Crossover Single-point and two-point

Mutation (with probability) Only one gen (0.05)

New population 30% elite parents, 70% best offspring

Weights of the component objective functions w1 = 0.2; w2 = 0.6 and w3 = 0.2
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An Integrated Model of Placement Optimization 9

Simulation objectives include:

– Determining the optimal cell size of the work area at which the optimal position of
readers is achieved; and

– Reducing the number of used readers by eliminating redundant readers.

4.1 Determining the Optimal Cell Size

Three surveyed cell sizes include 3.2, 1.6 and 0.8 m respectively, representing 1, 1/2
and 1/4 of the reader coverage radius. The placement efficiency, in terms of fitness,
convergence and coverage ratio, is shown in Table 2.

Table 2. Comparison of placement efficiency with different cell sizes

No. Grid size (m) Candidate solutions Best fitness Convergence
(loops)

Coverage ratio

1 3.2 162 = 256 0.904147 16 94%

2 1.6 322 = 1024 0.932430 22 98%

3 0.8 642 = 4096 0.936176 30 98%

From Table 2, we see that the smaller the cell size is, the higher the number of
candidate solutions is. That increases the computational complexity and the convergence
time. Specifically, with the grid size of 3.2 m, the number of candidate solutions is only
162, so only 16 iterations are needed to converge. However, when the grid decreases to
0.8 m, the number of candidate solutions increases to 642, so it takes 30 iterations to
converge.

Large cell gridding does not help achieve the best fitness because there are few
candidate solutions that can choose from. But as the cell size gets smaller, the reader
placement becomes smooth and thus an optimal solution can be found where the fit-
ness gets the best value. However, too small cell gridding explodes the computational
complexity and prolongs the convergence time, however it improves little fitness and
tag coverage. As described in Table 2, the cell size 1.6 m gives good results in terms of
fitness, coverage ratio and convergence as that of the cell size 0.8 m. Figure 4 shows that
after 30 generations, the fitness value corresponding to the cell size 1.6 m is 3% better
than that of the cell size 3.2 m and its fitness value is approximately equal to that of the
cell size 0.8 m.
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10 V. H. Le et al.

Fig. 4. Comparison of the fitness corresponding to different cell sizes

4.2 Reducing the Number of Used Readers

After finding the optimal position of readers, reducing the number of used readers by the
policies of redundancy elimination is considered. As shown in Fig. 5, 4 readers (dotted
circles) are eliminated for all 3 cell sizes of 3.2 m, 1.6 m and 0.8 m. However, the
reduction of these readers also has an impact on the tag coverage as shown in Table 3,
where the fitness corresponding to 2 cell sizes of 1.6 m and 0.8 m is slightly reduced,
but the fitness corresponding to the cell size of 3.2 m is slightly increased. It is clear
that eliminating some readers has increased the number of uncovered tags. The coverage
corresponding to the cell size of 3.2 m is reduced by 2%, but the interference is also
reduced by about 7%. In the case of cell sizes of 1.6 m and 0.8 m, the coverage is reduced
by 4% and the interference is also reduced by about 7%.

Table 3. Comparison of the coverage and the interference before and after eliminating redundant
readers

No. Grid
size (m)

Fitness value Readers Coverage (%) Interference (%)

Before After Before After Before After Before After

1 3.2 0.904147 0.909925 32 28 94 92 17.8 11.4

2 1.6 0.932430 0.924471 32 28 98 94 17.8 11.0

3 0.8 0.936176 0.925513 32 28 98 94 16.6 10.7
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Fig. 5. The optimal position of readers before (left column) and after (right column) eliminating
redundant readers with 3 cell sizes of 3.2, 1.6 and 0.8 m.
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5 Conclusion

The article has successfully applied the genetic algorithm to find the optimal position
of readers with the constraints of maximum coverage and minimum interference. In
addition, the article also proposes a set of policies to eliminate redundant readers, so that
the redundancy elimination does not or significantly affect tag coverage, interference
and fitness. A 2-phase model is proposed, in which Phase 1 optimizes the position of
readers based on a genetic algorithm and Phase 2 reduces the number of used readers
by eliminating redundant readers. The article investigated and analyzed the impact of
different cell sizes on the efficiency of RFID network planning. Simulation results show
that our proposal has determined the best cell size (1.6 m) where the minimum number
of readers is needed but it still ensures the overall tag reading efficiency for the whole
system.
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