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Abstract
In the present study, differentmolar ratios of Fe-doped ZnO/biochar (FZBC)were synthesized using
a coprecipitationmethod. ZnOnanoparticles with a size of approximately 30 nmwerewell dispersed
on the biocharmatrix. The bandgap energy decreases from3.11 to 3.08 eV as the Fe-ion concentration
increases from1 to 7mol%. Photocatalytic studies demonstrated that FZBC exhibited photodegrada-
tion toward acid orange 7 (AO7). FZBC exhibited a photodegradation efficiency of AO7 at a
concentration of 10mg. L−1 (93.17%), whichwas nine times greater than that of pure ZnO (10.30%).
Furthermore, the FZBCmaterials also demonstrated effective inactivation ofE. coli, with an
antibacterial rate reaching 98%.Overall, thesematerials are expected to be cost-effective and suitable
for photocatalytic degradation and antibacterial activities.

1. Introduction

Inwastewater, various bacterial species, including pathogenic bacteria, are often present and need to be
monitored and controlled duringwastewater treatment [1]. Inmost cases, wastewater treatment criteria focus
on coliformorganisms, including Escherichia coli [2].Escherichia coli is a pathogenicmicroorganism that can
causewaterborne diseases such as diarrhea, cystitis, and pyelonephritis [3]. Its presence in the aquatic
environment can disrupt the ecological balance and pose a threat to humanhealth even at low concentrations
[4]. Antibacterial agents are essential tools for treating bacterial infections. However, themisuse of antibiotics
has led to the emergence of antibiotic-resistant bacterial strains. A 2015 report predicted that antibiotic-resistant
bacterial infections will cause 10million deaths annually by 2050 [5]. Therefore, continued research to develop
new antibacterial agents through cost-effective and environmentally friendly nanotechnologies is of paramount
importance.

In recent decades, environmental pollution caused by organic compounds, such as dyes, has gained
widespread attentionworldwide [6]. Acid orange 7 (C16H11N2NaO4S), also known asOrange II, is an anionic
azo dye that is extensively used in industries such as textiles, leather, cosmetics, paper, agriculture, and food [7].
The presence of dyes inwastewater, even at very low concentrations, is highly noticeable and undesirable [8].
Furthermore, due to the complexity and diversity of dyes inwastewater, it is challenging tofind a single
treatmentmethod that can completely remove all types of dyes [9]. Therefore, the removal of these colored
compounds from industrial wastewater is highly important.

Asmentioned above, theworld is currently facing a shortage of cleanwater sources due to growing industry
and the release of organic compounds directly into the environment. Organic dyes and bacteria are themain
agents of water pollution and cannot be degraded or inactivated under common environmental conditions
[10, 11]. Therefore,manymethods have been applied, such as chemical oxidation, adsorption, and
photocatalysis. Among thesemethods, photocatalysis is a powerful technique for environmental detoxification
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and has emerged as a promising solution due to its cost-effectiveness and environmental friendliness [12, 13].
Variousmetal oxides, such as TiO2 [14], ZnO [15], CuO [16],WO3 [17], Fe2O3 [18], and SrTiO3 [19], are known
for their ability to efficiently photocatalyze organic compounds and effectively inactivate bacteria via
photocatalytic chemical reactions. Zinc oxide (ZnO), a group II-VI semiconductormaterial, is often considered
one of themost promising photocatalytic agents due to its nontoxic nature and physical stability [20]. It exhibits
excellent antibacterial activity owing to its hydrophilicity and high oxidative capacity [15, 20]. However, there
are some limitations to photocatalysis associatedwith this semiconductor, such as low quantum efficiency,
photocorrosion, and limited light absorption due to rapid recombination of photogenerated charge carriers
[15]. To overcome these limitations, researchers have explored alternativemethods to enhance carriermobility.
There are variousways tomodify the optical and other properties ofmetal oxide structures [21]. The
introduction of a dopant into the structure is one suchmethod [22]. The doping of transitionmetal ions into the
ZnO crystal lattice is a promising technique for enhancing photocatalytic activity by introducing new energy
levels within the bandgap, primarily improving the electron–hole pair separation efficiency by forming electron
traps [23]. Among the transitionmetals, iron (Fe) is preferred as a dopant because its d-orbitals easily overlap
with the valence band of ZnO [24].When Fe is doped onto ZnOnanostructures, improved antibacterial and
magnetic properties have been observed [25]. Dopingwith Fe atoms can also reduce the particle size and increase
the number of active catalytic sites, which is highly beneficial for adsorption in photocatalytic reactions [26].
Furthermore, the absorption spectrum redshifts in thewavelength range of 320–800 nmdue to Fe doping,
which results in strong optical absorption in the visible light region [27], and chemical precipitation arrays of Fe-
dopedZnO showquenching or absorbing properties, indicating their antibiotic properties [28]. Additionally,
Fe-based nanomaterials were effective for antibacterial effects, and their degradationwas found to be faster.
Furthermore, the ionic radius of Fe3+ (0.06 nm) is smaller than that of Zn2+ (0.074 nm), creating a charge
imbalance and thus enhancing photocatalytic and antibacterial activity [29]. It is clear from these reported
results that the influence of Fe atoms on the ZnOdefect luminescence band in nanostructures strongly depends
on the specific defect structure of the sample and on the growth process used [21].

Recently, to overcome the limitations of ZnO, ZnOnanostructures have been incorporated into various
carbonaceous substrates, such as graphene, graphene oxide, and carbon nanotubes [30]. However, these
substrates are expensive and involve complex synthesis procedures [30]. Therefore, there is a need to develop
cost-effective and environmentally friendlymaterials that can replace these expensive carbonmaterials for
synthesizing carbon-based photocatalyticmaterials. In recent years, biochar (BC) has garnered significant
attention as a carbonaceous support to enhance the photocatalytic performance ofmetal oxide composites [31].
BC is a stable, cost-effective product containing carbon obtained through the pyrolysis of biomassmaterials
under oxygen-free conditions [32, 33]. BC serves as an excellent carrier or supportmaterial for synthesizing
metal oxide compositematerials due to its high porosity, large surface area, and presence of functional groups on
its surface, providing excellent electron conductivity support for photogenerated electron transfer [33, 34].
Phragmites australis, commonly known as common reed, grows predominantly around lakes, rivers, and
streams [35]. InVietnam, Phragmites australis growswidely year-round in rural areas, especially inwetland
regions. This plant is primarily composed of high-quality biomassmaterials, including cellulose, hemicellulose,
and lignin,making it a potential source for synthesizing BC [35]. ChenMusedZnO/biochar nanocomposites
derived from jutefibers for efficient and stable photodegradation ofmethylene blue dye [36]. Alves et al reported
that ZnO/biochar composites exhibitedmore effective antibacterial activity than did pure ZnO [37].Many
studies have shown that the physicochemical properties of synthesized biochar depend largely on the type of raw
material and the operating parameters (heating rate, temperature, atmospheric conditions, retention time, etc.)
used to formbiochar [38], thereby affecting the quality of the resulting photocatalytic composite. Therefore,
research into biochar-based composites produced from specific raw biomass sources is necessary. To date,
studies related to the synthesis of Fe-dopedZnO/Phragmites australis stem-derived biochars for the application
of both photocatalytic and antibacterial agents have been limited. This study represents the first use of biochar
derived from Phragmites australis stems as an environmentally friendly carbon supportmaterial for the
production of Fe-doped ZnO/biochar compositematerials with photocatalytic degradation and antibacterial
properties. Thismaterial exhibits significant potential as a photocatalyst in environmental treatment
applications.

2. Experiment

2.1.Materials
Chemicals such as sodiumhydroxide (NaOH,� 99.0%), hydrochloric acid (HCl, 37%), iron(III)nitrate
nonahydrate (Fe.9H2O.3HNO3,� 100%), acid orange 7 (C16H11N2NaO4S,� 85%), potassium iodide (KI,�
99.5%) and potassiumbromate (KBrO3, 99.8%)were purchased fromMerck. Zinc nitrate hexahydrate (Zn
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(NO3)2·6H2O, 98%), tert-butanol ((CH3)3COH, tBA, 99.5%) and L-ascorbic acid (C6H8O6, AA, 99%)were
obtained fromSigma-Aldrich. RawP. australis biomass (comprising 43.31% cellulose, 30.82%hemicellulose,
and 20.37% lignin [39])was obtained from the Practice Experiment Center (Dong ThapUniversity, Vietnam).

2.2. Synthesis of Fe-dopedZnO/biochar
A total of 3.0 grams of rawP. australis biomass was placed in a porcelain boat and heated under nitrogen gas
saturation conditions at 400 °C for 2 h (heating rate: 3 °Cmin−1). The product obtained after heatingwas first
washedwith 1.0 MHCl solution and then rinsed several times with distilledwater until the filtrate became
neutral. Thewashed product was dried at 105 °C to a constant weight and then stored in amoisture-proof
container, which served as the raw biocharmaterial (abbreviated as BC).

In the next step, 7.437 grams of Zn(NO3)2·6H2Owere dissolved in 80 ml of distilledwater and stirred for
10 min. Subsequently, Fe(NO3)3·9H2Owith Fe/Znmolar ratios of 1, 3, 5, and 7%was added to the above
solutions. In each case, 0.50 grams of BCwas added to the respective saltmixed solution and stirred for 12 h.
Then, 50 ml of 1.0 MNaOHsolutionwas added dropwise to each beaker, and themixturewas hydrolyzed at
room temperature for 4 h and allowed to settle for 1 h. Themixturewas thenfiltered and rinsed several times
with distilledwater until the filtrate became neutral. Thewashed product was dried at 105 °C for 12 h, ground
into fine particles and heated under nitrogen gas saturation conditions at 450 °C (heating rate: 3 °Cmin−1) for
2 h (at this heating temperature, the synthesized compositematerials had the highest photodegradation
efficiency of AO7), resulting in the Fe-doped ZnO/biochar composite products, denoted FZBC1 to FZBC7,
respectively. For comparison, ZnO/biochar (ZBC) and pure ZnO samples were also synthesized under the same
conditions as described above in the absence of Fe(NO3)3 and both Fe(NO3)3 and biochar, respectively.

2.3. Characterization ofmaterials
X-ray diffraction (XRD) patternsweremeasured using a BrukerD8Advance X-ray diffractometer (Bruker,
Germany). The scanning angle (2θ) ranged from10 to 80°with a step size of 0.03°. Transmission electron
microscopy (TEM) and scanning electronmicroscopy (SEM) images were acquired using a JEOL JEM—1010
transmission electronmicroscope (USA) and an FEINovaNanoSEM450 scanning electronmicroscope (USA),
respectively. Elemental analyses were conducted through EDXmapping spectroscopy using a TEAMApollo XL
EDS system (USA). Fourier transform infrared (FT-IR) spectra of the samples were recordedwith an IRAffinity-
1S spectrophotometer (Shimadzu). UV–Vis-DRS (ultraviolet–visible diffuse reflectance spectroscopy) spectra
were obtained using aUV-2600 instrument fromShimadzu. Nitrogen adsorption/desorption isotherms (BETs)
were determined using aQuantachromeTriStar 3000V6.07 A adsorption instrument. Photoluminescence (PL)
spectrawere obtainedwith aHoriba Fluorolog 3 FL3-22.

2.4. Photocatalytic degradation of AO7
In this study, a beaker containing 200 ml of 10 mg. L−1 AO7 solution suspension and 0.1 grams of the
photocatalyst were placed under a lampholder. The light source usedwas a Compact 50W-220V lamp (Dien
Quang) equippedwith awavelength cutoff filter (λ� 420 nm, d= 77 mm). Prior to illumination, the solution
was stirred in darkness using amagnetic stirrer for 60 min to ensure adsorption equilibrium. After a certain
interval, 5.0 ml of the solutionwaswithdrawn and centrifuged to remove the solid photocatalyst. The
concentration of AO7 in the supernatant was analyzed byUV–Vis spectrophotometry (SpectroUV-2650,
Labomed,USA). The adsorption efficiency of AO7 (A%)was calculated using the following equation [8]:

( ) ( ) ( )A
C C

C
% 100 1e0 0

0

=
-

´

whereC0 (mg. L−1) is the initial concentration of AO7, andC0e (mg. L−1) is the concentration of AO7 at sorption
equilibrium time t (min).

The photodegradation efficiency (D%) of the photocatalyst was calculated using expression (2) [40, 41]:

( ) ( ) ( )D
C C

C
% 100 2e t

e

0

0

=
-

´

whereC0e (mg. L−1) andCt (mg. L−1) are the AO7 concentrations at the sorption equilibrium time and at an
irradiation time of t (min), respectively. According to the Langmuir–Hinshelwood kineticsmodel, the
photocatalytic degradation of AO7dye can be expressed by the following equation [42]:

( )C

C
ktln 3t

e0

= -

where k is the pseudo-first-order rate constant,C0e (mg. L−1) are the AO7 concentrations at sorption
equilibrium.
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2.5. Antibacterial activity assessment
The disk diffusionmethodwas employed to assess the antibacterial activity of pure ZnO, ZBC, FZBC1, FZBC3,
FZBC5, FZBC7, and pristine EMB (as a control sample). In a typical procedure, 5.0 grams of beef extract and
10.0 grams of peptonewere added to a 1000 ml container of distilledwater. Subsequently, 100 μl ofE. coli broth
was added to the solution. Thismixturewas placed in an incubator at 37 °C for 24 h. TheE. coli brothwas
diluted to a concentration of 106CFUmL−1, after which 0.05 g of the photocatalystmaterial was dispersed into
200 ml of this solution. Themixturewas stirred for 2 h at 150 rpmunder irradiationwith aCompact 50W-220
V lamp. After solidification of the EMB agar, 10 μl of the photocatalytic degradation solutionwas evenly
inoculated onto a Petri dish and placed in a specialized bacterial incubator at 37 °C for 24 h. The number of
E. coli colonies in the Petri dishwas counted using a colony counter. The antibacterial rate (η%)was determined
using the following formula [43]:

( ) ( )Y X

Y
% 100 4h =

-
´

where Y represents the number ofE. coli colonies grown onEMBagar andX is the number of E. coli colonies
grownon agar containing the photocatalystmaterial.

3. Results and discussion

3.1. Characterization of photocatalysts
The crystalline structures of the ZnO, BC, ZBC, and FZBCx (x= 1, 3, 5, and 7) samples were revealed through
X-ray diffraction (XRD) (figure 1(a)). The ZnO sample exhibited characteristic diffraction peaks at 2θ= 31.7°,
34.4°, 36.2°, 47.5°, 56.6°, 62.8°, 66.4°, 67.9°, 69.1°, 72.6° and 76.9°, corresponding to the (100), (002), (101),
(102), (110), (103), (200), (112), (201), (004), and (202) crystal planes of the hexagonal wurtzite-phase ZnO
structure, respectively (JCPDS card no. 01-075-9743) [20, 36]. The broad peak of biochar at 2θ∼ 23°was
attributed to the characteristic diffraction peak of amorphous carbon [44]. In the ZBC sample and the FZBC
samples, characteristic peaks of pure ZnOwere also observed, indicating the formation of composites on the
biochar substrate. However, no characteristic peak of amorphous carbonwas observed in the composite
samples. Thismight be due to the strong overlap of the diffraction peaks of the ZnOhexagonal wurtzite crystal
on the characteristic peak of amorphous carbon.Moreover, the peaks of various types of iron oxides or Zn-
ferrite were not detected in the diffraction pattern of the FZBCx samples, possibly because the amount of Fe
impurities was very small compared to the amount of ZnO. Therefore, this small amount of Fe impurity is
mostly embedded in the ZnO lattice and cannot be observed because it falls below the detection limit of the
instrument. However,figure 1(b) shows that loading ZnOnano particles onto BChas slightly shifted the 2θ
reflection angle of the ZBC sample towards lower values compared to the pure ZnO sample, while the FZBC
samples have slightly higher 2θ values compared to the ZBC sample (table 1), indicating that the presence of Fe
impurities tends to slightly increase the 2θ angle values of ZnO in the FZBC composite. The average crystal sizes

Figure 1. (a)XRDpatterns of ZnO, BC, ZBC and FZBCx (x= 1, 3, 5 and 7), (b)Magnified spectrum to show the peak shift and (c)
FTIR spectra of the ZnO, ZBC and FZBCx samples.
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of the ZnO, ZBC, FZBC1, FZBC3, FZBC5, and FZBC7 samples were calculated using the Scherrer equation for
the (101) reflection, yielding values of 37.0 nm, 28.0 nm, 29.0 nm, 31.0 nm, 31.7 nm, and 33.2 nm, respectively
(table 1). The variation in particle size indicates that biochar strongly inhibited the crystalline growth of ZnO,
while the Fe impurities tended to slightly promote the growth of ZnO crystallites in the ZBC composite within
the range of Fe/Znmolar ratios from1% to 7%.

FTIRwas employed to identify the organic and inorganic functional groups present in the samples.
Figure 1(c) shows the FTIR spectra of the pure ZnO, BC, ZBC, and FZBCx (x= 1, 3, 5, and 7) sampleswithin the
wavenumber range of 400–4000 cm−1. For all the samples, two broad peaks at approximately 3436 and
1635 cm−1 were observed, attributed to theO−Hstretching of hydroxyl groups andO−Hbending ofH2O,
respectively [37]. The peak at 2350 cm−1 is related toC−Ostretching in carbon dioxidemolecules, which are
adsorbed on the sample surface [8, 45]. For the ZnO samples, the peaks at 445 cm−1 and 492 cm−1 are associated
with the stretching vibrations of oxygen-metal-oxygen (O−Zn−O) andmetal-oxygen (Zn−O) bonds
(figure 1(b)) [46], respectively. In the case of biochar, the peaks at 2924 cm−1 and 1619 cm−1 are attributed to the
asymmetric stretching of C−Hand the sp2 character of C=C, respectively [47, 48]. The peak at 1462 cm−1 can
be assigned to the carboxylate group (−COO−) stretching vibration [49]. Peaks in the range between 900 cm−1

and 1300 cm−1may be related to single C−Obonds, such as those in ethers, andC−OHgroups [48]. The peak at
1385 cm−1 is attributed to the vibrationalmodes ofO−H,C−Cbending, or C−Hbending [50]. In the ZBC
composite samples, characteristic peaks of both the ZnO andBC components were observed butwith lower
intensities; in particular, the vibrationalmodes of Fe-O and Fe-OH could not be identified in these spectral
ranges. This result demonstrates the good substitution ability of Fe2+ and Fe3+ ions in thematrix of ZnO [51]
and shows the successful formation of ZnO/BCheterojunctions in the ZBC composites [52].

The optical properties of the ZnO, BC, ZBC, and FZBCx (x= 1, 3, 5, and 7) samples were assessed viaUV–
Vis absorption spectroscopywithin the range of 200 to 800 nm (figure 2). BCwas nearly transparent in the
wavelength range longer than 300 nm [53]. Pure ZnO exhibited an optical absorption edge at awavelength of
approximately 387 nm, indicating that its optical absorption ability is primarily in the ultraviolet region [33].
The ZBC sample exhibited an optical absorption edge shifting to approximately 398 nm.Compared to that of
pure ZnO, a significant, observable increase in absorptionwas observed in the visible light range (from400 to
600 nm) for all FZBCx samples. This suggests that Fe3+ ionswere successfully doped into the ZnO crystal lattice,
possibly creatingmore active defect sites [28, 54].Moreover, the increased visible light absorption through these
defect sitesmight have led to the enhanced photocatalytic activity of the ZnO crystallites doped in the visible
light region. The redshift of the Fe3+ impurity is due to the sp–d exchange interaction between electrons in the

Figure 2. (a)UV–Vis and (b)Tauc plots of the ZnO, BC, ZBC and FZBCx (x= 1, 3, 5 and 7) samples.

Table 1.The average crystalline size (D), reflection angle 2θ and band gap energy (Eg) of
the synthesized samples.

Samples ZnO ZBC FZBC1 FZBC3 FZBC5 FZBC7

D (nm) 37.0 28.0 29.0 31.0 31.7 33.2

2θ 36.271 36.204 36.256 36.276 36.254 36.288

Eg (eV) 3.20 3.11 3.15 3.10 3.09 3.08
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conduction band of ZnO and the d electrons of Fe3+ [26]. However, this shiftmight also be due to the Burstein–
Moss effect, which creates additional energy levels for Fe3+/Fe2+ below the conduction band of ZnO as the
visible light absorption capability increases with increasing amounts of the Fe impurity component [28, 51]. To
calculate the band gap values, the Tauc plot relationwas used [51]:

( ) ( )h A h E 5bg
2a n n= -

whereα is the absorption coefficient, h is the Planck constant, v is thewavenumber,A is a constant andEbg is the
energy band gap.

The forbidden energy gap value from the absorption datawas calculated by plotting (αhν)2 against the
photon energy Ebg= hν (figure 2(b)) [51]. The calculated Ebg values for the ZnO, ZBC, FZBC1, FZBC3, FZBC5,
and FZBC7 samples were 3.20 eV, 3.11 eV, 3.15 eV, 3.10 eV, 3.09 eV, and 3.08 eV, respectively (figure 2(b) and
table 1). These results indicate that Fe doping into the ZnO lattice and its dispersion on the BC supportmay help
narrow the band gap of ZnO in FZBC composites. A decrease in the band gapwidth, alongwith an increase in
the Fe impurity content, has also been observed in previous research [26, 51, 54, 55].

According to the results of testing the photocatalytic activity of the ZnO, ZBC, and composite samples
FZBC1, FZBC3, FZBC5 and FZBC7 (content in section 3.2), we found that the FZBC3 composite achieved the
greatest photodegradation performance of AO7 compared to the above samples. Therefore, we focused on
analyzing themorphology, elemental composition, photoluminescence and textural properties of sample
FZBC3, as presented below.

Themorphology andmicrostructure of the ZnO, BC, ZBC, and FZBC3 samples were observed using SEM
andTEM.TheZnO sample (SEM -figure 3(a) andTEM-figure 3(b)) appeared as aggregated spherical particles
with an average diameter ranging from approximately 30 nm to 40 nm. Figure 3(c) shows an SEM image of BC
in the formof smooth sheets. The ZBC composite sample (SEM -figure 3(d) andTEM- figure 3(e)) comprised
both spherical ZnOparticles and sheet-like BC,with the ZnOparticle size in the ZBC composite ranging from
approximately 20 nm to 30 nm,which is smaller than that of pure ZnO. This suggests the inhibitory role of BC in
the crystalline growth of ZnO. The FZBC3 sample exhibited large spherical particles (with diameters ranging
from30 to 35 nm) composed of individual smaller nanosized particles that coalesced together and appeared to
be successfully attached to the BC surface (SEM—figure 3(f) andTEM—figure 3(g)). The high-resolution TEM
(HRTEM) image (figure 3(h)) displayed lattice fringes with a spacing of d (002) (0.26 nm) characteristic of
wurtzite ZnO [56].

EDX- elementalmapping of a selected area on the FZBC3 sample is presented infigure 4. The element Fewas
evenly distributed on the surface of BC in the FZBC3 composite (figure 4(d)). In contrast, Zn,O, andCwere
densely distributedwithin the FZBC3network (figures 4(e)–(g)).

The presence of Fe, Zn,O, andC in FZBC3, aswell as their integrated images (figure 3(c)), confirms the
distribution of these elements in FZBC3. EDXanalysis further indicated the presence of Fe, Zn,O, andC in
FZBC3 (as depicted in the inset offigure 4(b)). These results demonstrate that Fe-doped ZnOnanostructures
were successfully dispersed onBC, indicating that the synthesized FZBC3 composite was free of impurities.

The PLwas recorded at room temperature with an excitationwavelength of 368 nm. Figure 5(a) shows that
all three samples, namely, ZnO, ZBC and FZBC3, exhibit obvious PL signals with similar curve shapes. The peak

Figure 3. SEM images of (a)ZnO, (c)BC, (d)ZBC and (f) FZBC3; TEM image of (b)ZnOand (e)ZBC; (g) FZBC3;HRTEM image of
(h) FZBC3.
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Figure 4. (a), (b) SEM-EDXmapping spectrumof the FZBC3 sample; (c) elementalmapping image of Fe, Zn,O andCon FZBC3;
EDX elementalmapping of (d) Fe, (e)Zn, (f)Oand (g)C.

Figure 5. (a)Photoluminescence spectra of ZnO, ZBC and FZBC3 and (b)N2 sorption/desorption isotherms of ZnO, BC, ZBC and
FZBC3 samples. (c)Pore size distributions of the ZnO, BC, ZBC and FZBC3 samples.
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at approximately 409 nm (3.03 eV) corresponds to the transition from the conduction band (CB) to deep holes
trapped above the valence band (VB) [57], and the peak at 434 nm (∼2.85 eV) is attributed to the electronic
transition between the excitonic level and interstitial oxygen (Oi) [58]. The peak at 460 nm (∼2.70 eV)
corresponds to the direct recombination of a conduction electron in theCB and a hole in theVB [59]. The blue
emission peak at 460 nm (2.69 eV)may occur due to the donor-level Zni to acceptor-level zinc vacancy (VZn)
[60]. The green emission peak in the range of 500–600 nm (2.48–2.06 eV) is attributed to defects related to
oxygen vacancies because of the recombination of photogenerated holes and electrons trapped by singly ionized
oxygen vacancies (Vo) [61].When Fe3+ ionswere incorporated in ZnOand loaded onto a biochar substrate, the
fluorescence intensity decreased significantly (figure 5(a)), leading to a decrease in charge carrier recombination,
which indicates high electron–hole separation and increased photocatalyst activity.

The porous properties of the ZnO, BC, ZBC, and FZBC3 samples were studied using nitrogen adsorption/
desorption isotherms (figure 5(b)). According to the IUPAC classification, the BC sample exhibited type II
isothermswith anH3hysteresis loop, indicating narrow slit-shaped pores [62]. H3 hysteresis is typically
observed for nonrigidmaterials composed of plate-like particles that create slit-shaped pores [63]. The surface
characteristics of BC included a relatively high specific surface area and awell-defined pore structure, with a
specific surface area of 22.80 m2/g and an average pore diameter of 12.4 nm (table 2, figure 5(c)). The structural
characteristics of BC can provide a good platform for the loading and dispersion of ZnO, and the porous nature
of BC is favorable for the formation of active adsorption sites [62]. The ZnO, ZBC, and FZBC3materials
exhibited type IV isothermswith anH4hysteresis loop, confirming the presence of amesoporous structure in
the preparedmaterials [64, 65] (see figure 5(c)). The specific surface area, pore volume, and average pore
diameter of the ZnO, BC, ZBC, and FZBC3 samples are listed in table 2. The specific surface areas of ZnO, BC,
ZBC, and FZBC3were 5.5 m2/g, 22.8 m2.g−1, 10.3 m2.g−1, and 13.4 m2.g−1, respectively (table 2). The biochar
matrix significantly enhanced the specific surface area of ZnO in the ZBC and FZBC3 composites. A larger
surface area can providemore active sites. Therefore, the larger BET surface area of the ZBC and FZBC3
composites compared to that of pure ZnO could be one of the reasons for their higher catalytic activity [66].
Furthermore, the formation of a ZnO/biochar heterojunction structure can enhance visible light absorption
and efficiently separate photoexcited electron–hole pairs, thus further improving photocatalytic efficiency [67].

3.2. Photodegradation ofAO7with different catalysts
The photocatalytic activity of the pure ZnO, ZBC, and FZBCx (x= 1, 3, 5, and 7) samples was studied through
experiments involving the degradation of AO7under visible light irradiation conditions (λ> 420 nm), as
depicted infigure 6(a). No photocatalytic degradation of AO7was observed after 2 h of visible light irradiation,
indicating that AO7 is stable under visible light irradiation in the absence of a photocatalyst [68, 69]. The ZnO
sample exhibited a relatively lowAO7 removal efficiency (10.30%) due to adsorption. The composite ZBC
showed a significantly greater AO7 degradation efficiency (72.75%) than did pure ZnO,with a 7.06-fold
increase. Notably, the FZBC3 composite exhibited the highest photocatalytic efficiency (93.17%) among all the
samples, including ZnO (10.30%), ZBC (72.75%), FZBC1 (68.99%), FZBC3 (86.90%), and FZBC7 (78.83%).
AO7 degraded 93.17%within 120 min. Figure 6(b) illustrates the gradual degradation of AO7 on FZBC3 over
time, withAO7nearly completely degrading at 120 min. TheUV–Vis spectra of the treated AO7 solution are
presented infigure 6(b). AO7 possesses four absorption peaks at 229, 260, 311, and 485 nmand a shoulder peak
at 407 nm. The peak at 485 nm is attributed to the hydrazone form,whereas the shoulder at 407 nm is attributed
to the azo group [70]. In general, the peaks at 229–311 nmcorrespond to theπ—π* transitions in the benzoic
and naphthalene rings of AO7, respectively [71]. The decrease in the intensity of these peaks during the reaction
indicates the decomposition of the aromaticmoieties and color groups of the dye [70, 71].

To gain a better understanding of the reaction kinetics of the process of AO7 degradation, experimental data
werefitted using afirst-order kineticmodel (equation (3)). As shown in the inset infigure 6(c), the photocatalytic
degradation curves in all cases werewell fitted to thefirst-order apparent kineticmodel. Furthermore, significant
differences in photocatalytic activity were observed for ZnO, ZBC, and FZBCx (figure 6(c)), implying that the
combination of ZnOwith BCor the combination of Fe-dopedZnOwith BC significantly enhanced the
photocatalytic activity of ZnO in the composites. Figure 6(d) shows that FZBC3 exhibited the highest
degradation rate constant. The rate constant values for ZnO, ZBC, FZBC1, FZBC3, FZBC5, and FZBC7were

Table 2.Textural properties of ZnO, BC, ZBC and FZBC3.

ZnO BC ZBC FZBC3

Specific surface area (m2.g−1) 5.5 22.8 10.3 13.4

Pore volume (cm3.g−1) 0.02 0.01 0.04 0.11

Average pore diameter (nm) 16.90 12.43 21.05 35.93
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approximately 0.0014 min, 0.0159 min, 0.0158 min, 0.0372 min, 0.0335 min, and 0.0231 min, respectively. A
comparison of the apparent first-order rate constants of the FZBC3 catalyst with those in previously published
literature, as listed in table 3, reveals that the catalytic activity of the FZBC3 composite is relatively high
compared to that in previous reports.

3.3. The influence of scavengers
As the photocatalytic process primarily involves the formation of electron–hole pairs (e-h+), superoxide anion
radicals (•O2

-), and hydroxyl radicals (•OH), it is essential to investigate the activities related to the degradation of
AO7molecules (figure 7). To study these activities related to the photocatalytic process, radical trapping
experiments were performed using the FZBC3 catalyst. For this experiment, 10 mMpotassium iodide (KI),
potassiumbromates (KBrO3), tert-butanol (tBA), and ascorbic acid (AA)were added to theDC solution as
scavenging agents to capture holes (h+) [76], electrons (e-) [76], hydroxyl radicals (•OH) [77], and superoxide
radicals •O2

- [78], respectively. First, the addition of AA significantly reduced the degradation efficiency to
80.92%, indicating its ability to inhibit •O2

- radical formation. Next, the addition of tBA reduced the degradation
efficiency to 50.42%, suggesting that tBA interferes with •OHradical formation. Third, the addition of KBrO3, a
radical scavenger, reduced the degradation efficiency to 26.46%, indicating that the inhibition of electron
formationwas not significant. Finally, photogenerated holes h+ reduced the degradation efficiency to 20.99%,
indicating that h+ is a secondary active species involved in the process. Hence, it is concluded that the formation
of superoxide anion radicals •O2

- and hydroxyl radicals •OH in the reaction solution plays a primary role in the
AO7degradation process. These two free radicals possess high reactivity, leading to significant antibacterial
activity as well [3, 25].

3.4. Antibacterial properties
The antibacterial capacities of pure ZnO, ZBC and FZBC3were evaluated against E. coli (figure 8). Initially, the
number ofE. coli colonies was counted using a bacterial colony counter, and then the antibacterial ratiowas
calculated using equation (4). ZnO exhibited poor antibacterial properties, achieving an antibacterial ratio of

Figure 6. (a)Photodegradation of AO7 over no catalyst, ZnO, ZBC and FZBCx (x= 1, 3, 5 and 7) samples; (b)Photodegradation of
AO7 on FZBC3with different degradation times; (c) First-order kinetics plot and (d)Degradation rate constant k (min−1) for the
photodegradation of AO7 byZnO, ZBC and FZBCx samples.
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Table 3.Comparison of the rate constant of the present catalyst with the literature values for AO7degradation.

Catalyst Light source C0 (mgL−1)/Vol. (mL)/mcatalyst (mg) k (min−1) References

Fe-doped ZnO/biochar 50 WCompact lamp (filter> 420 nm) 10/200/100 0.0372 The present work

BiOBr(95)-NiO(5) Haloline ECO400W230VR7S,OSRAM lamp (λ� 365 nm) 20/100/100 0.0337 [41]
Ni3V2O8/BiVO4 Three 250 W tungsten halogen lamps 17.5/75/75 0.0338 [42]
TiO2wrapped graphene Solar system 10/50/10 0.0451 [72]
Co/N/Er3+:Y3Al5O12/TiO2 Sun light source 50/1000/2000 0.0369 [73]
Persulfate activatedwithCuFe2O4@RSDBC Visible light illumination 20/100/600 0.0310 [74]
Fe3+-doped TiO2 400 WmediumpressuremercuryUV lamp 50/2500/100 0.0451 [75]
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only 28.00% (figure 8(b)). This could be attributed to the lack of effective antibacterial agents in the ZnO system.
The antibacterial ratio of ZBC againstE. coliwas 81.25% (figure 8(c)). Upon the addition of Fe, the antibacterial
ratio of FZBC3 againstE. coli reached 98.00% (figure 8(d)). FZBC3 exhibited antibacterial ratios greater than
70%and 16.75% greater than those of pure ZnO andZBC, respectively. This could be because FZBC3has a
greater surface area and larger pore size thanZnO andZBC (table 2), resulting in better adsorption performance
of the FZBC3 composite. Additionally, FZBC3, which has a large surface area, providesmore active sites for
adsorption and photocatalytic reactions, leading to excellent photocatalytic antibacterial properties [67].

Based on the above experimental results, the photocatalytic AO7degradation and antibacterialmechanism
for the Fe-dopedZnO/biochar (FZBC) catalyst under visible light irradiation can be proposed, as shown in
figure 9.WhenZnOwas dopedwith Fe3+ ions, new localized energy levels of Fe appeared in the band gap of
ZnO.When FZBC is irradiated, photoinduced electron–hole (e-/h+) pairs are created, and electrons rapidly
move from the valence band (VB) of ZnO to local Fe energy levels alongwith d-d transitions at the energy level of

Figure 7.Effect of different scavengers on the photodegradation of AO7 over FZBC3 samples.

Figure 8.Antibacterial activities of the a)without catalyst, b)ZnO, c)ZBC, and d) FZBC3 samples under visible light irradiation.
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Fe doping [26]. These photoexcited electrons are trapped in the Fe energy levels, while the holes remain in the
valence band (VB) of ZnO. Electrons from theCB and holes from theVBof ZnO are transferred to the catalyst
surface and then consumed in the production of superoxide and hydroxyl radicals (•O ,2

- •OH) by reactingwith
O2, andH2O is adsorbed on the FZBC surface. The generated reactive oxygen species attack bacteria and kill
themby rupturing their cell walls [75]. The h+hole in theVBof ZnO can directly attack bacteria and decompose
AO7 [76]. On the other hand, it can be said that Fe3+ ions increase the ability to capture electrons, improving the
photocatalytic performance under visible light for pure ZnO. Indeed, Fe3+ ions can trap electrons and be
converted to Fe2+. Because Fe2+ is unstable, it can react with oxygen, turning back into Fe3+ and reducingO2 to
the superoxide anion radical •O2

- [76]. Overall, the process described above reflects the absorption ofmore
photons under visible light, effectively enhancing the separation of photogenerated electron–hole pairs and
generating electronsmuchmore efficiently (figure 9).

4. Conclusions

The Fe-dopedZnO/biochar composite was coprecipitatedwithPhragmites australis stembiomass-derived
biochar. The Fe/ZnOnanoparticles and their dispersion on the biocharmatrix shifted its light absorption to the
visible-light region, resulting in visible-light-driven photodegradation of both the AO7dye and
photodeactivation ofE. coli. The Fe-doped ZnO/biochar exhibitedmuch greater photocatalytic activity toward
AO7dyes aswell as deactivation ofE. coli. than those of the individual components. These results suggest that the
Fe-ZnO/biochar photocatalyst can be considered amethod for the treatment of dye-pollutedwastewater and
that the photocatalytic antibacterial process using this catalyst will be highly useful for systemswith high
requirements for cleanliness and surface sterility.
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