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Abstract— The interaction and communication between 
humans and computers have brought diversity and richness to 
the field of computer vision research, offering numerous 
potentials and challenges in developing human action 
recognition applications. In this domain, recognizing human 
actions from image or video data plays a crucial role in various 
practical applications, from security surveillance to interactive 
control. Although the OmniPose model has demonstrated its 
effectiveness, there is still potential to improve its performance. 
In the scope of this study, we focus on enhancing the OmniPose 
model, which is used for extracting skeleton data from input 
image data. We propose two improvement methods: utilizing the 
Self-Attention mechanism and employing Squeeze-and-
Excitation to enhance the skeleton data extraction capability of 
the OmniPose model. Through this approach, we aim to 
contribute to enhancing the performance of the OmniPose 
model in skeleton data extraction and human pose recognition, 
while opening doors to advancements in human action 
recognition in computer vision. 

Keywords— Computer vision, Deep learning, Human pose, 
Skeleton data. 

I. INTRODUCTION  

The task of skeleton data extraction plays a crucial role in 
the fields of computer vision and artificial intelligence. It 
focuses on identifying and reconstructing the structure of 
humans from image or video data by determining the 
positions and relationships between key points on the body, 
such as joints and other structural points. Thus, skeleton data 
not only highlights the position and movement of humans in 
space but also provides essential information for 
understanding their actions and behaviors [1]. 

The applications of skeleton data extraction are diverse 
and extensive. To date, it has been widely applied in various 
fields such as human-computer interaction, action recognition, 
animation, healthcare, sports, security, and many other 
applications. In human-computer interaction, skeleton data is 
used to recognize and respond to user actions, ranging from 
controlling devices to interacting with applications and user 
interfaces [2,3]. 

In the healthcare field, skeleton data is applied to monitor 
and evaluate physical exercises, facilitate functional recovery 

after injuries, and support treatment and rehabilitation 
processes. It can also be utilized in medical education and 
fitness training to provide feedback and effective exercise 
guidance. Additionally, in sports, skeleton data helps track and 
analyze the techniques, performance, and movements of 
athletes, thereby enhancing training and competitive 
capabilities. 

Methods for extracting skeleton data and estimating 2D 
human poses have been extensively studied, with the 
emergence of many notable works such as [4, 5, 6, 7, 8]. 
Additionally, numerous research efforts have focused on 
developing methods for extracting skeleton data and 
estimating 3D human poses, as seen in studies like [9, 10,11]. 
Interest in this problem extends beyond processing data from 
a single individual [6], to include processing data from 
multiple individuals simultaneously [12]. Dealing with 
multiple individuals presents unique challenges for skeleton 
data extraction and pose estimation, particularly due to the 
large mechanical flexibility of the body and the simultaneous 
presence of overlapping joints. To address these challenges, 
approaches often rely on digital and geometric models to 
predict the positions of occluded joints [13, 14]. Among the 
various feature enhancement methods available, we chose the 
Squeeze-and-Excitation (SE) block for its significant ability to 
enhance important features and minimize irrelevant ones. 
Although SE-Block is not an attention mechanism in the 
traditional sense, it has been proven to significantly improve 
the performance of convolutional neural networks (CNNs) in 
various applications. The simplicity and computational 
efficiency of SE-Block make it an ideal choice for integration 
into the OmniPose model. 

Furthermore, while attention mechanisms such as channel 
attention, spatial attention, and self-attention have 
demonstrated considerable success in many computer vision 
tasks [20], SE-Block provides a simpler and less 
computationally expensive alternative. Specifically, attention 
mechanisms often involve complex operations such as 
dynamic weight adjustment and self-attention, which, 
although powerful, can add significant computational 
overhead. In contrast, SE-Block achieves similar feature 
recalibration through a more straightforward and efficient 
approach, making it well-suited for our pose estimation tasks. 
The choice of SE-Block in this work reflects a balance 
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between improving model performance and maintaining 
computational efficiency. 

This paper contributes to the field of human pose 
estimation by improving the OmniPose model to enhance its 
understanding and prediction capabilities during data 
processing. Specifically, the main contributions of the paper 
are as follows: 

 The paper proposes an enhancement method in the 
data preprocessing stage for the OmniPose model, specifically 
utilizing the SE-Block (Squeeze-and-Excitation Block). This 
integration opens up a new direction for improving the 
OmniPose model, particularly in skeleton data extraction and 
human pose estimation. 

 Conducting experiments on the Max Planck Institute 
for Informatics Human Pose Dataset (MPII) dataset and 
evaluating the experimental results using the PCK index, the 
paper has demonstrated a significant improvement in the 
accuracy of extracting some important skeletal joints of the 
OmniPose model. This result is evidence that integrating SE-
Block into the OmniPose model has brought about certain 
improvements in skeleton data extraction and human pose 
recognition tasks. 

II. RELATED WORKS 

A. HRNet 

The High-Resolution Network (HRNet) has been widely 
used in various computer vision applications where high 
accuracy is required for identifying and localizing key points 
in images. One common application is human pose estimation, 
where HRNet excels in capturing detailed information at 
multiple resolutions, aiding in the precise identification of 
body joints and tracking body movements [8]. The HRNet 
model connects subnetworks from high to low resolutions in 
parallel, maintaining high-resolution heatmap predictions. 
This helps enhance the spatial accuracy of the heatmaps. 
HRNet also performs repeated multi-scale fusion to improve 
high-resolution representation, enriching the model with 
information. Experiments on COCO and MPII datasets have 
demonstrated the effectiveness of HRNet in human pose 
estimation and skeleton data extraction [15, 16]. This makes it 
suitable for applications where determining the specific 
location of image information is crucial, such as in medical 
imaging, autonomous driving systems, and augmented reality 
applications. Fig. 1 illustrates the architecture of the HRNet 
model. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. HRNet Model 

The HRNet model maintains high-resolution 
representations throughout the entire process, from input to 
output. The network comprises multiple branches with 
different resolutions operating in parallel, continuously 
integrating information through information exchange blocks. 
Consider Nsr as the subnetwork at stage s, and r as the 
resolution index. The following presents an example of a 
network structure that includes four parallel subnetworks. 

  𝑁11 → 𝑁21 → 𝑁31 → 𝑁41 

                      𝑁22 → 𝑁32 → 𝑁42 

𝑁33 → 𝑁43 

                         𝑁44  (1) 

In the operation of the exchange unit, downsampling is 
achieved using a strided 3×3 convolution, effectively 
reducing the resolution by selecting a subset of available 
information. Conversely, upsampling involves a 1×1 
convolution followed by nearest neighbor up-sampling. This 
method increases the resolution while aligning the number of 
channels, thereby ensuring that the finer resolution maps 
expand based on the coarser maps, preserving the crucial 
feature relationships. The inputs to the exchange unit are s 
response maps, represented as { 𝑋ଵ, 𝑋ଶ, . . . , 𝑋௦ }. 
Correspondingly, the outputs are also s response maps 
{𝑌ଵ, 𝑌ଶ, . . . , 𝑌௦}. Each output, 𝑌 , is a composite of the input 
maps, formulated as 𝑌 =  ∑ 𝑎 (𝑋 , 𝑘)௦

ୀଵ . Additionally, the 
exchange unit features an ancillary output map, 𝑌௦ାଵ, which 
is derived as 𝑌௦ାଵ = 𝑎 (𝑌௦, 𝑠 + 1). 

B. OmniPose 

The OmniPose model [17] is a computer vision and 
artificial intelligence model constructed using HRNet blocks 
and the Waterfall Atrous Spatial Pyramid (WASP) v2 
module, which is an enhancement of the UniPose model [18]. 
OmniPose is a significant model in the field of computer 
vision, designed to address the problem of human pose 
estimation and skeleton data extraction. It features a flexible 
and straightforward structure, making it easy to scale and 
integrate into real-world applications. The OmniPose model 
utilizes two 3x3 convolutional layers combined with a 
Resnet-Bottleneck block, resulting in a robust and efficient 
architecture for processing input data. 

Additionally, the model utilizes three blocks of the 
HRNet model to process diverse data with different 
resolutions. Each block is accompanied by an enhanced 
Gaussian heatmap module, aiding in accurately determining 
the positions of key points on the human body efficiently. 
Another notable aspect of OmniPose is the assumption that 
the heatmap of each point follows a Gaussian distribution, 
optimizing the process of determining the distribution center. 
This eliminates the need to search for maximum values, 
thereby significantly improving the model's performance. 
Furthermore, the model introduces the WASPv2 module, an 
upgraded version of the WASP module from UniPose, to 
optimize the classification and localization capabilities of the 
model. The combination of these components creates a robust 
and efficient model for human pose estimation and skeleton 
data extraction. The architecture of the OmniPose model is 
presented in Fig. 2. 
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Fig. 2. OmniPose model 
In addition to the enhancement method using the SE-

Block that we propose in this study, the authors in [21] have 
also introduced another notable improvement on the 
OmniPose model, called the Omni-TransPose model. This 
approach combines the efficiency of the OmniPose model 
with the effective global information processing capabilities 
of the self-attention mechanism in the Transformer 
architecture to improve skeleton data extraction and pose 
recognition. 

Additionally, skeleton extraction models in general and 
OmniPose in particular can be combined with other powerful 
object detection models such as ViT, DETR, and YOLO to 
enhance processing efficiency. A notable example is V-
DETR (Pure Transformer for End-To-End Object Detection), 
a new model proposed by the authors in [22]. V-DETR 
utilizes the combination of Transformer architectures like 
DETR and ViT to improve the accuracy and efficiency of 
object detection. V-DETR can be considered a promising 
choice for integration with skeleton extraction models to 
optimize the recognition and processing of image and video 
data. 

C. MPII Dataset 

The MPII Human Pose dataset is one of the leading 
datasets used to evaluate human pose estimation capabilities, 
particularly in the context of OmniPose model research [17]. 
This dataset provides a diverse collection of images with a 
large variety of human activities, serving the purpose of 
studying and developing accurate and efficient human pose 
estimation models. This helps clarify how the OmniPose 
model, enhanced through the integration of attention 
mechanisms, operates on real-world data and deals with 
diverse human situations in everyday life.  

In addition to providing images of human activities, the 
dataset also offers detailed information on body part 
occlusions and 3D orientations of the torso and head. This can 
assist in evaluating the model's performance in handling 
complex cases, such as occlusions of body joints or various 
body angles in space. The diversity and detail of the data in 
the MPII dataset provide an ideal platform for evaluating and 
comparing the performance of human pose estimation 
models, particularly in the context of our proposed research. 

The Percentage of Correct Key points (PCK) is one of the 
commonly used metrics to evaluate the performance of 
human pose estimation models. This metric was proposed in 
the research introducing the MPII dataset. The specific 
formula for calculating the PCK index is as follows: 

 𝑃𝐶𝐾 =  
்

ீ்
  (2) 

In the provided definition, TP (true positive) represents the 
number of key points correctly extracted, while GT (ground 
truth) is the total number of key points for the object. To 
assess the accuracy of keypoint localization, the formula r < 
α * head_bone_length is used, where: 

 r is the distance between the extracted key point and 
the ground truth key point. 

 head_bone_length is the distance from the object's 
head to the extracted key point. 

 α is a predetermined coefficient (usually 0.5 or 0.1) 

This approach establishes an evaluation standard based on 
the proximity to the object's head position. When the distance 
r between the extracted keypoint and the ground truth 
keypoint is less than α * head_bone_length, the keypoint is 
considered to be correctly identified. This sets a higher 
accuracy requirement for key points further away from the 
object's head position, thereby increasing the flexibility of the 
evaluation process. 

III. SE-BLOCK ARCHITECTURE  

The SE-Block was first introduced in the paper Squeeze-
and-Excitation Networks [19]. In this study, the authors 
proposed a new SE (Squeeze-and-Excitation) mechanism to 
enhance the deep learning capabilities of CNNs by 
amplifying the importance of significant features and 
reducing the impact of irrelevant ones. The Squeeze operation 
aggregates the spatial information of the feature maps to 
produce a channel descriptor. This is achieved through global 
average pooling across the spatial dimensions (H × W) of the 
feature maps (U). The formula for generating the channel-
wise statistics z is given by: 

𝑧 =  𝐹௦(𝑢) =  
ଵ

ு×ௐ
∑ ∑ 𝑢 (𝑖, 𝑗)ௐ

ୀଵ
ு
ୀଵ  (3) 

where 𝑧 is the output of the squeeze operation for channel c, 
and 𝑢 (𝑖, 𝑗) represents the spatial components of the feature 
map for that channel 

Following the squeeze operation, the excitation operation 
uses the channel descriptor to produce a set of per-channel 
modulation weights through a gating mechanism involving 
two fully connected layers. The excitation formula is defined 
as: 

𝑠 =  𝐹௫(𝑧, 𝑊) =  𝜎 ൫𝑔, (𝑧, 𝑊)൯ =  𝜎 (𝑊ଶ𝛿(𝑊ଵ𝑧)) (4) 

where  𝜎  is the sigmoid activation function, 𝛿  is the ReLU 
function, 𝑊ଵ  and 𝑊ଶ ) are the weights of the two fully-
connected layers involved in creating a bottleneck structure 
to capture non-linear interactions between channels. 

The final output of the SE block is obtained by rescaling 
the original feature maps U using the weights obtained from 
the excitation operation. The rescaled feature maps 𝑥 are 
computed as: 

𝑥 =  𝐹௦(𝑢, 𝑠) =   𝑠 𝑢  (5) 
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where 𝑠 is the scalar obtained from the excitation operation 
for channel c, and 𝑢   is the original input feature map for 
that channel. 

In our research, drawing inspiration from the SE-Block in 
the aforementioned study, we developed a novel SE-Block to 
enhance the understanding capability of the OmniPose model 
in human pose estimation and skeleton extraction, as 
illustrated in Fig. 3. By integrating the SE-Block into the 
model, we enhance the attention to crucial features of the 
image through weighted learning. The integration of the 
Squeeze-and-Excitation (SE) block into the OmniPose model 
yields several notable benefits, encompassing aspects of 
effectiveness, computational performance, scalability, and 
flexibility, specifically as follows: 

• Effectiveness in Feature Enhancement: The SE-Block 
significantly improves crucial features while reducing 
irrelevant ones. This feature adjustment enables the model to 
concentrate more on key points essential for pose estimation, 
particularly significant in complex pose scenarios. 

• Computational Efficiency: One of the primary 
advantages of the SE-Block lies in its simplicity and efficacy. 
Unlike conventional attention mechanisms, which may 
involve complex operations such as dynamic weight 
adjustment and self-attention, the SE-Block employs a direct 
method for feature adjustment. This results in lower 
computational costs, rendering the model more suitable for 
real-time applications without compromising performance. 

• Scalability and Flexibility: The SE-Block seamlessly 
integrates into various parts of the neural network 
architecture. This scalability ensures that the enhancements 
provided by SE-Blocks can be leveraged across different 
layers and stages of the pose estimation model, contributing 
to its overall robustness and flexibility. 

During the forward process, the SE-Block utilizes a global 
mechanism to aggregate information from the entire input 
space into a single vector. Subsequently, this information is 
passed through a sequence of linear layers to map down to a 
smaller dimensional space, reducing data dimensions and 
speeding up computation. Finally, through the Sigmoid layer, 
the weights are normalized to the range [0, 1], assigning each 
feature its own importance level. In this way, the SE-Block 
helps the model focus on important regions in the image and 
eliminate irrelevant features, thereby improving the 
understanding and prediction capability of the model in 
identifying and extracting skeletal data. 

 

 
Fig. 3. Structure of SE-Block 

Based on the analyzed advantages of SE-Block mentioned 
above, we have decided to sequentially integrate it into the 
OmniPose model at the data preprocessing step. 
Subsequently, experiments were conducted to evaluate the 
effectiveness of this method. Fig. 4 illustrates the integration 
of SE-Block into the OmniPose model. 

 

Fig. 4. The integration of SE-Block into the data preprocessing stage in the 
OmniPose model.   

IV. EXPERIMENTS 

To comprehensively evaluate the effectiveness of the SE-
Block that we proposed when integrated into the OmniPose 
model for the tasks of human pose recognition and skeletal 
data extraction, we conducted experiments on the MPII 
dataset, with 20% for the validation set and 80% for the 
training set, in two cases: the original OmniPose model and 
the OmniPose model combined with the SE-Block. The 
experiments were conducted on the same computer with the 
CPU configuration Intel I5-13600k, 64GB RAM, and Nvidia 
3090 GPU. We used the PCK metric with @0.5 and @0.1 to 
evaluate and compare. Table I presents the hyper-parameters 
that we used for training the model in each case. 

TABLE I.  HYPER PARAMETERS USED FOR EXPERIMENTS PROCESSING 

Model OmniPose 
OmniPose with 

SE-Block 

Training epochs 210 210 

Batch size per GPU 16 16 

Optimizer Adam Adam 

Total parameters of model (M) 68.151 M 68.152 M 

Momentum 0.9 0.9 

Blur-kernel 11 11 

LR 0.0001 0.0001 

LR-Factor 0.1 0.1 

LR-Step 170 170 

WD 0.0001 0.0001 

Gamma1 0.99 0.99 

 
Table II presents the experimental results which were 

mentioned above. 

TABLE II.  THE EXPERIMENTAL RESULTS ON OMNIPOSE WITH SE-BLOCK 

Model OmniPose OmniPose with SE-Block 

Head 95.430 96.726 

Shoulder 93.682 94.684 

Elbow 87.677 88.308 

Wrist 82.784 83.041 

Hip 86.394 87.623 

Input Global pooling FC_Linear  

Relu 

FC_Linear 

Sigmoid Scale Outp
ut 

3 x 3 
conv 

3 x 3 
conv 

SE-
Block  

1 x 1 x C H x W x C 

H x W x C H x W x C 
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Model OmniPose OmniPose with SE-Block 

Knee 83.296 83.216 

Ankle 80.066 78.672 

PCK@0.5 87.583 88.028 

PCK@0.1 38.387 37.684 

 
In our research, we evaluated the efficacy of the 

OmniPose model with SE-Block against the established 
OmniPose model on the MPII dataset, utilizing the PCK @0.5 
and PCK @0.1 metrics for comparison. Previously, the 
OmniPose model was highlighted as a highly effective 
approach for human pose estimation, outperforming other 
models as documented in the original paper [17] and 
illustrated in Table III and Table IV using the PCK @0.2 
metric. Given that our OmniPose with SE-Block model shows 
enhanced performance in detecting upper body joints 
compared to the standard OmniPose model, it signifies a 
notable improvement in the field. 

TABLE III.  COMPARATIVE PERFORMANCE OF THE OMNIPOSE MODELS: 
OMNIPOSE (WASPV2), OMNIPOSE (WASP) AND OMNIPOSE (LIGHT) 

Model 
Omni Pose 
(WASPv2) 

Omni Pose 
(WASP) 

Omni Pose 
[Light] 

Head 97.40% 97.40% 96.60% 

Shoulder 97.10% 96.60% 95.80% 

Elbow 92.40% 91.90% 89.10% 

Wrist 88.70% 87.20% 84.30% 

Hip 91.20% 90.10% 89.00% 

Knee 89.90% 88.00% 84.10% 

Ankle 85.80% 83.90% 79.60% 

PCK@0.2 92.30% 91.20% 89.00% 

TABLE IV.  THE EXPERIMENTAL RESULTS ON OMNIPOSE AND OTHER 
MODELS WITH THE MPII DATASET 

Model 

Omni 
Pose 

(WASP
v2) 

Dark 
Pose 

HRNet 
CMU 
Pose 

SPM RMPE 

Head 97.40% 97.20% 97.10% 92.40% 92.00% 88.40% 

Shoulder 97.10% 95.90% 95.90% 90.40% 88.50% 86.50% 

Elbow 92.40% 91.20% 90.30% 80.90% 78.60% 78.60% 

Wrist 88.70% 86.70% 86.50% 70.80% 69.40% 70.40% 

Hip 91.20% 89.70% 89.10% 79.50% 77.70% 74.40% 

Knee 89.90% 86.70% 87.10% 73.10% 73.80% 73.00% 

Ankle 85.80% 84.00% 83.30% 66.50% 63.90% 65.80% 

PCK 
@0.2 

92.30% 90.60% 90.30% 79.10% 77.70% 76.70% 

 

In the calculation formula for 𝑃𝐶𝐾 =  
்

ீ்
 presented in 

section II.C, a key point n is determined as accurate if the 
distance between the actual joint and the predicted joint is less 
than the value of α * head_bone_length. From this formula, 
we can draw the following conclusions: 

 For a given value of α, joints that are further from the 
head of the subject have a larger α * head_bone_length, 
thus allowing a higher tolerance for discrepancies 
between the actual and predicted joints. Conversely, 
joints closer to the head require higher accuracy in 
recognition. In other words, enhancing the precision in 
identifying joints in the upper body of the subject is 
more challenging. 

 The α symbol in PCK typically refers to the maximum 
allowed distance threshold between the estimated and 
actual joint positions to consider if the joint prediction 
is accurate. Smaller values of α demand higher 
accuracy. The value of this threshold can vary 
depending on the specific needs of the research or 
application, but common values include: 0.5 – used for 
initial basic assessments of the effectiveness of the 
skeletal data extraction method; 0.2 – this threshold 
balances the requirements for accuracy and recognition 
capability, suitable for evaluating and fine-tuning the 
model before deployment; 0.1 – ensures that 
predictions about the position of key points are 
extremely accurate, appropriate for advanced research 
or applications requiring high precision, such as 
detailed motion analysis. 

Based on the observed experimental results, we draw the 
following conclusions: 

 Building on the analysis provided above, enhancing the 
accuracy of the PCK metric for joints located in the 
upper part of the body is inherently more challenging. 
Integrating the SE-Block into the OmniPose model has 
demonstrated improvements in accurately identifying 
key point positions near the object's head. However, its 
effectiveness diminishes for positions further away, 
such as the knees or ankles. This enhancement is 
particularly crucial for applications that demand 
precise recognition of upper body posture. 

 The integration of the SE-Block into the OmniPose 
model significantly enhances the PCK index with α 0.5 
compared to the original OmniPose model. However, 
for the PCK index with α 0.1, the SE-Block does not 
achieve better performance than the original OmniPose 
model. The experimental results show that the 
accuracy rates of the upper body joints are improved, 
suggesting that the lower PCK scores with α 0.1 
originate from poorer recognition of the lower body 
joints. In other words, integrating the SE-Block into the 
original OmniPose model enhances the recognition 
capabilities for upper body joints while diminishing the 
recognition abilities of lower body joints. This effect 
becomes more pronounced as the α value in the PCK 
scale decreases. 

V. CONCLUSIONS 

In this study, we propose an enhancement method for 
improving OmniPose model performance in the tasks of 
skeleton extraction and human pose recognition. This method 
involves integrating SE-Block into the data preprocessing 
stage to enhance the importance of critical features. The 
complexity and training time of the model remains unchanged 
when applying this solution. 
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The OmniPose model is chosen for several reasons. Firstly, 
OmniPose has been proven to achieve high performance in 
human pose recognition and skeleton data extraction. 
Additionally, OmniPose utilizes HRNet blocks and the 
WASPv2 module, providing a flexible and scalable 
architecture. Notably, OmniPose maintains high resolution 
throughout the processing, improving the spatial accuracy of 
key points. Given all these advantages, OmniPose is 
considered an ideal model for applying various enhancement 
methods, including the SE-Block. The experimental results 
on the MPII dataset have demonstrated that integrating SE-
Block into the OmniPose model has brought significant 
improvements in skeleton extraction. This is significant in 
developing solutions that require high precision in upper-
body action recognition. For example, in the realm of sports 
analytics and coaching for activities that depend heavily on 
upper-body form-such as swimming, tennis, and table tennis-
the ability to accurately assess the movement of joints in the 
shoulders and arms is crucial for refining techniques and 
enhancing athletic performance. Furthermore, in the field of 
medical rehabilitation, particularly for individuals dealing 
with neck and shoulder injuries or stroke survivors 
experiencing hemiplegia, the precise monitoring of upper 
body movements is instrumental. This precision supports the 
development of tailored rehabilitation practices, thereby 
facilitating more effective recovery processes for patients. 

The enhancement method using the SE-Block is not 
limited to the OmniPose model but can also be applied to 
other Human Pose Estimation models. These models 
typically have convolutional neural network architectures 
with multiple layers and channels, where channel weight 
recalibration can provide significant benefits. Models such as 
HRNet, OpenPose, UniPose, etc. can all benefit from the 
integration of SE-Block to enhance feature recognition and 
extraction capabilities. The SE-Block provides a simple yet 
effective mechanism to improve the ability of CNNs to focus 
on important features, thereby increasing the accuracy and 
computational efficiency of the model. HPE models with 
hierarchical structures and multiple information channels are 
particularly well-suited for the application of SE-Block, as it 
helps optimize the learning of crucial features from the input 
data. Consequently, The solution could be considered when 
enhancing other models for skeleton extraction and human 
pose recognition, serving as a basis for improving the 
effectiveness of solutions in human action recognition; 
however, its effectiveness may vary depending on the specific 
model and the context of the problem. 
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