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A B S T R A C T

Biochar used in fixed filter columns (BFCs) has garnered significant attention for its capabilities in material im-
mobilization and recovery, filtration mechanisms, and potential for scale-up, surpassing the limitations of batch
experiments. This review examines the efficacy of biochar in BFCs, either as the primary filtering material or in
combination with other media, across various wastewater treatment scenarios. BFCs show high treatment effi-
ciency, with an average COD removal of 80 % ±15.3 % (95 % confidence interval: 72 %, 86 %). Nutrient re-
moval varies, with nitrogen-ammonium and phosphorus-phosphate removal averaging 71 ± 17.1 % (60 %,
80 %) and 57 % ± 25.6 % (41 %, 74 %), respectively. Pathogen reduction is notable, averaging 2.4 ± 1.12
log10 units (1.9, 2.9). Biochemical characteristics, pollutant concentrations, and operational conditions, includ-
ing hydraulic loading rate and retention time, are critical to treatment efficiency. The pyrolysis temperature (typ-
ically 300 to 800 °C) and duration (1.0 to 4.0 h) influence biochar's specific surface area (SSA), with higher tem-
peratures generally increasing SSA. This review supports the biochar application in wastewater treatment and
guides the design and operation of BFCs, bridging laboratory research and field applications. Further investiga-
tion is needed into biochar reuse as a fertilizer or energy source, along with research on BFC models under real-
world conditions to fully assess their efficacy, service life, and costs for practical implementation.

1. Introduction

Many regions face water scarcity, with projections indicating wors-
ening water stress due to climate change, population growth, industri-
alization, and urbanization. Consequently, there is an urgent need for
large-scale interdisciplinary research collaborations aimed at delving
into economically viable and sustainable treatment solutions. Within
this context, biochar derived from the anaerobic pyrolysis treatment of

organic substrates, including agricultural residues, forestry by-
products, and municipal solid waste, garners widespread attention ow-
ing to its pronounced stability, enhanced surface characteristics, robust
pore structure, and abundant functional moieties (La et al., 2019).
Moreover, current research indicates the efficacy of biochar in the re-
moval of pollutants such as organic compounds, nutrients, heavy met-
als, and pathogens from wastewater (Kaetzl et al., 2019; Li et al., 2022;
Nguyen et al., 2023).
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Biochar, with its versatile roles as a structural substrate, filtration
medium, and catalyst, is crucial in enhancing the efficacy of primary
and tertiary treatment modalities in water management (Eshetu et al.,
2015; Majumder and Das, 2022). However, when used alone or in batch
systems, biochar suffers from limited regeneration and potential conta-
minant leaching. Moreover, biochar-based batch treatments rely solely
on physical-chemical adsorption, lacking biological processes. Due to
their limitations in scalability, efficiency, and continuity, batch opera-
tions are rarely applied in industrial settings (Mazur et al., 2018). To
address this, biochar-based fixed filter columns (BFCs) have been de-
ployed, achieving effective pollutant removal from surface water, agri-
cultural water, and sewage (Dalahmeh et al., 2019b; Deepa et al., 2022;
Gao and Wan, 2023; Jayabalakrishnan et al., 2023). Mounting evidence
suggests that integrating biochar with sand, gravel, and wood chips
brings promising prospects for various water treatment applications, in-
cluding column filtration systems, bioretention facilities, and con-
structed wetlands (Boni et al., 2021; Pluer et al., 2016; Xiong et al.,
2022). When using biochar as a filtration material, it serves as a carrier
for microorganisms to attach to, allowing them to develop and break
down pollutants in wastewater (Bolan et al., 2023). Therefore, as a
medium in biofiltration systems, biochar combines microbial degrada-
tion of pollutants with its adsorbent properties, rendering it an attrac-
tive option for biologically mediated water treatment.

Recent reviews have documented the efficacy of various biofiltra-
tion methods in removing pathogens, volatile organic compounds, and
heavy metals (Maurya et al., 2020; Pachaiappan et al., 2022). Notably,
biochar's role as a buffering agent has gained attention for enhancing
pollutant removal (Biswal et al., 2022; Quispe et al., 2022; Shahraki
and Mao, 2022). While previous studies have explored specific aspects
of biochar-based filtration systems, there is a notable lack of compre-
hensive reviews that provide a detailed synthesis of BFC applications
across a wide range of pollutants and wastewater types. For example,
while Shahraki and Mao (2022) conducted a focused review on biochar
in on-site wastewater treatment systems, highlighting nutrient removal
and variability influenced by biochar's source and pyrolysis conditions,
their analysis was constrained by a narrow keyword selection that omit-
ted broader biofiltration applications. Similarly, Quispe et al. (2022) in-
vestigated biochar's role in column filtration for greywater treatment,
providing valuable insights into system configurations and operational
mechanisms, albeit relying heavily on data from master's theses and
lower-impact journal articles. Biswal et al. (2022) examined biochar in
stormwater management through bioretention systems, though their
findings, predominantly from batch experiments, might not accurately
represent the dynamics of continuous systems (Table S1).

This review seeks to bridge the existing knowledge gaps by provid-
ing a comprehensive analysis of the effectiveness of BFCs in removing a
wide array of pollutants across different water types and configura-
tions. By synthesizing current research and offering insights into the
factors influencing treatment efficacy, this review aims to guide future
research and practical applications of BFCs in sustainable water treat-
ment systems. To increase confidence in the highly variable treatment
efficacies of BFCs, 95 % confidence intervals (CI)—hereafter referred to
as (lower bound, upper bound)—were developed using the bootstrap
technique for average values. Additionally, this work explores barriers
to adoption and offers future insights for developing BFC in water treat-
ment.

2. Methods

2.1. Methodological overview

This work involves qualitative and quantitative assessments. The se-
lected studies were reviewed to identify and discuss key factors, opera-
tional aspects, performance metrics, and gaps. Where applicable, data
from the literature were summarized to provide a quantitative

overview of BFC performance, including removal efficiencies, opera-
tion conditions, and relationships between variables. The primary goal
is to provide a comprehensive summary with representative values and
confidence ranges.

2.2. Statistical synthesis and analysis

2.2.1. Data synthesis
Operational conditions and biochar characteristics, including resi-

dence time, biomass source, production temperature, surface area, hy-
draulic loading rate (HLR), column diameter (D), column height (H),
and removal efficiencies, were derived from the selected studies. Mean
values from appropriate experiments were collected as representative
samples. When studies reported a range of values, the average of the
minimum and maximum values was used to calculate a mean value.

2.2.2. CI estimation
95 % CIs were developed for key performance metrics using the

bootstrap technique to understand the variability in treatment efficien-
cies better. This statistical method was applied to the average values re-
ported in the literature, providing a more nuanced interpretation of the
data. Given the skewed nature and high variability of the data, the Bias-
Corrected and Accelerated (BCa) bootstrap method (n = 5000) was
used to construct the CIs.

2.2.3. Software
All statistical analyses and visualizations were performed using the

R programming language, utilizing the “boot”, “psych”, “ggplot2”, and
“metafor” packages.

3. Overview of biochar and fixed filter columns

3.1. Biochar and configuration of BFCs

Biochar is primarily produced through thermochemical conversion
techniques such as pyrolysis, gasification, and torrefaction, with pyrol-
ysis being the most prevalent method (Iwuozor et al., 2023; Yaashikaa
et al., 2020). This process involves decomposing biomass in an oxygen-
limited environment at temperatures between 300 °C and 850 °C. The
properties of the resulting biochar—such as surface area, functional
groups, cation exchange capacity, and pH—are influenced by factors in-
cluding biomass source, temperature, residence time, gas flow rate, and
additives (Amalina et al., 2022; Shahraki and Mao, 2022).

Biochar's efficacy in various applications—from soil enhancement
to energy production—is well-documented (Lehmann and Joseph,
2015). Its role in wastewater treatment has expanded significantly,
leveraging its capacity to adsorb various contaminants, including or-
ganic dyes, heavy metals, and pathogens (Jha et al., 2023; Shahraki and
Mao, 2022). Further enhancement of biochar's properties can be
achieved through physical and chemical modifications both before and
after pyrolysis. These modifications can increase attributes such as sur-
face area and pore volume, improving their effectiveness in pollutant
removal (Díaz et al., 2024; Huang et al., 2022; Huang et al., 2020;
Jayabalakrishnan et al., 2023; Lingamdinne et al., 2022).

BFC systems are utilized to remove organic matter, nutrients,
pathogens, and heavy metals from various types of wastewater. Labora-
tory-scale BFCs are predominantly cylindrical, though rectangular con-
figurations are also noted (Kranner et al., 2019; Singh et al., 2023; Xin
et al., 2021). At the field-scale, most filtration systems are predomi-
nantly box-shaped (Kholoma et al., 2016; Majumder and Das, 2022;
Pluer et al., 2016).

The typical configuration of BFCs includes several main compo-
nents: influent, top gravel layer, filtration media, bottom gravel layer,
and effluent. Water is primarily introduced at the top of these columns
and collected at the bottom (Fig. 1). According to the results summa-
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Fig. 1. Configuration and setup of the biochar filtration systems: (1) mesh, (2) top layer, (3) biochar, (4) bottom layer, (5) other filler materials, (6) mixture of biochar
and other filler materials.

rized in Table 1, a minority of experiments utilize an upward flow
regime (21.1 %), while others employ box-shaped filter tanks that pri-
marily use a horizontal flow regime (15.8 %).

In standard configurations, BFCs feature a top gravel layer and a
bottom drainage gravel layer. The top gravel layer promotes the uni-
form distribution of the influent, prevents biochar particle flotation,
and reduces water evaporation. The bottom gravel layer facilitates the
flow of effluent. To avoid the loss of finer media grains, mosquito nets
and wire mesh are often installed between the gravel and biochar lay-
ers. Nevertheless, some studies have opted out of using two gravel lay-
ers (36.8 %); in these cases, a mesh layer at both ends of the column
supports the filter media and prevents the washing of porous materials.

The specific configurations of BFCs in various studies are detailed in
Table 1. Biochar is the primary filter material in the single biochar filter
(SBF) system (50.0 %). In the multi-media biochar filter (MMBF),
biochar is combined with other materials such as sand, soil, gravel, co-
conut coir, and wood chips. These materials can be layered in separate
MMBF (52.6 %) or mixed MMBF (47.4 %). The mixtures use various ra-
tios; for instance, biochar is mixed with sand at a weight ratio of 8.0 %
(Hanandeh et al., 2017), and in the study by Boni et al. (2021), different
volume ratios of biochar (7.0 %) and sand (3.0 %) were utilized. In a
wood chips column, 10.0 % and 30.0 % volume of biochar were added
to enhance the removal of Nitrogen-Nitrate (NO3

−-N) and Phosphorus-
Phosphate (PO4

3−-P) (Bock et al., 2015).
BFCs, primarily tested in controlled environments, have shown

promise in water and wastewater treatment. Filter column sizes in labo-
ratory setups typically range from 0.8 to 2.5 cm in diameter and 5.0 to
30.0 cm in height. More extensive testing in meso-scale laboratories in-

volves filters ranging from 4.5 to 15.0 cm in diameter and 50.0 to
180.0 cm in height. However, only a tiny fraction of studies (10.5 %)
have explored biochar applications in field-scale filter bed systems. This
limited field-scale research underscores the need for further investiga-
tion into the viability of BFCs on a larger scale. Analysis of 26 samples
revealed significant variability in column dimensions. The average
height was 71.1 ± 52.3 cm (53.8, 93.2), ranging from 5.0 to 180.0 cm,
resulting in a high coefficient of variation (CV) of 73.6 %. Similarly, the
average diameter was 9.6 ± 11.7 cm (6.6, 17.7), with diameters rang-
ing from 1.6 to 60.0 cm. The diameters exhibited high skewness (3.2)
and kurtosis (10.6), indicating the presence of predominantly small
columns with some significant outliers and a high CV of 122.4 %, sug-
gesting substantial inconsistency in diameter sizes (Fig. 2 and Table
S2).

3.2. Removal mechanism of pollutants by BFCs

In BFCs, pollutant removal occurs through various mechanisms de-
tailed in Fig. 3, including:

• Non-microbiological processes: The effectiveness of biochar in
pollutant removal is primarily attributed to various non-
microbiological mechanisms, including adsorption, ion exchange,
chemical reactions, and physical filtration. Adsorption processes
on biochar surfaces involve multiple interactions: precipitation
with minerals, complexation with oxygen-containing functional
groups, coordination with π electrons, ligand and ion exchange, as
well as van der Waals forces and hydrogen bonds (Gao et al.,
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Table 1
Design parameters of BFCs for wastewater treatment.
Biochar filter
configuration

Study scale Dimension Description Flow
regime

Reference

h (cm) d (cm) Top Main filter layers Bottom

SBF Lab 55.0 5.0 Gravel
(2.5 cm)

Biochar
(50.0 cm)

Gravel
(2.5 cm)

VDF (Perez-Mercado et
al., 2018)

Lab 50.0 7.0 NA Biochar
(50.0 cm)

NA VDF (Li et al., 2016)

Lab 180.0 5.0 Gravel
(10.0 cm)

Biochar
(50.0 cm)

Gravel
(10 0.0 cm)

VUF (Kaetzl et al., 2018)

Lab 180.0 5.0 Quartz sand
(5.0 cm)

Biochar
(55.0 cm)

Quartz gravel
(6.0. cm)

VDF (Kaetzl et al., 2019)

Lab 91.0 10.0 Gravel
(3.0 cm)

Biochar
(65.0 cm)

Gravel
(5.0 cm, two layers)

VDF (Chan et al., 2020)

Lab 60.0 5.0 NA Biochar
(55.0 cm)

NA VF and
HF

(Dalahmeh et al.,
2019a)

Lab 180.0 5.0 Mosquito net Biochar
(54.0 cm)

Quartz-gravel
(6.0 cm)

VDF (Kaetzl et al., 2020)

Meso-Scale
Lab

150.0 15.0 PVC caps Biochar
(5.3 kg)

PVC caps HF (Lafdani et al., 2020)

Lab 61.0 7.0 Pea gravel
(7.6 cm)

Biochar
(23.0 cm)

Pea gravel
(7.6 cm)

VDF (Reddy et al., 2014)

Lab 0.0015a NA Biochar NA HF (Xin et al., 2021)
Lab 40.0 5.1 Plastic mesh Biochar Plastic mesh VUF (Paul and Hall, 2021)
Lab 60.0 10.2 NA Biochar Wire mesh + PVC end

cap
VDF (Hunter and

Deshusses, 2020)
Lab 100.0 10.0 NA Biochar Plastic mesh VDF (Forbis-Stokes et al.,

2018)
Lab 70.0 7.5 Gravel

(2 cm)
Biochar
(60.0 cm)

Gravel
(2.0 cm)

VDF (Perez-Mercado et
al., 2019)

Lab 100.0 14.0 Gravel
(2.5 cm)

Biochar
(60.0 cm)

Gravel
(2.5 cm)

VUF (Eshetu et al., 2015)

Pilot scale 180.0b60.0d 240.0c NA Biochar Plastic liner + gravel
(15 cm)

VDF (Dalahmeh et al.,
2016)

Lab 5.0 1.6 Stainless steel meshes +
sand

Biochar (1.0 g) Stainless steel meshes +
sand

VUF (Gao and Wan, 2023)

Lab 75.0 60.0 NA Biochar NA VDF (Jayabalakrishnan et
al., 2023)

Lab 5.1 1.6 Stainless steel meshes +
sand

Biochar Stainless steel meshes +
sand

VUF (Huang et al., 2022)

SMMBF Field-scale 0.187a Coarse soil
(20.0 cm)

Biochar
(15.0 cm)

Fine soil
(30.0 cm)

VDF (Majumder and Das,
2022)

Field-scale 0.187a Coarse soil
(20.0 cm)

Biochar
(15.0 cm)

Fine soil
(30.0 cm)

VDF (Blum et al., 2019)

Lab 60.0 6.0 Sand
(15.0 cm)

Biochar
(30.0 cm)

Gravel stones
(15.0 cm)

VDF (Deepa et al., 2022)

Lab 0.96b

1.42d
0.96c Soil (20.0 cm) + Canna

plants
Foam (10.0 cm) + Biochar
(50.0 cm)

Coconut coir (20.0 cm) HF (Singh et al., 2023)

Lab 14.5 4.5 Gravel (20.0 cm) Biochar (20.0 cm) + sand
(40.0 cm)

Gravel
(25.0 cm)

VDF (Naeem et al., 2019)

Lab 18.0 1.0 NA Agricultural soil + biochar Quartz sand VDF (Boni et al., 2020)
Lab 70.0 4.5 NA Sand/gas concrete

(30.0 cm) + biochar
(20.0 cm)

Pebbles
(8 cm)

VDF (Kholoma et al.,
2020)

Lab NA Coarse gravel + fine gravel Lime (Ca(OH)2), sand (SiO2),
biochar

Sponge/ mesh VDF (Shabir et al., 2022)

Field-scale 150.0b

80.0d
150.0c Gravel

(15.0 cm)
Sand/gas-concrete
(30 cm) + biochar (20 cm)

A plastic garden mesh
+ gravel (15.0 cm)

HF (Kholoma et al.,
2016)

Lab 50.0b 30.0d 40.0c NA Coarse sand + biochar +
sand (7.6 cm for each).

Gravel
(2.5 cm)

VDF (Kranner et al., 2019)

MMMBF Lab 21.0 11.0 Crushed stone + a
perforated disk + plastic
mesh fabric

The mix of sand and biochar
(3 layers)

Plastic mesh fabric + a
perforated disk +
crushed stone

VDF (Hanandeh et al.,
2017)

Lab 60.0 8.0 Glass beads (1.0 cm) and
quartz sand (3.0 cm)

42.0 cm of biochar and
quartz sand (7:100 and
3:100)

Quartz sand (5.0 cm)
and glass beads (7.0 cm)

VDF (Boni et al., 2021)

Bench-scale
and field-
scale

70.0 b

150.0d
350.0c Plastics 5-mil polyethylene Woodchips/ biochar: 9/1 Plastics 5-mil

polyethylene
HF (Pluer et al., 2016)

Lab 15.0 2.5 Glass wool Sand/biochar: 7/3 Glass wool VUF (Afrooz et al., 2018)
Lab 30.0 2.5 NA Sand/biochar: 7/3 NA VUF (Valenca et al., 2021)
Lab 61.0 10.0 NA Woodchips/ biochar: 9/1 Wire mesh +50-μm

filter paper
VDF (Bock et al., 2015)

(continued on next page)
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Table 1 (continued)
Biochar filter
configuration

Study scale Dimension Description Flow
regime

Reference

h (cm) d (cm) Top Main filter layers Bottom

Pilot-scale 50.0 10.0 NA Woodchips/ biochar: 6.7/3.3 NA VUF (Ashoori et al., 2019)
Lab 125.0 30.0 Plant + gravel Sand/clay/ biochar:

8.8/0.8/0.4
Gravel VDF (Xiong et al., 2022)

Lab 50.0 7.2 NA Sand/biochar: 7/3 Coarse gravel (7.2 cm) VDF (Rahman et al.,
2021)

SMMBF: Separate multi-media biochar filter, MMMBF: Mixed multi-media biochar filter, h: Height, d: Diameter, VDF: Vertical Downflow, VUF: Vertical Upflow, HF:
Horizontal Flow, VF: Vertical Flow, NA: Not available.

a Volume (m3).
b Length (cm).
c Width (cm).
d Depth (cm).

Fig. 2. Boxplot diagram illustrating the design and operation parameters of
biochar-based columns. The boxplots display data variability, including the
mean (red asterisk and text), median (blue asterisk and text), interquartile
range (Q1-Q3), outliers, and the 95 % confidence interval range (green line).

2019; Jiang et al., 2018; Li et al., 2019). Besides, it has been
reported that functional groups like alcohols, carbonyls, and
carboxylates impart a negative charge to biochar, enhancing its
cation exchange capacity (Li et al., 2024; Uras et al., 2012). This
feature, combined with biochar's microporous structure and a
diversity of organic functional groups, significantly augments its
adsorption capacity and ion exchange abilities, thus facilitating
the effective removal of pollutants (Yue et al., 2017).
Additionally, certain pollutants can undergo chemical reactions
with functional groups on the biochar surface, leading to
immobilization or transforming into less harmful compounds (Xu
et al., 2019). The physical structure of biochar also plays a critical
role, as its pore spaces provide sites for the physical trapping of
larger particles or contaminants, effectively preventing their
migration through the filter media matrix (Perez-Mercado et al.,
2019).

• Microbiological processes: BFCs utilize not only physical and
chemical removal mechanisms but also biological processes such
as biodegradation and microbial transformation (Spahr et al.,
2019; Ulrich et al., 2017). Biochar's large surface area and porous
structure make it an effective carrier for microorganisms,
enhancing microbial growth and diversity (Bolan et al., 2023).
Pollutants adsorbed on the surface of biochar are degraded by
microorganisms residing in the biofilm. Adding biochar to sand
increased biofilm formation, leading to greater microbial diversity
and enhanced organic matter degradation in biochar filters
compared to sand filters (Afrooz and Boehm, 2016; Dalahmeh et
al., 2018). Frankel et al. (2016) reported that biotic biochar

removed naphthenic acids more effectively (72 %) than sterile
biochar (22–28 %) or microbes alone. Microorganisms on biochar
utilize organic compounds in wastewater as nutrients, converting
them into water, biomass, and CO₂ (Pachaiappan et al., 2022).
Biochar also acts as an electron shuttle, enhancing the
biodegradation of organic contaminants (Mukherjee et al., 2022).
Combining biochar with biofilm improves metal sorption, with
microbial processes like biosorption and biotransformation
converting heavy metals into inactive forms (Verma et al., 2021).
Additionally, biofilm formation on biochar enhances pathogen
removal through electrostatic attraction and reduces pore size,
facilitating filtration and adsorption (Enaime et al., 2020).

4. Applications of BFCs

4.1. Wastewater types

Table 2 illustrates how BFCs have been applied across different
water types at various scales. The scope of the study includes a broad
spectrum of water categories, each with unique characteristics and
treatment requirements. A significant portion of the research—over
one-third—focuses on municipal wastewater. Municipal natural and
synthetic sewage constitutes about 15 % of the studies, underscoring
the versatility of biochar systems in handling typical household waste.
An additional 20 % of the research further investigates municipal
wastewater. This indicates the potential of biochar in treating waste-
water in diverse urban waste conditions.

The use of BFCs extends to treating industrial wastewater, including
challenging effluents from processes like textile dyeing and olive
milling, which account for another 20 % of the studies. Approximately
15 % of the research explores the potential of biochar in agricultural
and livestock wastewaters, such as runoff from dairy and vegetable re-
search farms, emphasizing its ability to manage nutrient and organic
loads found in agricultural runoff. Another 15 % of the studies investi-
gate stormwater treatment in urban and natural environments. These
studies assess the efficacy of biochar columns in managing runoff from
sources like urban areas and forest clear-cuts, highlighting their role in
mitigating pollution from non-point sources.

Special categories of wastewater, such as synthetic solutions con-
taining arsenic and tannery wastewater, demonstrate the capability of
biochar to treat hazardous and specialized contaminants. Additionally,
drinking water treatment using BFCs is a significant area of focus, with
studies testing their effectiveness in removing impurities and enhancing
water quality to meet health standards. For example, Chan et al. (2020)
found that biochar made from a mix of spruce, pine, and fir woodchips
effectively removes organic carbon from creek water, achieving re-
moval rates of 100 % for phenanthrene and anthracene, 37–97 % for
atrazine, and 49–93 % for naphthalene. This removal efficiency was
slightly lower than the fluoride removal efficiency for groundwater
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Fig. 3. Diagram illustrating the main removal mechanisms for different pollutants in biochar-based filter columns.

samples (95 ± 0.79 %) with a filter material layer of clay, sawdust, and
iron oxide-biochar (Mandoreba et al., 2021).

The investigations also extend to wastewater from anaerobic
processes, such as digests from human waste and other anaerobic diges-
tion effluents, demonstrating the capability of biochar in polishing
these streams. Different water types, including grey water and surface
water, are also explored, showcasing the extensive applicability of
biochar technology.

4.2. Organic matter

The study involved 18 observations and revealed a mean COD re-
moval efficiency of 80 % (72, 86 %) and CV of 19 % (Fig. 4 and Table
S2). This interval suggests high reliability and consistency in the colum-
n's performance across various trials. Efficiency rates for COD removal
ranged from 52 % (Kaetzl et al., 2019) to 99 % (Kaetzl et al., 2019),
demonstrating BFC's high potential under optimal conditions. The data
showed a negative skewness (−0.57) and kurtosis (−1.17), indicating a
distribution skewed toward higher efficiencies and more variation than
a standard curve, reflecting diverse efficacy across setups or biochar
types (Table S2). In evaluating the organic treatment efficiency of BFCs,
comparisons were made with other media biofilters. Results indicate
that most BFCs were more effective in organic treatment than the con-
trol media (p < 0.05), as presented in Table 3 A. Specifically, Kaetzl et
al. (2019) demonstrated that the BFC with biochar as the primary mate-
rial (single BFC) achieved a 52 % COD removal efficiency, significantly
surpassing the rice husk filter that increased the COD concentration
compared to the influent, resulting in a processing efficiency of −19 %.

Similarly, biochar showed significantly higher effectiveness
(p < 0.001) compared to other filtrations in a study aimed at polishing
effluents from a greywater treatment plant (Eshetu et al., 2015). The
high COD removal rate of BFCs is attributed to biochar's significantly
larger surface area, which facilitates biofilm formation and supports
microbial attachment, biological degradation, and mineralization of or-
ganic matter (Kaetzl et al., 2019). A larger specific area of biochar with
numerous functional groups (such as –COOH and –COH) enhanced the
capacity for adsorption and the precipitation of various pollutants (Xin
et al., 2021). Furthermore, given its lower particle density and bulk

density compared to other materials of similar particle size, biochar is
more convenient for transportation and handling (Perez-Mercado et al.,
2018). The thermal treatment of biomass during pyrolysis results in the
formation of hydrophobic functional groups on the surface of biochar,
consequently enhancing its water retention capacity (Adhikari et al.,
2023). The water retention capacity and high porosity increase the HRT
in BFCs. For example, in a study by Perez-Mercado et al. (2018), the
HRT in BFCs ranged from 2.9 to 4.5 days, while the HRT in sand filters
was only 0.5 h. Prolonged hydraulic residence time prolongs the inter-
action between wastewater and biofilm, elevating the potential for or-
ganic matter degradation.

4.3. Heavy metals

The scale of heavy metal treatment in the studies reviewed predomi-
nantly involves small-scale column setups, with operational times rang-
ing from as little as 3 h to a maximum of 50 h. The majority of these
studies design BFC for treatment targeting individual metals such as
chromium (Cr) (Deepa et al., 2022; Imran et al., 2020), arsenic (As)
(Boni et al., 2021), lead (Pb) (Boni et al., 2020), cadmium (Cd) (Naeem
et al., 2019), and uranium (U) (Lingamdinne et al., 2022). However,
some research, such as the study by Singh et al. (2023), explores the
concurrent removal of multiple metals, including zinc (Zn), Pb, and
nickel (Ni), from wastewater. These studies report removal efficiencies
ranging from 6 % to 91 %. Notably, heavy metal removal efficiency in
stormwater runoff using single BFCs was relatively low, ranging from
18 % to 24 % (Reddy et al., 2014), potentially due to competition
among metals for binding sites on the biochar surface.

Similar to its performance in organic matter processing, the BFC
also shows a higher capability of removing heavy metals than other
biofilters. For example, Deepa et al. (2022) found that biochar co-
immobilized with sodium alginate microbial beads (Co-im/B.M.B) had
a higher Cr treatment capacity (99 %) than immobilized sodium algi-
nate microbial beads alone (Im/S.AM.B) at 93 %. This increased capac-
ity was attributed to additional functional groups (carboxylic, hydrox-
ylic, and carbonyl) provided by the biochar and microbial biomass, en-
hancing the binding sites for Cr ions. Another study by Boni et al.
(2020) observed that the treatment capacity was 231.0 mg/g in
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Table 2
Case studies and research findings on the use of BFCs.
Source of biomass Production methods Type of ww HLR (m/h) OLR

(gCOD/m3/d)
Efficiency (%) References

Pine-spruce Willow Commercial Domestic ww 0.0014 20 ± 5* COD: 94–99
TN: 50–52
PO4

3−-P: 89 ± 7, TP: 86 ± 9
(willow biochar)
PO4

3−-P and TP: 32–60 (pine-spruce
biochar)

(Perez-Mercado et al.,
2018)

Porous palm residues Pyrolysis for 2 h at
700 °C

Livestock and
poultry ww

36.00–48.00a NA NH4
+-N: 80

TP: 68
(Li et al., 2016)

Rice husk Commercial Municipal ww 0.05 63.0 ± 16.0 E. coli: 2.3 ± 0.58c

Enterococci: 2.4 ± 0.72c

Bacteriophages: 1.9 ± 0.36c

COD: 52

(Kaetzl et al., 2019)

Solid waste from olive oil
processing

Pyrolysis for 1,5 h at
550 °C

Real domestic ww 6.6 × 10−3 0.5** TP: 83 ± 3.2 (Hanandeh et al.,
2017)

Virgin coniferous wood Commercial biochar Synthetic arsenic
solution

0.06
0.12
0.18

NA 2.6–4.0 mg/g As (Boni et al., 2021)

Softwoods Pyrolysis
700 °C

Municipal ww 0.05 252.0 COD: 87 ± 2.6, TOC: 77 ± 3.6
TN: 14 ± 8.1, TP: 13 ± 9.0
FIB: up to 1.7c

(Kaetzl et al., 2018)

A mix of spruce, pine, and
firwood chips

Pyrolysis
>450 °C

Drinking water 0.60 NA Phenanthrene and anthracene: 100
Atrazine: 37–97
Naphthalene: 49–93

(Chan et al., 2020)

Mango peels Pyrolysis 600 °C Real domestic ww 1 × 10−2 -
1.33 × 10−2

NA COD: 97, BOD: 88
TN: 74, NH4

+-N: 78
NO3

−-N: 54, E.coli: 100

(Majumder and Das,
2022)

Hardwood Pyrolysis 500 °C Real domestic ww NA 74 organic compounds: 44–86 (Blum et al., 2019)
Eggshells Pyrolysis 800 °C for 4 h Synthetic tannery

ww
NA NA Cr: 99, COD: 96

Sulphate: 94
(Deepa et al., 2022)

Rice husk Pyrolysis 600 °C Real domestic ww NA NA Potentially toxic metals: 6–91 (Singh et al., 2023)
Eucalyptus wood Pyrolysis 550–850 °C for

2 h
Laundry ww 0.30b, 0.40b,

and 0.50b
NA COD, BOD: 79 to ≥83 (Yaseen et al., 2019)

Pine-spruce wood Pyrolysis 800 °C Municipal ww 2.1 × 10−3 NA Polyfluoroalkyl: 20–99 (Dalahmeh et al.,
2019a)

Wheat straw Pyrolysis 350 °C for
30 min

Synthetic ww 0.08 NA Cd: 89–93 (in the first 90 min) (Naeem et al., 2019)

Virgin coniferous wood Pyrolysis at 600 °C Synthetic ww 0.76 NA 163.9 mg/g for Pb (Boni et al., 2020)
Miscanthus Pyrolysis 850 ± 20 °C

for 30 min
Real municipal ww 0.05 509.0 ± 173.0 COD: 74 ± 18

E.coli: 1.35 ± 0.27c
(Kaetzl et al., 2020)

Sewage sludge Pyrolysis 700 °C for
60 min

Industrial ww 0.05 NA 42.3 mg/g for dye (Al-Mahbashi et al.,
2022)

Quinoa biomass Pyrolisis 400 °C for 1 h Synthetic ww 0.06 NA Cr: <90 in the first 180 min (Imran et al., 2020)
Spruce woodchips Pyrolysis 600 °C Forest Clear-Cut

Runoff Water
1.53–2.72 NA TN: 58 (Lafdani et al., 2020)

Birch, aspen, and alder
woodchips

Pyrolysis 500 °C Ww from the septic
tank

1.7 × 10−3 NA Turbidity: 99
PO4

3−-P: 95, DOC: >60
(Kholoma et al., 2020)

Various agriculture wastes Commercial biochar Olive mill ww NA NA COD: 70, BOD: 40
Total organiccarbon: 82
Phenolic: 90

(Shabir et al., 2022)

Coconut shell Pyrolysis Real textile dyeing
ww

0.42 NA Colour: 75
BOD: 58, COD: 87

(Jayabalakrishnan et
al., 2023)

Waste wood pellets Gasification 520 °C Synthetic stormwater
runoff

NA NA NO3
−-N: 86, PO4

3−-P: 47
Heavy metals: 18–24
Phenanthrene: 100
Naphthalene: 76
E.Coli: 27

(Reddy et al., 2014)

Bamboo biomass Pyrolysis 500 °C for 2 h Digested swine ww NA NA NH4
+-N: 63, TN: 51

TP: 53, COD: 80
(Xin et al., 2021)

Porous palm residues Pyrolysis 2 h at 700 °C Synthetic ww 12.0–72.0a NA NH4
+-N: 80

TP: 68
(Li et al., 2016)

A mixture of pine and
spruce wood biomass

Commercial biochar Real domestic ww 9.6 × 10−4

1.3 × 10−3

1.6 × 10−3

NA COD: 90–93
TN: 71 ± 12, NH4

+-N: 93 ± 2
E. coli: 1.1–2.1c (vertical flow filter)
2.5–3.4c (horizontal flow filter)

(Dalahmeh et al.,
2019b)

Hardwood Pyrolysis 500 °C Domestic ww 1.7 × 10−3 NA PO4
3−-P: 40, TP: 30

(gas concrete-biochar)
PO4

3−-P: 26, TP: 24
(sand-biochar)
PO4

3−-P: 20, TP: 23 (sand)

(Kholoma et al., 2016)

(continued on next page)
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Table 2 (continued)
Source of biomass Production methods Type of ww HLR (m/h) OLR

(gCOD/m3/d)
Efficiency (%) References

A blended mix of wood Pyrolysis180 to 395 °C
for 6 h

Synthetic stormwater 0.12 NA Pathogenic bacteria: 3.9c

E. coli: 1.9c

MS2: 1.8c

(Afrooz et al., 2018)

Unknown components Commercial biochar Synthetic stormwater 0.23 NA E.coli: 3.6 ± 0.7c (Rogue Biochar)
3.7 ± 0.72c (Agricultural Carbons)
2.0 ± 0.38c (Terra Char)
1.9 ± 0.5c (NAKED Char)

(Valenca et al., 2021)

Mixed biomass Pyrolysis 394 °C Natural stormwater NA NA E.coli: 0.8 to 3.0c (Kranner et al., 2019)
Pine Pyrolysis 350 °C for 4 h Synthetic

aquaculture ww
0.24 NA NO3

−-N:
84 ± 0.06 (50.0 mg NO3

−-N/L)
93 ± 0.01 (125.0 mg NO3

−-N /L)

(Paul and Hall, 2021)

Pine origin (Pinus sp.) Commercial biochar Vegetable farm ww NA NA 4.0 g N/m3/d (Pluer et al., 2016)
Pine pellets Commercial biochar Human waste

anaerobic digestate
ww

4 × 10−4 NA TN: 24, NH4
+-N: 50

COD: 56, PO4
3−-P: 68

(Hunter and
Deshusses, 2020)

Pine pellets Pyrolysis 900 °C for 1 h Anaerobic digestion
effluent

7 × 10−3 380.0 COD: 56
NH4

+-N: 81
(Forbis-Stokes et al.,
2018)

Pine
Hardwood

Commercial biochar Synthetic ww NA NA PO4
3−-P: 65 after 18.0 h

NO3
−-N: 86 after 18.0 h and 97 after

72.0 h

(Bock et al., 2015)

Pine wood Commercial biochar Urban stormwater
runoff

1.53 × 10−2 NA NO3
−-N: >99, Zn: 50

Cd, Cu, Ni, Pb: >80
Trace organic contaminant: 100

(Ashoori et al., 2019)

Rice straw husk Pyrolysis 500 °C Rainwater runoff NA NA Cu, Zn, Pd, Cd: >98 (Xiong et al., 2022)
Wood Commercial biochar Dairy runoff 1.08 NA NH4

+-N: 77 (Biochar Supreme)
49 (Biochar Now)

(Rahman et al., 2021)

Hardwood Commercial biochar Municipal ww 1.4 × 10−3

8.3 × 10−3

1.67 × 10−3

19.4 ± 2.2
3.9 ± 1.6
4.9 ± 1.3
14.6 ± 3.1*

Bacteria: 1.6–4.5c

Virus: 1.0–2.3c

(at HLR 1.4 × 10−3)

(Perez-Mercado et al.,
2019)

Unknown components Commercial biochar Grey water 1.17 × 10−2 NA COD: 80, PO4
3−-P: 22, TP: 58, NH4

+-
N: 43, NO3

−-N: 70, TN: 66, E.coli: 45
(Eshetu et al., 2015)

Unknown components Commercial biochar Grey water 4.8 × 10−3 40.0* BOD5: 93, TP: 42 NH4
+-N: 89

E.coli: 13.7
(Dalahmeh et al.,
2016)

Pinewood Pyrolysis 600 °C for 1 h
Modified with FeCl3

Municipal ww 0.30 NA P: 175 mg/kg (GIB)
99 after 49.1 min (PIB)

(Gao and Wan, 2023)

Moso bamboo Pyrolysis 400–600 °C for
1 h
Modified with MgCl2

Synthetic ww 0.65 NA PO4
3−-P: 60.7, 61.2 and

62.2 mg/g
(Jiang et al., 2018)

Coconut shell Pyrolysis 550 °C for 1 h
Modified with ZnCl2

Real textile
dyeing ww

0.42 NA Colour: 99, BOD: 80.6
COD:90.5

(Jayabalakrishnan et
al., 2023)

Quinoa biomass Pyrolysis 400 °C for 1 h
Modified with HNO3

Synthetic ww 1.5 × 10–3 b NA Cr: 90 in first 180.0 min
75 after 300.0 min
33 after 600.0 min

(Imran et al., 2020)

Wheat straw Pyrolysis 350 °C for
30 min
Modified with H3PO4

Synthetic ww 2.1 × 10–3 b NA Cd: 92–96 in first 90.0 min
78–86 after 240.0 min

(Naeem et al., 2019)

Bamboo Pyrolysis 600 °C for
1.5 h Modified with
AlCl3

Synthetic ww 0.30, 0.60
&1.20

NA Sulfonamides: 650.0 and
1400.0 mg/kg

(Huang et al., 2022)

Watermelonrinds Pyrolysis 500 °C for 1 h
Modified with FeCl3

Surface water NA NA U: 99 for the initial 3 cycles (Lingamdinne et al.,
2022)

Lab: Laboratory, Ww: Wastewater, a: HRT in h, Q: Flow rate (b: Q in L/min), Log10 unit: Reduction efficiency (c: Log10 MPN/100 mL), *: g BOD5/m2/d, **: g P/m2/d,
DOC: Dissolved Organic Carbon, BOD: Biochemical Oxygen Demand, GIB: Granular iron biochar, PIB: Powder iron biochar, OLR: organic loading rate, NA: Not avail-
able.

columns filled with separate layers of soil and biochar, significantly
higher than the 67.1 mg/g in soil-only columns. Xiong et al. (2022) also
reported that a mixture of biochar, sand, and clay amendment in biore-
tention systems resulted in better heavy metal removal in rainwater
runoff than traditional sand bioretention, with average reductions of
Cu, Zn, Pb, and Cd by 55 %, 61 %, 20 %, and 36 %, respectively. Fac-
tors such as low ash content, higher cation exchange capacity, and a
higher content of hydroxyl groups contribute to biochar's superior
metal-removal effectiveness.

However, Ashoori et al. (2019) reported that the filter column with
a mixture of woodchips and biochar did not significantly improve metal
removal compared to columns without biochar (woodchips and wood-
chips-straw), exhibiting similar efficiencies in removing Cd, Cu, Ni, Zn,
and Pb from synthetic stormwater (p > 0.2). While BFCs show poten-

tial in treating heavy metals, their effectiveness varies and can be low,
especially in systems treating multiple metals simultaneously. The effi-
cacy of metal removal depends on the specific characteristics of the
biochar and the treated metals. More extensive and longer-term studies
are needed to fully assess the factors influencing the metal treatment
capabilities of BFCs, which will aid in selecting the most suitable
biochar types for efficient metal removal.

4.4. Pathogens

Various conventional techniques are currently employed to eradi-
cate pathogens from wastewater, including coagulation, filtration, chlo-
rination, activated sludge treatment, and anaerobic digestion (Nasir et
al., 2022). BFCs have been used to treat pathogens such as Escherichia
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Fig. 4. Plots presenting removal efficiencies of biochar-based fixed filter
columns. The boxplots display variability in data, including the mean (red as-
terisk and text), median (blue asterisk and text), interquartile range (Q1-Q3),
outliers, and the 95 % confidence interval range (green line).

coli (E. coli), bacteriophages, and enterococci in municipal wastewater
and stormwater (Table 2). The effectiveness of microbe removal by
BFCs is mainly due to the filter material's adsorption capacity, the
biofilm's properties that develop on filter surfaces, and the physical en-
trapment or straining occurring within the small pore spaces of the fil-
ter.

This study evaluates the efficiency of BFCs in pathogen removal by a
logarithmic reduction scale. Across 19 samples, the average log reduc-
tion in pathogen concentration was 2.4 ± 1.1, with a 95 % CI ranging
from 1.9 to 2.9 (Fig. 4 and Table S2). Boehm et al. (2020) report that
conventional biofilters, which use materials like rocks, gravel, sand,
granulated activated carbon (GAC), and synthetic plastics, typically
achieved an average reduction of 0.4 log10 units for fecal indicator bac-
teria (FIB) in stormwater. In contrast, biochar-enhanced filter columns
demonstrated a significantly higher capability, with potential reduc-
tions reaching up to 3.5 log10 units.

Further studies, such as those by Kaetzl et al. (2020) and Kaetzl et al.
(2019), have shown that single BFCs can remove FIB better than other
materials filters like wood chips, gravel, rice husk, and sand filters
(p < 0.05). Some comparative results are presented in Table 3B, where
the average efficiency of BFCs in removing E. coli and enterococci was
higher than that of woodchip and gravel filters. In addition, the mean
removal rates of E. coli, enterococci, and bacteriophages by biochar
were statistically significantly higher than those by sand columns. This
increased effectiveness is attributed to biochar's high organic carbon
content, which fosters hydrophobic attachments of bacteria on its sur-
face and provides increased surface area for viral and bacterial attach-
ment. Furthermore, the adsorption capacity of the filter material, the
characteristics of the biofilm, and the physical entrapment within small
pore spaces are critical factors in microbe removal (Dalahmeh et al.,
2019b; Kranner et al., 2019).

4.5. Nutrients

The study analyzed nutrient removal across multiple samples, pre-
senting average efficiencies and variations within defined CIs, as de-

Table 3
Compare the effectiveness of pollutant treatment between BFCs and other me-
dia filters.
Parameters Removal efficiency

(%)
OLR
(gCOD/m3/d)

P-value Reference

A: Organic matter
COD Biochar: 87 ± 2.6

Woodchips:
70 ± 4.7
Gravel: 74 ± 2.6

252.0 <0.05 (Kaetzl et al.,
2018)

Biochar: 74 ± 18
Sand: 61 ± 12

509.0 ± 173.0 <0.05 (Kaetzl et al.,
2020)

Biochar: 52
Rice husk: −19

63.0 ± 16.0 <0.05 (Kaetzl et al.,
2019)

Biochar: 94–99
Sand: 90–97

20.0 ± 5.0b

5.0b
<0.05 (Perez-

Mercado et al.,
2018)

Biochar: 56
GAC: 62
Zeolite: 22
Gravel: 25

380.0 NA (Forbis-Stokes
et al., 2018)

Biochar: 80
Filtralite: 63

NA <0.001 (Eshetu et al.,
2015)

Biochar: 80
Hydrophobic
polypropylene
resin: 72

NA NA (Xin et al.,
2021)

B: Pathogens
E. coli Biochar: 0.99a

Wordchips: 0.78a

Gravel: 0.84a

252.0 <0.05 (Kaetzl et al.,
2018)

Biochar:
2.3 ± 0.58a

Sand: 2.0 ± 0.63a

Rice husk:
2.3 ± 0.63a

63.0 ± 16.0 ≤0 .05 (Kaetzl et al.,
2019)

Biochar:
1.4 ± 0.27a

Sand: 1.2 ± 0.31a

509.0 ± 173.0 <0.01 (Kaetzl et al.,
2020)

Enterococci Biochar: 1.0a

Wordchips: 0.8a

Gravel: 0.8a

252.0 <0.05 (Kaetzl et al.,
2018)

Biochar: 2.4 ± 0.7a

Sand: 2.2 ± 0.7a

Rice husk:
2.4 ± 0.6a

63.0 ± 16.0 <0.05 (Kaetzl et al.,
2019)

Bacteriophages Biochar: 1.9 ± 0.4a

Sand: 1.7 ± 0.5a

Rice husk:
1.3 ± 0.4a

63.0 ± 16.0 <0.05 (Kaetzl et al.,
2019)

C: Nutrients
TP Biochar: 53

Hydrophobic
polypropylene
resin: 37

NA NA (Xin et al.,
2021)

Gas concrete-
biochar: 30
Sand-biochar: 24
Sand: 23

NA 0.04 (Kholoma et
al., 2016)

Biochar:
175.0 mg/kg
Quartz sand:
10.3 mg/kg

NA <0.05 (Gao and Wan,
2023)

PO4
3−-P Gas concrete-

biochar: 40
Sand-biochar: 26
Sand: 20

NA 0.04 (Kholoma et
al., 2016)

Gas concrete-
biochar: 35
Sand-biochar: 45
Sand: 35

NA 0.02 (Kholoma et
al., 2020)

(continued on next page)
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Table 3 (continued)
Parameters Removal efficiency

(%)
OLR
(gCOD/m3/d)

P-value Reference

NH4
+-N Biochar: 81

GAC: 83
Zeolite: 83
Gravel: 76

380.0 NA (Forbis-Stokes
et al., 2018)

Biochar: 50
GAC: 25
Zeolite: 69

740.0 NA (Hunter and
Deshusses,
2020)

TN Biochar: 50–52
Sand: <5

20.0 ± 5.0b

5.0b
<0.05 (Perez-

Mercado et al.,
2018)

Biochar: 24
GAC: 20
Zeolite: 39

740.0 NA (Hunter and
Deshusses,
2020)

OLR: organic loading rate, NA: Not available.
a : Log10 MPN/100 mL.
b : gBOD5/m2/d.

picted in Fig. 4. NH4
+-N removal demonstrated an average efficiency of

71 ± 17.1 % (60, 80 %), indicating moderate sample variability
(CV = 24 %). Total nitrogen (TN) removal averaged 51 ± 21.7 % (32,
64 %), and exhibited higher variability (CV = 42 %), reflecting effi-
ciencies ranging from 14 % to 74 %. PO4

3−-P and total phosphorus (TP)
removals reported average efficiencies of 57 ± 25.6 % (41 %, 74 %)
and 53 ± 23.8 % (38, 67 %), respectively. Both nutrients showed high
variability (CVs ~45 %), with data distributions indicating a broad
range of outcomes dependent on specific sample conditions.

Significant variability in nutrient removal by BFCs was observed,
with some studies achieving up to 93 % for NH4

+-N, 74 % for TN, 96 %
for PO4

3−-P, and 86 % for TP. Most experiments suggest that BFCs' nu-
trient removal efficiency was higher than other media filters (Table 3
C). According to Kholoma et al. (2020), the filter column consisting of
layers of biochar and sand or gas concrete exhibited higher treatment
efficiency than those without. Notably, the removal of TN in different
BFCs was 12-fold higher than in sand filters despite all filters operating
under similar hydraulic loading rates (HLR) of 1.33 × 10−3 -
1.42 × 10−3 m/h. Columns amended with biochar showed signifi-
cantly higher TN removal compared to sand (p < 0.05), suggesting that
the addition of biochar enhanced NH4

+-N adsorption and nitrification
(Rahman et al., 2021). In contrast, other media filters showed relatively
low nutrient removal efficiencies; for instance, the TN reduction by
woodchips and gravel was only 7 ± 8.8 % and 12 ± 4 %, respectively
(Kaetzl et al., 2018). Further, the TN removal rate only achieved 30 %
for sand-based filters (Martikainen et al., 2023) and was slightly higher
at 34 % for stone (Rasool et al., 2018).

The higher efficiency in nutrient removal in BFCs can be explained
by the large surface area of biochar, which enhances the adsorption of
nutrients from wastewater and provides a conducive environment for
bacterial growth, thereby increasing treatment efficiency. Also, the
high porosity and abundance of micropores and nanopores in biochar
create numerous anaerobic zones, enhancing the activity of denitrifying
bacteria (Zainudin et al., 2020). Moreover, the efficiency of TP and
PO4

3−-P removal is also related to the mineral content on the surface of
the filter material (such as calcium, iron, and aluminum), which in-
creases the adsorption and precipitation of PO4

3−-P from wastewater
(Perez-Mercado et al., 2018).

However, Perez-Mercado et al. (2018) demonstrated that the effi-
ciency of P treatment with various biochar buffering materials could be
either higher or lower than that of the sand medium. For example, the P
removal rate in single BFCs using willow biochar was higher (89 ± 7 %
and 86 ± 9 % for PO4

3−-P and TP, respectively) than sand media
(75–83 % for TP and PO4

3−-P), while the removal rates for pine-spruce
biochar ranged from 32 % to 60 %, which was lower than that of sand
medium. Similarly, according to Kholoma et al. (2020), the efficiency of
PO4

3−-P removal using biochar (42 %) was found to be lower gas con-

crete (96 %). The low efficiency in removing PO4
3−-P by biochar could

be attributed to the negative overall surface charge of biochar, which
leads to a limited capacity for the adsorption of anionic pollutants
(Shahraki and Mao, 2022). Similarly, the NH4

+-N removal efficiency of
biochar (50 %) was lower than that of zeolite (69 %), as demonstrated
in the report by Hunter and Deshusses (2020) when using a single BFC.
Ashoori et al. (2019) also reported that the effectiveness of treating
NO3

−-N by a mixture of woodchip and biochar filter supplementation
did not show significant differences compared to woodchip and wood-
chips-straw filter columns (p = 0.31 and p = 0.53).

4.6. Organic contaminants

Organic compounds in wastewater can be divided into two cate-
gories: biodegradable organic compounds (such as acetone, methanol,
amino acids, humic substances, and carbohydrates) and persistent or-
ganic compounds (such as pesticides, herbicides, antibiotics, phenols,
and polycyclic aromatic hydrocarbons) (Xiang et al., 2020). BFCs have
demonstrated a high capacity for removing organic compounds, effec-
tively addressing both biodegradable and biologically refractory or-
ganic compounds across various wastewater types. Furthermore, BFC
systems have been specifically applied to treat persistent organic com-
pounds in wastewater, such as colour, polycyclic aromatic hydrocar-
bons, and per-and polyfluoroalkyl substances. Notably, the removal effi-
ciency for some persistent compounds has been exceptionally high,
with phenanthrene removal reaching 100 % (Reddy et al., 2014).

However, some compounds showed negative removal efficiencies,
such as perfluorobutanoic acid (−40 % to 60 %), perfluoropentanoic
acid (−30 % to 80 %), perfluorohexanoic acid (−10 % to 90 %), and
perfluoroheptanoic acid (−515 % to 100 %). These results occurred
with biochar lacking biofilm, where removal depended solely on ad-
sorption. The short carbon chains, high hydrophilicity, and water solu-
bility of these polyfluoroalkyl substances led to poor adsorption effi-
ciency (Dalahmeh et al., 2019a). Despite these findings, there remains a
scarcity of studies utilizing biochar in medium and large-scale column
filter systems to treat challenging, biologically resistant organic com-
pounds. The results from the synthesized studies suggest that biochar is
a highly effective filtering material for removing organic compounds
from various types of wastewater, including those that are biologically
recalcitrant. The treatment efficiencies vary depending on the specific
organic compound targeted. However, it is essential to note that BFCs
may not be effective for some biologically recalcitrant compounds. In
certain instances, they might even increase the concentration of these
compounds in the treated wastewater relative to the influent.

5. Influencing factors on removal efficiency

5.1. Biochar characteristics

Biochar characteristics such as chemical composition, surface area,
porosity, and particle size directly influence its cation exchange capac-
ity, water retention, and adsorption capacity, thereby affecting pollu-
tant removal efficiency (Amalina et al., 2022; Tan et al., 2021; Weber
and Quicker, 2018). These properties are shaped by feedstock, produc-
tion temperature, residence time, heating rate, and pre- and post-
production treatments (Ahmad et al., 2014; Daful and R Chandraratne,
2020). Different feedstocks result in varied inorganic mineral content
and chemical structures (Leng et al., 2021). The impact of biochar parti-
cle size on pollutant removal efficiency varies. For example, sand mixed
with coarse biochar (0.49 mm) achieved 77 % to 88 % efficiency, out-
performing sand with fine biochar (0.31 mm), which ranged from 56 %
to 84 % (p = 0.05) (Hanandeh et al., 2017). Conversely, Perez-
Mercado et al. (2018) found smaller particles of biochar more effective
in treating COD, with removal rates of 94 % for particles sized
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d10 = 2.8 mm and 99 % for d10 = 1.4 mm and 0.7 mm, though parti-
cle size showed no significant impact on nutrient removal efficiency.

Biochar feedstock is generally categorized into woody biomass (for-
est and tree waste) and non-woody biomass (sludge, livestock waste,
crops, and residues). Woody biomass is distinguished by its low
voidage, high bulk density, high calorific value, and low ash and mois-
ture content (Sivaranjanee et al., 2024). Biochar production tempera-
tures typically range from 300 °C to 800 °C, with pyrolysis durations
from 1 to 4 h (Figs. 5 a & b). The production conditions of biochar, par-
ticularly the production temperature, notably influenced its properties
(Yaashikaa et al., 2020). Although Fig. 5 does not correlate production
temperature with BET surface area, some biochars exhibit large BET
surface areas (>700 m2/g) at pyrolysis temperatures above 900 °C.
Studies show that increasing production temperature generally in-
creases SSA. For instance, Elnour et al. (2019) reported that the SSA of
date palm biochar rose from 2.04 to 249.13 m2/g as temperature in-
creased from 300 °C to 700 °C. Similarly, Chowdhury et al. (2016)
found that wood sawdust biochar's SSA increased from 2.567 to
220.989 m2/g as the temperature rose from 350 °C to 550 °C. Guo et al.
(2020) observed that maize-straw biochar exhibited an SSA range of
0.47 to 635.24 m2/g as temperature increased from 200 °C to 900 °C.

Modifying biochar further enhances its surface area; for example,
HCl modification increased the SSA of coconut shell biochar from 52.35
to 590.8 m2/g (Jayabalakrishnan et al., 2023). Similarly, FeCl3 treat-
ment increased the SSA of watermelon rind biochar from 52.1 to
86.35 m2/g (Lingamdinne et al., 2022). Increased surface area typically
improves adsorption efficiency (Tan et al., 2021). In Jiang et al. (2018),
Moso bamboo biochar modified with MgCl2 achieved an SSA of 311
m2/g at 400 °C and 399 m2/g at 600 °C, with corresponding PO₄3−-P
adsorption efficiencies of 60.7 to 62.2 mg/g. Furthermore,
Jayabalakrishnan et al. (2023) reported BOD and COD removal effi-
ciencies of 58 % and 87 % for pristine biochar and 80.6 % and 90.5 %
for modified biochar.

Biochar's diverse characteristics, such as surface area, particle size,
and feedstock origin, simultaneously influence the pollutant removal
efficiency of BFCs. The variability in experimental conditions across
studies complicates the quantitative ranking of these factors affecting
treatment efficiency. Therefore, more targeted research and customized
experiments are needed to address current uncertainties.

5.2. Concentration of pollutants

The contaminant concentration significantly influences the move-
ment of contaminant molecules toward active sites on the adsorbent
surface (Imran et al., 2020). The removal efficiency of Cd increased

from 56 % to 90 % as the initial Cd concentration decreased from
100 mg/L to 5 mg/L in the filter column with two layers of biochar and
sand (Naeem et al., 2019). Similarly, Deepa et al. (2022) reported a re-
moval efficiency of 98 % at low Cr concentrations, whereas at higher Cr
concentrations, it decreased to 92 %. The filtering materials in this
study consist of three layers: biochar, sand, and gravel stones. This de-
cline might be attributed to the saturation of all active sites at lower
concentrations, where fewer metal ions effectively compete for binding.
The increased number of competing ions at higher concentrations re-
duces the adsorption rate.

On the contrary, Lafdani et al. (2020) found that the outlet nitrogen
concentration significantly decreased when the initial concentration
was highest. In contrast, lower initial concentrations diminished re-
moval efficiency, mainly when the TN concentration in water was be-
low 0.4 mg/L, suggesting minimal TN adsorption under these condi-
tions. Similar trends were observed in the studies by Reddy et al. (2014)
and Majumder and Das (2022). For example, the removal efficiency of
E. coli was only 27 % at an initial concentration of 7400 MPN/100 mL,
while it reached 100 % when the E. coli concentration was approxi-
mately 3 × 107 ± 2.4 × 107 MPN/100 mL.

These observations highlight a general trend: as the input concen-
tration of pollutants increases, treatment efficiency typically decreases
due to heightened competition among ions for available binding sites
on the adsorbent, leading to reduced adsorption rates. This underscores
the importance of optimizing biochar for maximum efficiency without
excessive resource expenditure. Conversely, deficient initial concentra-
tions can also impair treatment efficiency, potentially due to inade-
quate contaminant presence needed for effective degradation. Under-
standing these dynamics is crucial for designing adaptable and cost-
effective water treatment systems that can handle varying pollutant
loads while maintaining regulatory compliance and ensuring the safety
of treated water.

5.3. Hydraulic conditions

The HLR values from 38 experiments averaged 0.32 ± 0.60 m/h
(0.19, 0.55) (Fig. 4 and Table S2). The median HLR was significantly
lower at 0.06 m/h, indicating a skewed distribution with a high concen-
tration of samples at meager rates. The skewness and kurtosis values
were 2.7 and 7.9, respectively, suggesting that most samples clustered
at lower rates with fewer high rates. The CV for HLR was exceptionally
high at 171.9 %, highlighting it as the parameter with the most signifi-
cant variation among those measured.

In field-scale studies, the flow rate is critical for evaluating the con-
tinuous treatment of metal effluents using sorbents. HRT and HLR are

Fig. 5. Relationship between pyrolysis temperature of biochar and BET surface area (a) and residence time (b) across different biomass types and production meth-
ods. “Normal” refers to conventional pyrolysis, while “Modification” indicates chemically modified production methods.
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inversely related; as HLR increases, HRT decreases, affecting pollutant
removal efficiency. For example, Dalahmeh et al. (2019b) found that
increasing the HLR in wood biochar filter from 8.33 × 10−4 to
1.25 × 10−3 and then to 1.67 × 10−3 m/h led to a progressive de-
crease in TN removal from 81 % to 71 % and then to 59 % (p < 0.05).
Similarly, (Li et al., 2016) observed that extending the HRT from 12 to
48 h enhanced the removal rates of NH4

+-N and TP. Additionally, ni-
trate and nitrite removal rates improved as HRT was extended from 12
to 60 h (p = 0.05). Extended HRT increased contact between waste-
water and packing materials, enhancing degradation, while high HLR
shortened contact times, reducing adsorption and interaction with pol-
lutants. However, extending HRT further from 36 to 72 h did not signif-
icantly impact NH4

+-N and TP removal, and increasing HRT from 60 to
72 h showed no significant effect on nitrate and nitrite removal. Perez-
Mercado et al. (2019) also showed a similar influence on pathogens
when using filters with hardwood biochar as the primary materials; the
reduction rates of microbes at HLR of 1.67 × 10−2 m/h were signifi-
cantly lower (p < 0.01) than at HLRs of 8.33 × 10−3 and 1.25 × 10−2

m/h, with no significant differences between the latter two.
Despite these findings, Dalahmeh et al. (2019b) noted that in pine

and spucre wood biochar filter, variations in HLR did not significantly
impact the removal of E. coli and Salmonella, nor did they affect COD
removal, which remained stable at 90–93 % across different rates. Simi-
larly, (Perez-Mercado et al., 2018) found consistent performance in sin-
gle BFCs at HLR of 1.25 × 10−2 and 8.33 × 10−3 m/h for COD and
PO4

3−-P removal. These results indicate that while increasing HLR re-
duces the effectiveness of removing TN, NH4

+-N, and TP due to shorter
contact times, it does not significantly affect the removal of E. coli, Sal-
monella, COD, and PO4

3−-P. Thus, the effectiveness of treatment adjust-
ments, such as operational parameter changes, depends on factors like
biochar type, filter configuration, wastewater characteristics, and the
operational phase of the system.

6. Challenges and future perspectives

6.1. Challenges

6.1.1. Reduction efficiency over time
BFCs exhibit a decline in treatment efficiency over time, similar to

other biofiltration technologies (Mohamed et al., 2023; Shahraki and
Mao, 2022). This decline is due to alterations in the functional groups
within biochar's pores and changes in the microbial communities' activ-
ity on its surface. These factors critically influence pollutant removal
mechanisms. Moreover, the performance of BFCs is susceptible to oper-
ational parameters and environmental condition fluctuations, com-
pounding the challenge. This challenge can be mitigated by adopting
strategies such as reactivating or replacing biochar, enhancing micro-
bial communities, optimizing operational conditions, managing envi-
ronmental fluctuations, and engaging in ongoing research and develop-
ment.

6.1.2. Clogging issues
Clogging is a significant operational challenge for BFCs. Over time,

sediment and solid particles accumulate, obstructing the filter media
and forming a biological membrane by bacteria. This increases pressure
drops, channeling, dead zones, and uneven microbial growth, severely
diminishing the system's contaminant removal efficiency (Dobslaw et
al., 2018). Some studies report the onset of clogging within a range of
70 to 260 days (Forbis-Stokes et al., 2018; Kaetzl et al., 2020). Reme-
dial actions like backwashing or replacing filter media are necessary
but introduce additional operational challenges and potential health
risks for maintenance personnel (Majumder and Das, 2022). To address
clogging issues, selecting the appropriate size of biochar and other fil-
tering materials is essential. Smaller biochar particles are more prone to
causing clogging (Le et al., 2020; Ramezanzadeh et al., 2023). Addi-

tionally, pre-treatment of wastewater before it enters the filtration
process is also essential. Biological filters can become clogged due to ac-
cumulating suspended solids, especially those smaller than six μm (Le et
al., 2020). When clogging occurs, a backwashing process or replace-
ment of a significant portion of the filter material is required to extend
the filter's operational time.

6.1.3. Scale from lab to the field
Discrepancies between laboratory-scale studies and real-world ap-

plications significantly hinder understanding pollutant removal mecha-
nisms. Laboratory conditions often fail to replicate complex environ-
mental, hydrological, and operational realities, leading to inconsistent
field performance (Boehm et al., 2020; Kholoma et al., 2016; Pluer et
al., 2016). This gap underscores the need for more robust predictive
models and scaled-up research. To overcome the discrepancies between
laboratory-scale studies and real-world applications, it is crucial to en-
hance field research, develop predictive models that more accurately
reflect real-world conditions, and design large-scale (bench-scale, pilot-
scale) and long-term studies to evaluate results more effectively.

6.1.4. The influence of factors on treatment efficiency
Multiple factors, including influent loading rates, biochar proper-

ties, HRT, and HLR, significantly influence BFC treatment efficiency.
Studies examining these influences have not always provided unbiased
findings due to the interconnected nature of these effects and the limita-
tions of existing models to capture these interactions fully. The variabil-
ity in biochar characteristics, pollutant concentrations, and hydraulic
conditions complicates the accurate prediction of treatment outcomes.
To address these challenges, it is essential to develop comprehensive
models, conduct controlled experiments, enhance data collection and
analysis, optimize operational conditions, and improve biochar selec-
tion and treatment processes.

6.2. Future perspectives

6.2.1. Desorption and reuse of media
While restoring biochar's adsorption capacity is critical for its sus-

tainable use, forming a biofilm on biochar surfaces after extended oper-
ation can facilitate the biological degradation of pollutants. This could
diminish the need to reuse biochar media. Further, the desorption of
contaminants can be prohibitively expensive, accounting for up to 50 %
of the cost of new biochar production (Alsawy et al., 2022; Wang et al.,
2020). Thus, repurposing saturated biochar as a fertilizer presents a vi-
able alternative, as nutrient-enriched biochar has been shown to signifi-
cantly enhance plant growth in agricultural settings (Shahraki and
Mao, 2022). Although nutrient-enriched biochar can effectively en-
hance soil quality, there are concerns that other contaminants may be
released from biochar during its application to soil. For instance, heavy
metals may leach from biochar during the phosphorus recovery
(Shahraki and Mao, 2022). A controlled release of organic and inor-
ganic adsorbates from biochar pores can occur through diffusion. Con-
versely, chemical interactions and competition for adsorption sites be-
tween biochar functional groups and target contaminants can influence
the kinetics of contaminant release from biochar, depending on the sys-
tem's pH (Mukherjee et al., 2022).

Therefore, it is crucial to carefully consider any harmful compo-
nents emitted from waste biochar, as they could be absorbed by crops
and enter the food chain, potentially impacting the environment and
human health. Biochar can also be used as an energy source, in fuel
cells, as a catalyst, and for other applications (Ganesapillai et al., 2023;
Setyawan et al., 2024). However, since biochar adsorbs pollutants from
wastewater, burning it can release these pollutants into the surrounding
environment, such as volatile organic compounds, NOₓ, and metal ox-
ides. Therefore, it is essential to treat the biochar before use, control the
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combustion process, and conduct a thorough environmental impact as-
sessment before reusing biochar.

6.2.2. Economic issues and operational duration
The cost of biochar varies between countries, depending on factors

such as local availability of feedstock, collection and transportation,
processing requirements, technology scale, and production conditions
(Mohan et al., 2014; Murtaza et al., 2024). However, biochar is less ex-
pensive than materials like activated carbon, zeolite, and metal-organic
frameworks (Satyam and Patra, 2024). Table S4 compares the costs of
biochar with other materials, highlighting the significant variability in
biochar prices. Despite extensive research, several economic and tech-
nical challenges remain unresolved. It is challenging to obtain compre-
hensive information on the prices and production costs of biochar. A
deeper exploration of these aspects is necessary before biochar can be
effectively and widely implemented. Preparing raw materials for
biochar, such as collection, cleaning, and grinding, requires significant
effort before pyrolysis, and any modifications to enhance biochar's effi-
cacy increase production costs. Optimizing the production process to
reduce costs is crucial for future applications.

The durability of biochar in biofilters is also poorly understood due
to a lack of long-term field-scale studies assessing its lifespan. Such
studies are essential to evaluate biochar's performance over extended
periods and under varying conditions. More comprehensive research is
needed to estimate the operational duration of BFC systems and to de-
velop long-term maintenance strategies. Effective maintenance strate-
gies for biofilter systems using biochar should include continuous per-
formance monitoring, biochar management, and regeneration, opti-
mization of operating conditions, clogging management, process evalu-
ation and improvement, as well as staff training and guidance.

6.2.3. Field-scale research
While most BFC research is conducted in laboratories and often only

considers single pollutants, future studies should investigate the ad-
sorption capabilities of BFC in the presence of multiple analytes. This is
essential for practical application, as real wastewater contains numer-
ous competing pollutants that can affect treatment efficiency. The real-
world aging of BFCs and their efficiency decline over time remain un-
derexplored. Long-term field-scale studies are crucial for addressing
these gaps. Empirical data from such studies should be used to refine
numerical models to evaluate biochar-augmented biofilters under vari-
ous development scenarios. These models should simulate unit
processes within biofilters to enable detailed scenario testing and per-
formance assessment. Economic feasibility studies are also necessary to
assess the cost-effectiveness of deploying large-scale biochar treatment
systems.

7. Conclusion

This review assesses the effectiveness of biochar in filtration systems
for wastewater treatment. BFCs are widely studied, with 50 % using
SBF systems and the rest employing multi-layer systems, showing sig-
nificant variability in column dimensions. The systems demonstrate
high reliability and consistency, with BFCs generally outperforming
control media in organic treatment, achieving an average COD removal
of 80 ± 15.3 % (72, 86 %). Nutrient removal shows variability, with
NH4

+-N removal averaging 71 ± 17.1 % (60, 80 %), TN at
51 ± 21.7 % (32, 64 %), PO4

3−-P at 57 ± 25.6 % (41, 74 %), and TP
at 53 ± 23.8 % (38, 67 %). Pathogen concentrations are reduced by an
average log of 2.4 ± 1.1 (1.9, 2.9). Biochar characteristics, pollutant
concentration, and HLR influence pollutant reduction efficiency. Future
research should focus on field-scale applications to evaluate economic
viability, lifespan, environmental impacts, and optimized designs (opti-
mal HLR, biochar particle size, and column configurations) tailored to
specific operational conditions.
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