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Abstract 

This paper addresses a key gap in business process management (BPM) by automating the generation of business 

process models from unstructured textual descriptions. Traditional BPM methods often rely on manual efforts, making 

it difficult to capture the complexity of real-world processes. This research proposes a framework that automates the 

transformation of process narratives into coherent and structurally sound BPM models, significantly reducing manual 

intervention. The findings show that this approach enhances model accuracy and soundness, streamlining process 

management and improving integration with existing business systems. 

Research purpose:  

The purpose of this research is to develop a framework that automates business process model generation from 

unstructured text, improving model accuracy and efficiency while ensuring logical soundness with minimal manual 

intervention. 

Research motivation: 

Current methods for generating business process models from text require extensive manual input and fail to ensure 

structural correctness. This research addresses the gap by developing an approach that automates the process and 

ensures model soundness, which is critical for real-world applications. 

Research design, approach, and method: 

This research follows a design science research methodology, which emphasizes the creation and iterative refinement of 

a practical framework to automate business process model generation from textual descriptions. The framework is 

developed through a structured design process that includes problem identification, artifact development, and rigorous 

evaluation. By drawing on principles of process modeling and leveraging advanced techniques for ensuring structural 

correctness, the framework is tested across various use cases to assess its effectiveness in reducing manual intervention 

and improving the accuracy and soundness of the generated models. Multiple cycles of design, evaluation, and refinement 

are conducted to ensure that the framework meets the requirements of both academic rigor and real-world applicability. 

Main findings: 

The proposed framework successfully automates business process model generation from textual descriptions while 

ensuring structural correctness. It reduces the need for manual intervention, improves model accuracy, and addresses 

challenges of logical consistency, making it applicable in diverse business contexts.  

Practical/managerial implications: 

Organizations can streamline their BPM lifecycle by automating model generation, reducing manual effort, and 

ensuring model soundness. This framework enhances process reliability, allowing managers to integrate models with 

existing systems for more agile and accurate decision-making.  

Keywords: Business process management, Process model generation, Artificial intelligence, Large language model, 

Soundness 
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1. INTRODUCTION 

Business Process Management (BPM) is crucial for organizations aiming to optimize their operations and enhance 

efficiency. Traditionally, BPM has depended on manually crafted process models, which are often labor-intensive and 

may not fully capture the complexity and dynamics of real-world processes. To address these limitations, there is a 

growing need for automated methods to generate process models from unstructured textual descriptions. Textual 

descriptions, which provide detailed narratives of business processes, offer valuable insights into process execution but 

are often challenging to convert into structured models (Tomo Licardo, Tanković, & Etinger, 2023). While process mining 

techniques have emerged, enabling the automatic discovery of process models from event logs. These logs, which capture 

the sequence of events as they unfold in a process, allow for the generation of models that accurately reflect actual business 

behavior (Leemans, Fahland, & van der Aalst, 2013). 

Textual descriptions, though rich in detail, are typically presented in a narrative format that does not easily translate into 

structured process models (Friedrich, Mendling, & Puhlmann, 2011b; Kourani, Berti, Schuster, & van der Aalst, 2024). 

Existing methods for converting these textual narratives into process models often fall short, as they may require extensive 

manual intervention and are prone to inaccuracies. Traditional BPM techniques and tools, while effective for structured 

data, struggle with the inherent ambiguity and variability of unstructured text, leading to models that may be incomplete 

or misrepresentative of the actual processes (Sholiq, Sarno, & Astuti, 2022). 

Existing methods for generating BPM models, particularly those not leveraging advanced natural language processing 

(NLP) or large language models (LLMs), face significant limitations. Traditional approaches often rely heavily on 

extensive manual input, making them time-consuming and prone to errors. These methods frequently struggle with the 

variability and complexity of textual data, as conventional NLP techniques may not fully resolve ambiguities or grasp the 

contextual nuances needed for accurate process modeling. Consequently, this can lead to incomplete or incorrect 

interpretations of business processes. Additionally, many existing frameworks lack effective mechanisms to ensure the 

soundness of the generated models, resulting in issues such as deadlocks, inconsistencies, and other anomalies that 

diminish their practical utility. These methods also generally fail to generalize across various process models, limiting 

their applicability in diverse business contexts. Furthermore, integrating these models with existing BPM systems is often 

challenging, as many current approaches do not support seamless integration or provide sufficient insights into process 

structures. This compromises the reliability and effectiveness of the generated BPM models in real-world applications 

(Tomo Licardo et al., 2023). 

The motivation for this research is grounded in the need to develop a framework for generating BPM models from textual 

descriptions-an area that remains challenging with current techniques. Traditional BPM methods often require significant 

manual effort to create accurate models, especially when working with unstructured text. Existing techniques, such as 

process mining, excel in creating models from event logs but do not translate effectively to text-based inputs. Moreover, 

many existing methods lack effective mechanisms to ensure the soundness of the generated models, leading to issues like 

deadlocks, inconsistencies, and other anomalies that undermine their practical utility. Additionally, these methods 

generally do not generalize well across diverse process models and face challenges in integrating with existing BPM 

systems, limiting their applicability and effectiveness in real-world scenarios (Tomo Licardo et al., 2023). This gap 

underscores the necessity for a new approach that can automate the generation of sound BPM models from textual 

descriptions, reducing the need for extensive manual intervention. 

Our primary objective is to develop a framework that generates accurate and sound business process models from textual 

descriptions. This framework will leverage the capabilities of large language models (LLMs) to process textual 

descriptions and generate BPM models. Inspired by the structured and iterative nature of process discovery from process 

mining, our approach will employ a sequence of prompts designed to guide the LLM in extracting, refining, and 

structuring process information from text. The key advantage of this approach is that it aims to ensure the soundness of 

the generated models, thereby making the BPM lifecycle more efficient and accessible (Busch, Rochlitzer, Sola, & 

Leopold, 2023; Leemans et al., 2013; Tomo Licardo et al., 2023). 

The proposed framework is developed using a structured approach rooted in the principles of Design Science Research 

Methodology (DSRM) as defined by Peffers et al. and refined by the design research guidelines of Hevner et al. (Hevner, 

March, Park, & Ram, 2004; Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007). The primary aim is to create a 

functional artifact (Guideline 1: Design as an Artifact) that addresses the challenge of transforming unstructured textual 

descriptions into coherent business process models. This process begins by identifying the core difficulty in converting 

unstructured narratives into structured BPM models, a challenge that existing approaches often fail to address effectively 

(Guideline 2: Problem Relevance). Through a comprehensive analysis of existing techniques, relevant use cases are 

defined, ensuring that the proposed framework is grounded in real-world business needs (Guideline 5: Research Rigor). 

The design and development of the framework leverage large language models (LLMs) to generate sound BPM models 

from text. This aligns with the need for more accurate and efficient process modeling methods that minimize manual 

effort and ensure model correctness (Guideline 3: Design Evaluation). The framework’s iterative refinement is guided by 
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insights from use cases and rigorous textual analysis (Guideline 6: Design as a Search Process). Validation is achieved 

through a proof-of-concept implementation, testing the system’s ability to generate accurate models while addressing 

errors via both automated and manual feedback loops. The design is continuously improved based on evaluation 

outcomes, ensuring alignment with BPM principles and practical demands. All steps of the framework’s development are 

thoroughly documented, contributing to both academic research and practical applications in business process modeling 

and AI (Guideline 4: Research Contributions, Guideline 7: Communication of Research). 

The paper is organized as follows: Section 2 reviews the background and related work, covering traditional and AI-based 

BPM techniques, the role of LLMs in BPM, and the importance of prompt engineering. Section 3 outlines the 

requirements for the proposed framework, drawing from existing studies. Section 4 explains the proposed framework, 

showing how it uses prompt engineering inspired by inductive mining to generate BPM models from textual descriptions. 

Section 5 presents a proof-of-concept implementation, evaluating the framework’s effectiveness. Section 6 concludes 

with a summary of contributions, current limitations, and future research directions. 

2. BACKGROUND AND RELATED WORK 

2.1 Background 

2.1.1 Process Model and Process Discovery 

This paper adopts the conventions and illustrations of Business Process Model and Notation (BPMN) as established by 

the Object Management Group (OMG, 2013), as shown in Fig. 1. However, the proposed approach is designed to be 

flexible and applicable to various graph-based modeling notations. To achieve this versatility, the study uses a graph-

based representation of process models. This ensures the concepts and techniques developed are not only aligned with 

BPMN but also adaptable to other process modeling frameworks, promoting broad applicability and ease of integration 

in diverse business process management scenarios. 

Definition 1. (Process model) A process model P is defined as a connected directed graph. Formally, P is represented as 

(N, E, 𝕃, λ) where: 

• N is a finite set of nodes and  

• E ⊆ N × N is a set of edges.  

• 𝕃 represents the set of labels. 

• λ: N → 𝕃 is a labeling function that maps each node to a label in 𝕃.  

We further define the specific labels as follows: 

• λ(n) = “Start” and λ(n) = “End” are the unique labels denoting the start and end events, respectively. 

• λ(n) = “XOR-split”, λ(n) = “AND-split”, and λ(n) = “OR-split” represent nodes that indicate an exclusive 

decision, a parallel split, and an inclusive diverging gateway, respectively. These nodes have exactly one 

incoming edge and a minimum of two outgoing edges. 

• λ(n) = “XOR-join”, λ(n) = “AND-join”, λ(n) = “OR-join” represent nodes that indicate a merge, a parallel join, 

and an inclusive converging gateway, respectively. These nodes have exactly one outgoing edge and at least two 

incoming edges. 

+ + X X 

Start End Activity AND split AND join XOR split XOR joinOR split OR join
 

Fig. 1. Types of nodes and their representations 

For any node n ∈ N of a process model P = (N, E, 𝕃, λ), The preset of n denote •n, includes all the nodes that directly lead 

to n. It is mathematically defined as •n = {m ∈ N| (m, n) ∈ E}. The postset of n, represented by n•, consists of all the nodes 

that directly follow n. It is mathematically expressed as n• = {m ∈ N| (n, m) ∈ E}. 

The semantics of a process model P = (N, E, 𝕃, λ) align with those of workflow graphs and similar to the semantics of 

Petri nets. Typically, their semantics is defined using a token game. In this token game a state S: E → ℕ illustrates the 

token count on each edge. For example, if for an edge e, S(e) = k, it implies that e carries k tokens in state S. When 

executing a node n ∈ N in the state S, a transition to a new state S’ occurs, represented as S →𝑛 S’. A state S’ is said to be 

reachable from state S, notated as S →∗ S’, if a finite sequence exists in the form: S0 →𝑛1 S1 … Sk-1→𝑛k Sk, where k ≥ 0, 

with S0 = S, Sk = S’. The sequence 〈n1, n2,..., nk〉 denotes an occurrence sequence σ of P. 

Within the context of process model P, two distinct states stand out in the initial state, Si, and termination state, So. The 

initial state Si  is characterized by the presence of a singular token on the outgoing edge from the Start node and the 

absence of tokens elsewhere. On the other hand, the termination state So distinguishes itself by housing a singular token 
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on the incoming edge to the End node, with no tokens found elsewhere. An execution sequence of P qualifies as an 

occurrence sequence σ if and only if Start is the opening node and End concludes the sequence. Ideally, each execution 

sequence originates from the initial state and culminates in the termination state. 

The notion of soundness, introduced by van der Aalst (Aalst, 1997), was initially defined for workflow nets (a subclass 

of Petri nets). For workflow graphs (and process models), the definition of soundness simplifies to the absence of the 

local errors deadlock and lack of synchronization (Fahland et al., 2011). 

Definition 2. (Soundness of a process model P) 

• P has a deadlock iff an AND-join of P is active but never enabled in at least one execution. 

• P has a lack of synchronization iff at least one edge of P has more than one token in at least one execution.   

• P is sound iff it has neither a deadlock nor a lack of synchronization. 

A sound process model is one that is free from logical inconsistencies such as deadlocks or lack of synchronization that 

could prevent the process from functioning as intended. Soundness is a crucial property in business process management 

as it ensures that the process can always reach a proper completion, no matter the path taken through the process model. 

A sound process model guarantees that all tasks can be executed in a way that leads to a valid end state (Aalst, 1997; 

Fahland et al., 2011). This concept is particularly important in automated process discovery and modeling, where the 

reliability and correctness of the generated models are paramount (Leemans et al., 2013). Ensuring soundness often 

involves rigorous validation and verification steps, which can be challenging when dealing with complex or infrequent 

behaviors. Techniques such as inductive mining are designed to generate sound models by applying systematic 

partitioning and iterative refinement to the process data (Leemans et al., 2013). 

2.1.2 Generative AI: Large Langaguage Models  

Generative AI, particularly Large Language Models (LLMs), has revolutionized the field of Natural Language Processing 

(NLP). LLMs such as OpenAI GPT and Meta Llama are capable of generating human-like text based on large-scale 

datasets and sophisticated neural network architectures (OpenAI, 2022; Touvron et al., 2023). These models have 

demonstrated significant potential in automating a wide range of tasks, from content creation to answering complex 

queries. Recent studies have highlighted the integration of Generative AI, particularly Large Language Models (LLMs), 

into Business Process Management (BPM), focusing on how these models can automate and optimize process modeling 

tasks. Researchers have explored the use of LLMs to generate process models from textual descriptions by leveraging 

techniques like prompt engineering and few-shot learning. For example, in a proposed framework, LLMs are used to 

convert unstructured text into executable process models through carefully designed prompts and predefined functions, 

reducing the need for extensive domain expertise and making BPM more accessible to non-experts. The use of these 

generative models not only accelerates process modeling but also reduces errors through techniques like negative 

prompting, which instructs the model to avoid common mistakes (Busch et al., 2023; Kourani et al., 2024; Vidgof, 

Bachhofner, & Mendling, 2023). 

Further advancements include the concept of Large Process Models (LPMs), which combine generative AI with neuro-

symbolic systems to improve BPM automation. LPMs integrate structured process knowledge with generative AI to 

provide tailored solutions for different organizational contexts. These models enable the automatic identification of 

process domains and organizational contexts from unstructured data, offering actionable insights for process design and 

execution. However, challenges such as the dynamic nature of business processes, the need for continuous retraining, and 

the scalability of deep learning models still pose significant hurdles. These challenges suggest that while generative AI 

offers immense potential for BPM, careful consideration of its implementation is necessary to achieve long-term success 

(Kampik et al., 2024).  

2.1.3 BPM life cycle meet LLMs 

The integration of Large Language Models (LLMs) into the BPM lifecycle represents a transformative approach that 

leverages advanced AI to enhance process automation across all phases of BPM. According to Forell et al., LLMs can be 

employed throughout the BPM lifecycle, including process discovery, design, execution, and continuous improvement 

(Forell & Schüler, 2024). LLMs play a critical role in converting textual descriptions of business processes into initial 

process models, thus streamlining the often labor-intensive process discovery phase. Their capability to analyze and 

interpret unstructured data allows for a more automated and efficient transition from raw process descriptions to structured 

models (Kampik et al., 2024). 

Additionally, the role of LLMs extends to model validation and optimization, where they can suggest improvements based 

on best practices and industry standards. This ability to provide contextual recommendations enables continuous 

optimization of processes, enhancing both their efficiency and adaptability. The use of LLMs in BPM is particularly 

valuable for reducing the reliance on human intervention, as it allows for the automation of routine tasks and quicker 

responses to evolving business needs. Although this is an emerging area of research, the integration of LLMs into BPM 

shows considerable promise in improving the scalability, speed, and accuracy of business process management (Grohs, 
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Abb, Elsayed, & Rehse, 2024; Kampik et al., 2024). 

2.2 Related work 

Several studies have explored the use of natural language processing (NLP) techniques to generate process models from 

textual descriptions. Bellan et al. provide a comprehensive overview of techniques for process extraction from text, 

highlighting various methodologies used in this field (Bellan, Dragoni, & Ghidini, 2020). Gonçalves et al. employed NLP 

and text mining to derive process models, while Friedrich et al. combined NLP with computational linguistics to generate 

BPMN models (de A. R. Gonçalves, Santoro, & Baião, 2011; Friedrich, Mendling, & Puhlmann, 2011a). Sholiq et al. 

further contribute by extracting structured relationship representations from text and converting these into BPMN 

components, achieving higher accuracy in BPMN generation compared to earlier methods (Sholiq et al., 2022). The 

BPMN Sketch Miner by Ivanchikj et al. utilizes process mining techniques to create BPMN models from domain-specific 

language text  (Ivanchikj, Serbout, & Pautasso, 2020). Additionally, commercial tools like Process Talks integrate AI to 

generate process models from textual descriptions (Ivanchikj et al., 2020). 

Recent research has also explored the integration of Large Language Models (LLMs) in BPM. Busch et al. and Vidgof et 

al. investigate the applications and challenges of LLMs in BPM tasks (Busch et al., 2023; Vidgof et al., 2023). Muff and 

Fill discuss the limitations of GPT-4 in conceptual modeling, while Berti et al. assess LLMs for process mining tasks 

(Berti, Schuster, & van der Aalst, 2023; Muff & Fill, 2024). Chen and Liao propose using BERT for anomaly detection 

in process logs (Chen & Liao, 2022). Klievtsova et al. introduce conversational modeling with LLMs for generating 

process models through dialogue (Klievtsova, Benzin, Kampik, Mangler, & Rinderle-Ma, 2023), and Grohs et al. 

demonstrate LLMs’ capability to translate textual descriptions into process model constraints(Grohs et al., 2024). Fill et 

al. explore broader implications of LLMs in conceptual modeling (Hans-Georg, Peter, & Julius, 2023). 

Prompt engineering has emerged as a critical technique in guiding LLMs, particularly where accuracy and context are 

paramount. Busch et al. emphasize the importance of crafting effective prompts to ensure LLMs generate relevant and 

accurate process models (Busch et al., 2023). This technique often involves iterative refinement and chaining prompts to 

improve coherence and soundness, aligning closely with inductive mining approaches. Kourani et al. present a framework 

that leverages Large Language Models (LLMs) for automating process modeling from textual descriptions, incorporating 

advanced techniques in prompt engineering and error handling (Kourani et al., 2024). However, a notable limitation of 

their approach is its reliance on the Partially Ordered Workflow Language (POWL) for intermediate process 

representation. While POWL provides robust quality guarantees, it may constrain the flexibility and direct applicability 

of the generated models. POWL’s restriction is that it does not support inclusive behavior, such as OR gateways found in 

BPMN. This limitation prevents the framework from directly capturing and representing complex decision-making 

scenarios and alternative paths, which are essential for a comprehensive process model. Addressing this constraint will 

be crucial for future enhancements to enable the direct generation of detailed BPMN models that accurately reflect diverse 

process dynamics. 

3. REQUIREMENT FOR THE FRAMEWORK 

The proposed framework aims to automate the generation of business process models from textual descriptions. This 

framework is designed to be flexible, accommodating both traditional and advanced approaches. The requirements for 

this framework are derived from existing research, best practices in process model generation, and the specific objectives 

of creating sound and accurate process models from text. These requirements are categorized into functional and non-

functional categories, ensuring a comprehensive approach to model generation. 

3.1 Functional Requirements 

3.1.1 Entity and Relationship Extraction (FRQ 1)  

The framework must accurately interpret unstructured textual descriptions to extract key entities, such as activities (tasks), 

events, and participants, and identify the relationships between these entities. It should capture how activities and events 

are connected, such as which tasks involve specific participants or trigger certain events. For example, in the sentence, 

“The manager reviews the report, and the team implements the changes,” the framework should extract “review” and 

“implement” as activities, and identify the relationships, such as “the manager” being responsible for “reviewing” and 

“the team” for “implementing”. This ensures a clear understanding of the entities and their relationships, forming the 

basis for accurate process modeling (Busch et al., 2023; Tomo Licardo et al., 2023). 

3.1.2 Process Structure and Control Flow Extraction (FRQ 2) 

The framework must accurately identify and extract the overall process structure and control flow from textual 

descriptions. This includes: 

• Sequential Flow: Ensuring the correct order of tasks to reflect the process flow accurately. 

• Parallel and Conditional Branching: Detecting and modeling parallel tasks and decision points for accurate 

representation. 
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• Loop Detection: Identifying and modeling loops where tasks repeat until conditions are met. 

• Hierarchy and Nesting: Recognizing hierarchical and nested processes to accurately represent sub-tasks within 

larger activities. 

• Gateway Handling: Identifying and representing gateways (e.g., XOR, AND, OR) to control process flow based 

on decisions. 

This comprehensive extraction ensures that all aspects of the process are correctly modeled, reflecting the true dynamics 

of the business process (Busch et al., 2023; Tomo Licardo et al., 2023). 

3.1.3 Soundness (FRQ 3) 

Ensuring the soundness of generated process models is a non-negotiable requirement. The framework must include an 

automatic evaluation mechanism to verify the logical correctness of the models generated by the LLM or NLP system. 

This includes checking for deadlocks, livelocks, and other anomalies. If any issues are detected, the framework should 

trigger prompt adjustments and reprocessing until a sound model is achieved. This process aligns with soundness 

verification principles from inductive mining (Choi, Kongsuwan, Joo, & Zhao, 2015; Leemans et al., 2013; Prinz, Prinz, 

& De, 2017; van der Aalst, Hirnschall, & Verbeek, 2002). 

3.1.4 Iterative Refinement and CRUD Operations (FRQ 4) 

The framework should support iterative refinement of business process models through the effective implementation of 

CRUD (Create, Read, Update, Delete) operations. If the model generated by the LLM or NLP system is not accurate or 

sound, the CRUD capabilities will facilitate the refinement process by allowing the framework to create a new model, 

update the existing model based on refined prompts or parsing logic, and continuously reprocess the textual description 

until a satisfactory model is achieved. This iterative approach ensures continuous improvement and alignment with the 

intended business process (Busch et al., 2023; Kourani et al., 2024; Leemans et al., 2013). 

In this framework, CRUD operations are not just standalone functionalities but integral tools that enhance iterative 

refinement. Users can create new models directly from textual descriptions, retrieve and review existing models to identify 

discrepancies, update models with revised inputs to correct inaccuracies, and delete models that are no longer relevant. 

These operations are seamlessly integrated, enabling users to efficiently manage and refine business process models as 

the underlying textual information evolves. The design prioritizes ease of use, allowing users to transition effortlessly 

between creating, reading, updating, and deleting process models, thereby supporting the iterative refinement process in 

response to changing business requirements (Busch et al., 2023; Tomo Licardo et al., 2023). 

3.1.5 Model Generation and Visualization (FRQ 5) 

The framework must be capable of generating a generic process model from the extracted information, ensuring that it is 

not strictly tied to any specific formal language, such as Petri nets, EPCs, workflow graphs, or BPMN. This approach 

allows the generated model to be easily transformed into any desired formal language later. The visualization should still 

incorporate essential elements like tasks, events, gateways, and flows to ensure that the process is clearly represented. 

The framework should produce a generic process model that accurately reflects the sequence of tasks, decision points, 

and parallel activities described in the text, while remaining adaptable for transformation into various formal 

representations as needed (Busch et al., 2023; Tomo Licardo et al., 2023). 

3.1.6 Integration with BPM Tools (FRQ 6) 

For practical deployment, the framework must ensure that the generated business process models are compatible with 

existing BPM tools. This includes the capability to export models in standard formats, such as BPMN, and provide APIs 

or other interfaces to facilitate seamless integration with BPM software. By supporting these standard formats and 

integration methods, the framework enables easy adoption within existing business processes and toolchains, ensuring 

that the generated models can be effectively utilized in real-world applications and workflows (Busch et al., 2023). 

3.2 Non-Functional Requirements 

3.2.1 Scalability and Performance (NFRQ 1) 

The framework must maintain high performance while processing large datasets and complex descriptions. It should scale 

effectively to handle varying levels of complexity without compromising accuracy or speed, which is crucial in dynamic 

business environments where rapid model generation is necessary (Kourani et al., 2024; Ouyang, Adams, ter Hofstede, 

& Yu, 2018) 

3.2.2 Adaptability and Customization (NFRQ 2) 

The framework should be adaptable to different business domains and allow customization of the process model 

generation according to specific domain requirements. This includes flexibility to tweak extraction rules, model 

generation parameters, and visualization settings based on industry-specific needs. Adaptability ensures the framework’s 
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broad applicability across different industries and use cases (Busch et al., 2023; Kourani et al., 2024). 

3.2.3 User Validation and Feedback (NFRQ 3) 

The framework should provide interfaces for user validation and feedback, allowing users to review and correct the 

generated process model. This interaction ensures that the model aligns with the user’s understanding and expectations. 

After generating a BPMN model, the user should be able to inspect, adjust, and provide feedback on the model, which 

the framework can learn from. User validation is essential for refining the model, ensuring its practical utility, and 

fostering user trust in the automated process model generation system (Forell & Schüler, 2024; Kourani et al., 2024). 

3.3 Design Considerations 

As we develop the proposed framework, several critical design decisions and challenges need to be considered to ensure 

the system’s robustness, flexibility, and practical applicability across various business domains. 

3.3.1 Design Decisions (DD): 

Key decisions include determining the balance between automation and user control, particularly in handling ambiguities 

in textual descriptions. The integration with existing BPM tools is crucial for ensuring compatibility and ease of adoption. 

Additionally, the framework must decide between leveraging external API services for LLMs versus deploying a local 

LLM instance, each with distinct trade-offs in cost, computational resources, and data privacy. Another important decision 

revolves around the iterative refinement process, ensuring continuous improvement of the generated models (Busch et 

al., 2023; Grohs et al., 2024; Kourani et al., 2024; Leemans et al., 2013). 

3.3.2 Design Challenges (DC): 

The framework will face challenges such as managing ambiguity and inconsistency in textual descriptions, ensuring 

scalability when processing large volumes of text, and integrating with diverse BPM tools. Moreover, ensuring the 

soundness of generated models and gaining user trust are critical challenges that must be addressed to ensure the 

framework’s effectiveness and reliability. Managing costs associated with using external APIs versus local deployment 

presents an additional layer of complexity, particularly in enterprise environments (Grohs et al., 2024; Kourani et al., 

2024). 

4. THE FRAMEWORK 

The framework for generating accurate and sound business process models from textual descriptions is a multi-stage 

approach that leverages the capabilities of large language models (LLMs) to automatically generate business process 

models from textual descriptions. This framework not only facilitates process model generation but also includes 

verification and feedback mechanisms to ensure the model’s accuracy and correctness. 

The framework’s workflow begins with a natural language input, referred to as the Input Process Narrative, which 

describes a business process. The system first performs Context Understanding, parsing the input to identify the process 

goals and establish its context. From there, Entities Identification ensures all unique activities, actors, and tasks are 

recognized, eliminating any redundancies or duplications. The framework proceeds with Gateways Identification, 

pinpointing decision points and parallel flows that determine alternative paths within the process. Loops Identification 

detects any repeated tasks, ensuring accurate representation of iterative activities. After identifying all these elements, the 

system organizes them through Sequence Flows Identification, creating a coherent process flow that aligns with business 

objectives. 

Once the process flow is established, the framework moves into Business Process Generation, where it transforms the 

identified elements into a formal business process model using Graphviz’s DOT language. The generated model then 

undergoes Business Process Verification to ensure structural correctness and adherence to BPM principles. If errors are 

detected, the framework either triggers an automated feedback loop for corrections or requests manual input from process 

experts. Finally, after all necessary adjustments are made, the verified business process model is exported for integration 

into business systems. This workflow highlights the iterative approach of SProLLaM, blending automation and feedback 

to create accurate and reliable process models. This workflow, depicted in Fig. 2, highlights the iterative approach of 

SProLLaM, blending automation and feedback to create accurate and reliable process models 

4.1 Components of the framework 

The framework is structured into two main stages: Automatic Process Model Generation and Automatic Structural 

Verification of Business Process. The framework incorporates a series of systematic prompts, services, and feedback 

loops that work together to ensure accuracy, soundness, and coherence throughout the business process model generation 

lifecycle. It employs prompt chaining to leverage multiple LLM models, offering flexibility and cost efficiency (NFRQ 

3), while maintaining scalability and performance (NFRQ 1). 
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4.1.1 Stage 1 - Automatic Process Model Generation 

This stage focuses on generating a business process model from an input process narrative, which typically consists of 

textual descriptions of business activities. The framework uses NLP techniques to parse and extract key elements from 

the text (FRQ 1), handling linguistic variations and ambiguities to accurately interpret complex or poorly structured 

inputs. This stage aligns with the framework’s functional requirements for input processing, entity extraction, and process 

structure extraction (FRQ 1, FRQ 2). 

• Context Understanding (FRQ 1): The process begins with interpreting the text to understand the overall goals 

and context of the business process. This component uses NLP techniques for syntax parsing and semantic 

analysis to identify key objectives, which guide the subsequent steps in model generation. For example, it ensures 

that tasks like “approval” and “forwarding” are correctly identified from the phrase “Once the document is 

approved, it is forwarded to the manager.” 

• Entities Identification (FRQ 1): Once the context is understood, the framework identifies distinct activities, 

actors, and tasks within the process. This step ensures that all entities are unique and that no duplications or 

redundancies exist. It also establishes relationships between tasks, recognizing dependencies, sequences, and 

parallel flows, ensuring that the model reflects the true dynamics of the business process. 

• Gateways Identification (FRQ 2): This component recognizes decision points, parallel flows, and branches 

within the process. It identifies conditions that lead to different paths in the process, such as decision points like 

"if" conditions or branching logic. For example, in a phrase like “If the budget is approved, proceed with 

procurement; otherwise, revise the proposal,” this component ensures that these alternative paths are identified 

and correctly modeled. 

• Loops Identification (FRQ 2): The framework detects any loops or repeated tasks in the process. It identifies 

activities that repeat until certain conditions are met, such as a phrase like “repeat the inspection until the issue 

is resolved.” Accurately modeling these loops is critical for representing iterative processes within the business 

flow. 

• Sequence Flows Identification (FRQ 2): After all tasks, entities, gateways, and loops are identified, this 

component organizes them into a coherent sequence flow. It ensures that the business process flows logically 

from one step to the next, respecting all identified dependencies and conditions. This stage ensures that the 

generated process model accurately reflects the described process’s flow, hierarchy, and control logic, aligning 

with business objectives. 

4.1.2 Stage 2 - Automatic Structural Verification of Business Process 

Once the initial process model is generated, Stage 2 focuses on ensuring the model’s structural soundness and alignment 

with business rules (FRQ 3). This stage involves verifying the logical correctness of the generated model using external 

tools, ensuring it is free from issues such as deadlocks and livelocks, and that it adheres to BPM principles. This stage 

addresses the functional requirement for model generation and soundness verification, ensuring that the business process 

model adheres to established principles of BPM and process mining (FRQ 3, FRQ 5). 

• Business Process Generation (FRQ 5): The framework transforms the identified sequence flows and activities 

into a formal business process model. This model is typically generated in a generic format, such as Graphviz’s 

DOT language, allowing for adaptability and subsequent transformation into other formal languages like BPMN 

or Petri nets (FRQ 5). This flexibility ensures that the model can be integrated with various BPM tools (FRQ 6). 

• Business Process Verification (FRQ 3): After generating the model, this component verifies its structural 

correctness and logical soundness. External verification tools are employed to check for errors such as deadlocks, 

improper task sequences, and other anomalies that could disrupt the execution of the process model. The 

framework ensures that the process flows correctly, with all conditions, branches, and loops functioning as 

intended. 

• Evaluation (FRQ 3): If errors or inconsistencies are detected during the verification process, the framework 

evaluates these discrepancies and suggests corrections. The evaluation process identifies areas that require 

adjustments, ensuring that the model is logically consistent and aligned with the business rules and objectives. 

4.1.3 Error Handling and Feedback Loops 

To ensure that the generated business process model is accurate and reliable, the framework incorporates both automated 

and manual feedback loops, enabling iterative refinement (FRQ 4). These loops allow for continuous improvements until 

a sound and correct model is achieved. This stage fulfills both the functional and non-functional requirements for iterative 

refinement, model export, and user validation (FRQ 4, FRQ 6, NFRQ 3) 

• Auto Feedback Loop (FRQ4): This loop is triggered automatically when the verification process detects errors. 

Predefined prompts suggest corrections for common syntax and semantic issues within the model, ensuring that 

minor issues are resolved quickly without requiring human intervention. The framework leverages prompt 

chaining to reprocess the text and adjust the model iteratively, enhancing cost efficiency (NFRQ 2). 
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• Human Feedback Loop (FRQ 4, NFRQ 3): When automated corrections are insufficient or ambiguous, this 

component enables manual feedback from process experts. Users can inspect, review, and make adjustments to 

the model, ensuring that it aligns with their understanding and expectations. This interaction fosters user trust in 

the system and ensures the model’s practical utility. 

• Export Business Process (FRQ 6): Once the model has been verified and refined, the final business process 

model is exported in a standard format, such as BPMN, for integration into business systems. This output is 

compatible with existing BPM tools, enabling seamless deployment in real-world applications (FRQ 6). 
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Fig. 2. The framework for sound process model generation using large language models 

4.2 Prompt Engineering for Automated Process Model Generation 

This section delves into the strategies and methodologies integral to the framework for generating accurate business 

process models from natural language descriptions. Key techniques include prompt engineering methods such as prompt 

chaining and chain-of-thought reasoning. These techniques guide large language models (LLMs) to accurately interpret 

and model complex business processes. Prompt engineering focuses on crafting prompts that elicit precise responses 

while leveraging the strengths and managing the limitations of LLMs. By breaking down complex tasks into smaller, 

sequential prompts, prompt chaining creates a workflow where each step builds on the last. This approach allows for 

nuanced guidance, ensuring the model handles intricate queries effectively. These strategies enable efficient model 

generation while adhering to principles of flexibility, cost-effectiveness, and iterative refinement (OpenAI, 2022; Touvron 

et al., 2023) 

4.2.1 Prompt Engineering 

The framework incorporates a range of advanced prompt engineering techniques to maximize the performance of LLMs 

in business process model generation. These techniques include prompt chaining, chain-of-thought reasoning, knowledge 

injection, and few-shots learning to improve accuracy and efficiency: 

• Decomposition of Tasks (Chain-of-Thought Reasoning): The framework uses chain-of-thought reasoning to 

break down the task of process model generation into smaller, sequential steps. Each prompt focuses on a specific 

subtask, such as understanding the context, identifying actions, or recognizing gateways. By guiding the LLM 

step by step through these subtasks, the framework ensures that the generated process models are coherent and 

logically consistent. This approach reduces the cognitive load on the LLM and helps it generate accurate outputs, 

even for complex business processes. 

• Prompt Chaining for Structured Model Generation: Prompt chaining is central to the framework’s strategy. Each 

prompt’s output serves as the input for the next prompt, creating a flow of information that progressively refines 

the process model. For example, after the Context Understanding prompt establishes the process scope and 

objectives, its output is used by the Entities Identification prompt to extract specific tasks and events. This 
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chaining allows the model to build incrementally, ensuring that each aspect of the process is handled in a logical 

and structured manner. 

• Knowledge Injection for Domain-Specific Understanding: The framework leverages knowledge injection to 

provide the LLM with domain-specific insights that may not be part of its pre-existing knowledge base. For 

example, the framework can inject detailed knowledge about BPMN 2.0.2 standards, business rules, or specific 

industry practices to ensure that the generated models adhere to the required standards. By enhancing the LLM’s 

understanding of these specialized concepts, knowledge injection reduces the likelihood of errors and ensures 

that the output models are contextually appropriate and compliant with industry norms. 

• Few-Shots Learning for Enhanced Performance: Few-shots learning is employed to further improve the LLM’s 

performance in generating process models. The framework provides the LLM with a few examples of process 

descriptions along with their corresponding expected models. These examples help the LLM better understand 

the structure and logic required in process modeling, enabling it to generate more accurate outputs. By giving 

the LLM relevant examples, the framework enhances its ability to handle similar tasks and scenarios, ensuring 

that the output models align with best practices. 

• Role-Based Prompting for Expertise: The framework uses role-based prompting to instruct the LLM to assume 

specific roles during model generation. For example, the LLM is prompted to act as a process modeling expert, 

ensuring that it applies industry knowledge and best practices when generating the process model. This approach 

ensures that the LLM produces high-quality, contextually appropriate models by leveraging its role-specific 

expertise. 

• Negative Prompting for Error Prevention: Negative prompting is used to instruct the LLM on what to avoid 

during model generation. This includes avoiding common errors, such as incorrect loop structures or improper 

gateway configurations. By preemptively guiding the LLM away from these pitfalls, the framework ensures a 

higher level of accuracy in the output, reducing the need for manual corrections later in the process. 

These prompting strategies, combined with chain-of-thought reasoning, prompt chaining, knowledge injection, and few-

shots learning, ensure that the framework generates accurate, sound, and contextually relevant business process models. 
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Fig. 3. Prompt Flows for automated process model generation 

4.2.2 Process Model Generation 

Once the LLM generates the core elements of the business process model, the framework transitions into the process 

model generation phase. This phase focuses on producing a generic process model that supports key business process 

elements, ensuring that the model is adaptable for various practical applications. 

• Generating the Generic Process Model: The framework generates a generic process model that incorporates 

essential elements such as tasks, events, gateways, loops, and sequence flows. The model is output in a flexible 
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format, specifically as a Graphviz DOT file. This format allows the model to be visualized and further refined 

as needed, making it a practical solution for real-world business scenarios. 

• Visualization of the Process Model: After the model is generated in Graphviz DOT format, it is visualized using 

graph-based visualization tools. This visualization provides a clear representation of the process flow, allowing 

users to easily analyze and validate the model. The visualization includes all core elements of the process, 

ensuring that the model is easy to interpret and aligned with the business goals. 

• Export and Integration: The framework supports exporting the generated process model in standard formats 

such as BPMN, ensuring compatibility with existing BPM tools. This export capability allows businesses to 

integrate the generated models into their existing workflows, making the framework a versatile and practical tool 

for business process management. 

• Refinement Loop with User Feedback: The framework incorporates an interactive refinement loop that allows 

users to provide feedback on the generated model. This feedback is processed through additional prompts, which 

refine the model based on user input. The feedback loop ensures that the model continues to evolve and adapt to 

specific business requirements, providing a continuous improvement process that aligns with user expectations. 

Through the process model generation phase, the framework ensures that the generated models are practical, adaptable, 

and ready for deployment in real-world business scenarios. By generating a generic process model, visualizing it, and 

integrating it into business systems, the framework offers a comprehensive solution for business process modeling. 

4.3 Feedback loops 

Just as humans can make errors when modeling complex business processes, large language models (LLMs) may also 

produce inaccuracies in process models, despite their advanced capabilities. To address these issues, the framework 

integrates feedback loops to ensure that generated business process models are accurate, logically sound, and aligned with 

business objectives. These feedback loops operate in both automated and manual capacities, addressing potential errors 

and facilitating iterative refinement. By leveraging these loops, the framework ensures that the models evolve toward 

higher precision and quality. 

4.3.1 Adjustable and Non-Adjustable Errors 

Errors in business process models can be categorized into two types: adjustable errors and non-adjustable errors. The 

framework manages these errors through iterative LLM adjustments or escalates them for human intervention, depending 

on the complexity and nature of the issue. 

• Adjustable Errors: These are errors that the system can resolve through iterative engagement with the LLM. 

They typically involve minor syntax inconsistencies, synchronization misalignments, or gateway 

misconfigurations. For example, if a misconfigured gateway causes a potential deadlock, the system generates 

prompts to modify the gateway type and ensure proper flow. Most adjustable errors are resolved efficiently 

within a few iterations, minimizing the need for manual input. 

• Non-Adjustable Errors: These are more complex issues that cannot be resolved through automated LLM 

adjustments alone. They include significant structural flaws, such as deadlocks, irreducible loops, or major 

synchronization problems that persist after several iterations of corrective prompts. When these issues occur, the 

system escalates them for human intervention. The system halts further automated corrections and flags the error 

for human review, providing detailed diagnostic information to guide manual resolution. 

This categorization allows the framework to efficiently address a wide range of errors autonomously while ensuring that 

more complex and critical problems are escalated to experts when necessary 

4.3.2 Refinement Based on Verification Results 

The framework integrates a robust automatic error-handling mechanism that detects and resolves adjustable errors during 

the verification stage. The framework relies on verification rules (Choi et al., 2015), such as ensuring structural 

consistency, correcting loop configurations, and resolving synchronization issues, to guide the LLM in refining the model. 

These rules target critical elements like loop gateways (e.g., headers, exits, and backward splits), helping to detect and 

correct deadlocks, synchronization issues, and other structural conflicts (Choi et al., 2015). 

While the framework is based on the verification rules from (Choi et al., 2015), it is designed to be adaptable, allowing 

new diagnostic information and verification rules to be integrated with minimal modification. By leveraging diagnostic 

information, the framework identifies and addresses control-flow errors that could obstruct the correct functioning of 

business process models. Engaging the LLM in an iterative feedback loop, the system dynamically corrects these errors, 

ensuring that the models conform to BPMN standards and business logic. The paper will detail various types of diagnostic 

information, such as syntax errors, deadlocks, and lack of synchronization, along with methods for their automatic 

resolution, ensuring the generated models are ready for practical use in simulation, code generation, and execution. 

Table 1. Types of Diagnostic Information 
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Syntax Errors Deadlocks Lack of Synchronization 

Syntax errors in process models 

include issues such as activities or 

events having multiple incoming or 

outgoing edges, gateways not being 

explicitly defined as split or join, and 

gateways with only a single incoming 

and outgoing edge. Additionally, 

models lacking start or end events are 

considered syntax errors. 

A deadlock occurs when a token 

becomes “stuck” on an edge of an 

AND-join, preventing further 

progress in the process. 

 

A lack of synchronization occurs 

when multiple tokens appear on an 

edge that should have only one token. 

This typically arises from improperly 

merged parallel paths, such as 

merging parallel paths with an XOR-

join, leading to potential 

inconsistencies in execution. 

Below are generalized prompt templates with placeholders to illustrate how the framework addresses these errors, aligned 

with specific verification rules:  

Ensuring structural consistency in the acyclic process (VR4): During the verification process, the system ensures that 

the final acyclic model is free from structural conflicts that could lead to deadlocks or synchronization issues. These 

conflicts often arise when gateways are misconfigured, causing tokens to become stuck or accumulate improperly, which 

can disrupt the process flow. 

• Prompt Template: 

“Structural conflicts have been detected at the [current_gateway_type] gateway in the acyclic model, which 

could result in [issue_type] (e.g., deadlock or synchronization issue). Please review the gateway configuration 

and reconfigure it as an [alternative_gateway_type] gateway to ensure smooth process flow and prevent token 

blockage or accumulation.” 

• Placeholders: 

[current_gateway_type] - The type of gateway currently causing the issue (e.g., AND). 

[issue_type] - The type of issue detected (e.g., deadlock, synchronization issue). 

[alternative_gateway_type] - The suggested gateway type to replace the current configuration (e.g., XOR). 

Correcting loop gateways (VR1): When issues arise at loop headers, exits, or backward splits—such as deadlocks or 

synchronization problems caused by improper gateway configurations—the system generates a prompt to adjust the 

control flow: 

• Prompt Template: 

“The current configuration at the loop [header/exit/split] in [loop_position] is causing issues with process flow. 

Please change the [current_gateway_type] gateway to an [alternative_gateway_type] gateway to ensure proper 

synchronization and prevent deadlocks.” 

• Placeholders: 

[loop_position] - The specific position within the loop where the issue occurs. 

[current_gateway_type] - The type of gateway currently causing the issue (e.g., AND). 

[alternative_gateway_type] - The suggested gateway type to replace the current configuration (e.g., XOR). 

Resolving conflicts in extended forward and backward flows (VR2): If structural conflicts are detected in the extended 

forward flow (eFwd) or extended backward flow (eBwd) of a natural loop, the system engages the LLM with a prompt 

to verify and adjust the configuration of nodes and edges: 

• Prompt Template: 

“Structural conflicts have been identified in the extended flow between [start_node] and [end_node] in the loop. 

Please review and adjust the configuration of nodes and edges to ensure no concurrency issues or conflicts exist.” 

• Placeholders: 

[start_node] - The starting node of the conflicted flow. 

[end_node] - The ending node of the conflicted flow. 

Fixing multiple exits leading to the same node (vr3): When multiple loop exits converge on the same destination node 

outside the loop, a prompt is generated to reconfigure the gateway at the destination node to prevent unintended multiple 

instantiations: 

• Prompt Template: 

“Multiple exits from the loop are converging on the node at [destination_node], which could result in unintended 

multiple instantiations of the process. Please adjust the configuration by setting the [destination_node] gateway 

to an [alternative_gateway_type] join to prevent duplication of paths.” 

• Placeholders: 

[destination_node] - The node where multiple exits are converging. 

[alternative_gateway_type] - The suggested gateway type (e.g., XOR) to manage the converging paths. 
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Handling irreducible loops with multiple entries and exits (vr5): For more complex irreducible loops that have multiple 

entry and exit points, the system prompts the LLM to adjust the gateways to prevent deadlocks and other issues: 

• Prompt Template: 

“An irreducible loop with multiple entry/exit points has been detected at [loop_position]. Please modify the 

gateway configuration by replacing the [current_gateway_type] gateways with [alternative_gateway_type] 

gateways at the loop entries/exits to ensure proper flow and prevent deadlocks.” 

• Placeholders: 

[loop_position] - The position of the irreducible loop. 

[current_gateway_type] - The type of gateway currently causing issues at the loop entries/exits. 

[alternative_gateway_type] - The suggested gateway type to resolve the issue (e.g., XOR). 

These prompt templates provide the LLM with the necessary guidance to dynamically correct the detected errors in the 

business process model. By iteratively refining the model based on the provided diagnostic information, the framework 

ensures that the generated models are robust, accurate, and free of structural conflicts. The use of placeholders allows 

these prompts to be adaptable across a wide range of scenarios, ensuring flexibility in addressing various verification 

challenges. 

4.3.3 Refinement Based on Human Feedbacks 

For non-adjustable errors that the automated system cannot resolve, human feedback becomes crucial in refining the 

business process models. These non-adjustable errors are flagged for manual review by process experts, who are equipped 

with decision support information to aid in correcting the model. Human intervention ensures that even the most complex 

or ambiguous issues are addressed, preserving the quality and accuracy of the final process model. 

• Interactive Refinement: Once the automatic system identifies non-adjustable errors, the process is handed over 

to human experts. These experts are provided with detailed diagnostic information, including the error type, 

location, and previous automated attempts at resolution. This information allows them to make informed 

decisions when refining the model. The framework supports interactive refinement, where human feedback is 

incorporated back into the system for iterative improvements. 

• Decision Support Information: The framework offers decision support information to help human experts 

understand the implications of their changes. This includes visual representations of the problematic areas, 

suggestions based on BPMN standards, and historical context from previous iterations. By providing this 

information, the system ensures that experts can make precise adjustments while considering the broader impact 

on the process model. 

• Feedback Loop Integration: After human corrections are made, the framework integrates this feedback into the 

model generation pipeline, allowing the system to learn from these adjustments. The updated model undergoes 

another round of verification to ensure that the manual corrections have resolved the issues without introducing 

new problems. This loop of human feedback and automated verification ensures continuous improvement of the 

model, aligning it with business goals and technical requirements. 

Through a combination of automated refinement and human intervention, the framework ensures that business process 

models are both accurate and practical for real-world applications. The balance between LLM-driven automation and 

expert-driven manual refinement guarantees that even complex, non-adjustable errors are resolved effectively 

4.4 Design Decisions (DD) 

The development of the framework necessitates several critical design decisions to balance the framework’s flexibility, 

robustness, and adaptability across different business domains. These decisions directly impact the framework's usability, 

performance, and scalability. Key considerations include the balance between automation and user control, integration 

with existing BPM tools, handling ambiguities in textual descriptions, the iterative refinement process, and managing 

computational resources. 

4.4.1 DD1: Level of Automation vs. User Control 

One of the foundational design decisions in the framework is determining the balance between automation and user 

control. The framework aims to automate the process model generation from textual descriptions as much as possible, 

minimizing the need for manual intervention. However, complete automation may not be feasible or desirable in all cases, 

especially when dealing with complex or ambiguous texts. 

Allowing user control at critical junctures in the process can help ensure that the generated models accurately reflect the 

business processes as understood by human experts. For example, when the LLM encounters ambiguities in the text, the 

framework could either attempt an automated resolution based on predefined rules or prompt the user for clarification. 

Configurable settings within the framework should allow users to adjust the level of automation and intervention, enabling 

them to step in when necessary. This balance between automation and user control directly influences the framework’s 

usability, as more automation reduces user workload, but excessive automation might lead to inaccuracies if the model 
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does not align perfectly with user expectations (Busch et al., 2023) 

4.4.2 DD2: Integration with Existing BPM Tools 

Integrating the generated process models with existing BPM tools is another crucial design decision. The framework must 

ensure compatibility with widely used BPM platforms, which often support specific formats, such as BPMN, XPDL, or 

Petri nets. The choice of output formats and data interchange mechanisms will influence how easily organizations can 

adopt the framework and integrate it into their existing workflows. 

Deciding on the level of compatibility with existing BPM tools also impacts how seamless the integration will be. For 

example, providing APIs and export options in standard BPM formats can facilitate adoption without requiring significant 

customization or re-engineering of current systems. This decision is vital to the framework’s practical deployment, as 

successful integration with BPM tools is essential for real-world applications (Busch et al., 2023) 

4.4.3 DD3: Handling of Ambiguity in Textual Descriptions 

Textual descriptions of business processes often contain ambiguities and inconsistencies. The framework must decide on 

how to handle these ambiguities to ensure accurate and reliable process model generation. Options include leveraging 

predefined rules, allowing user feedback loops, or incorporating advanced natural language processing (NLP) techniques 

to disambiguate and clarify the text autonomously. 

This decision affects the framework’s capability to deal with real-world text, which is often vague or incomplete. 

Advanced NLP techniques, such as context-aware language models, can help resolve ambiguities automatically, but there 

may still be cases where human input is necessary. The framework needs to be designed with flexibility in mind, enabling 

it to escalate complex cases for manual review when automated methods are insufficient (Tomo Licardo et al., 2023; 

Busch et al., 2023) 

4.4.4 DD4: Iterative Refinement Process 

The iterative refinement process is a critical design decision that determines how the framework continuously improves 

the generated process models. This involves deciding on the number of iterations allowed, the criteria for determining 

when a model is sufficiently refined, and how user feedback is integrated into subsequent iterations. 

The framework should be designed to support iterative refinement, allowing for continuous model adjustments based on 

feedback from automated verifications or user input. This iterative approach ensures that the final process models are 

sound and align with business objectives. The refinement process must be flexible enough to accommodate varying levels 

of complexity in the input text and provide mechanisms for continuous improvement (Leemans, Fahland, & van der Aalst, 

2013). 

4.4.5 DD5: Cost and Computational Resources 

A critical design decision in this framework involves determining how to allocate computational resources effectively 

between using external API services for LLMs (such as GPT-based models provided by OpenAI (OpenAI, 2022)) or 

deploying a local LLM instance (Touvron et al., 2023). External APIs offer the advantage of simplicity and access to 

powerful, continuously updated models, but they come with recurring costs that can escalate significantly with increased 

text processing volumes. Conversely, deploying a local LLM requires substantial upfront investment in computational 

resources, such as powerful GPUs or specialized hardware, but can lower long-term operational costs and provide greater 

control over data privacy. 

The design decision must also account for the modular nature of the framework, where different approaches can be applied 

to different steps based on their importance and resource needs. For the most critical steps that demand high accuracy and 

sophisticated language processing, more resources, such as LLMs, will be allocated, potentially through API services. In 

contrast, less critical steps might employ local LLMs or traditional NLP techniques, which are less resource-intensive but 

still sufficient for those tasks. This strategic allocation of resources ensures that each step in the process is handled cost-

effectively, balancing performance, scalability, data security, and budget constraints (Tomo Licardo et al., 2023). 

4.5 Design Challenges (DC) 

The development of the framework involves overcoming key design challenges related to ensuring its effectiveness, 

scalability, and reliability across diverse business domains. Addressing these challenges is essential for successful 

deployment and adoption in real-world scenarios. 

4.5.1 DC1: Ambiguity and Inconsistency in Textual Descriptions 

One of the primary challenges in generating business process models from textual descriptions is handling the inherent 

ambiguity and inconsistency often present in natural language. Business process narratives are frequently vague, 

incomplete, or open to multiple interpretations, making it difficult to generate accurate and reliable process models 

automatically. To address this challenge, the framework must incorporate advanced methods that can interpret and clarify 
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ambiguous text. This may include using context-aware analysis, semantic understanding, and domain-specific knowledge 

to resolve ambiguities. However, even with sophisticated techniques, some cases will still require human intervention. 

Balancing automation with opportunities for user feedback and manual correction is essential to overcoming this 

challenge and ensuring the generated models align with real-world business processes (Tomo Licardo et al., 2023). 

4.5.2 DC2: Scalability in Large-Scale Implementations 

Scalability is another significant challenge for the framework, particularly when processing large volumes of text or 

handling highly complex business processes. As the size and complexity of the input data increase, the framework must 

maintain high performance without sacrificing accuracy or speed. To address this, advanced methods must be 

implemented to optimize the framework's architecture, enabling it to efficiently process larger workloads. This may 

involve techniques such as distributed computing, parallel processing, and horizontal scaling, which allow the framework 

to expand its capacity by adding computational resources as needed (Busch et al., 2023). 

4.5.3 DC3: Integration with Diverse BPM Tools 

Integrating generated process models with various BPM tools presents a complex challenge due to the diverse standards 

and practices across industries. Different BPM platforms often use distinct data formats, modeling languages, and 

workflows, making seamless integration difficult without extensive customization. To address this, the framework must 

be designed to be flexible and adaptable, supporting multiple output formats and providing integration mechanisms such 

as APIs. This flexibility is essential to ensure compatibility with a wide range of BPM tools, allowing organizations to 

adopt the framework regardless of their existing BPM infrastructures and workflows. (Busch et al., 2023). 

4.5.4 DC4: Ensuring Model Soundness 

Ensuring the soundness of generated process models is a critical challenge, especially when dealing with complex 

processes or ambiguous textual descriptions. A sound process model must be free from logical errors such as deadlocks, 

improper task sequencing, or synchronization issues that could disrupt the intended process flow. To address this, the 

framework must incorporate robust verification mechanisms capable of automatically detecting and correcting logical 

errors. These mechanisms need to handle a wide range of potential issues, from basic syntax mistakes to intricate structural 

conflicts. Implementing such verification processes in a manner that is both thorough and efficient is particularly 

challenging in large-scale or dynamic business environments (Leemans, Fahland, & van der Aalst, 2013). 

4.5.5 DC5: User Adoption and Trust 

Gaining user trust in automatically generated models is another key challenge. Business process experts accustomed to 

manual modeling may be skeptical of fully automated solutions, particularly regarding the accuracy and completeness of 

the generated models. To address this, the framework must prioritize transparency in the model generation process, 

allowing users to understand how the models are created and validated. Additionally, the framework should offer 

interfaces for user validation and feedback, enabling experts to review, adjust, and refine the models as necessary. By 

fostering trust through transparency and control, the framework can enhance its adoption among business process 

professionals (Busch et al., 2023). 

4.5.1 DC6: Cost Management in API Use vs. Local Deployment 

Managing the costs associated with using external services versus local deployment presents a significant challenge for 

the framework, especially in enterprise environments where large volumes of text must be processed regularly. External 

services, such as those offered by advanced model providers, come with recurring costs that can escalate quickly as usage 

increases. Conversely, deploying a local instance requires substantial upfront investment in computational resources, 

including specialized hardware, as well as ongoing maintenance expenses. Addressing this challenge necessitates a careful 

balance between cost, performance, and scalability. The framework could, for example, leverage external services for 

high-demand tasks while utilizing local resources for less intensive operations. Additionally, offering flexible deployment 

options would allow organizations to choose the approach that best aligns with their budget and performance needs 

(Touvron et al., 2023; Tomo Licardo et al., 2023). 

5. PROOF-OF-CONCEPT SYSTEM AND EVALUATION 

This section outlines the implementation of the framework and presents an evaluation using a series of test examples. The 

system, built in Python, leverages OpenAI’s GPT-4o models to automatically generate business process models from 

textual descriptions. This implementation is hosted on GitHub (https://github.com/LeonDragon/sProGen), and it features 

a web-based user interface developed using Flask. Users can input textual descriptions of processes, which the system 

processes to generate graphical models using Graphviz’s DOT language. The evaluation demonstrates the system’s 

capabilities through several examples. 

5.1 System Implementation    

The framework employs a structured approach consisting of two main stages: Automatic Process Model Generation and 
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Automatic Structural Verification of Business Processes. These stages utilize systematic prompts and large language 

models to transform unstructured text into structured business process models. The web-based user interface (UI) allows 

users to input textual narratives describing business processes, which the system then parses to identify entities, control 

flows, gateways, loops, and other components, generating a structured model. The resulting model is visualized as a graph 

using the DOT language and can be exported for integration with business process management (BPM) tools. An example 

of the UI is shown in Fig. 4. 

 

Fig. 4. User Interface of the Business Process Model Generator 

5.2. Evaluation 

The paper evaluates the efficacy and accuracy of the framework in generating process models from textual descriptions 

of business processes, as defined in Definition 1. The evaluation focuses on the system’s ability to accurately interpret 

process information, manage concurrency and decision points, and translate them into coherent process models. We assess 

the outputs based on syntactic correctness (adherence to defined syntax rules), semantic correctness (accurate 

identification of process elements and relationships), and pragmatic correctness (usability and visual coherence). Our 

evaluation strategy tests the system with examples of varying complexity, starting with a textual process description 

followed by an analysis of the generated model. The results highlight the system’s performance and identify any 

syntactical or structural issues. 

Table 2. Examples of process descriptions from (Dumas, La Rosa, Mendling, & Reijers, 2018) 

No Process 

Name 

Process description 

1 Invoice 

checking 

As soon as an invoice is received from a customer, it needs to be checked for mismatches. The 

check may result in any of the following three options: (i) there are no mismatches, in which case 

the invoice is posted; (ii) there are mismatches but these can be corrected, in which case the 

invoice is resent to the customer; and (iii) there are mismatches but these cannot be corrected, in 

which case the invoice is blocked. Once one of these three activities is performed the invoice is 

parked and the process completes.  

2 Order-to-

cash 

Order-to-cash process starts whenever a purchase order has been received from a customer. The 

first activity that is carried out is confirming the order. Next, the shipment address is received so 

that the product can be shipped to the customer. Afterwards, the invoice is emitted and once the 

payment is received the order is archived, thus completing the process. Please note that a purchase 

order is only confirmed if the product is in stock, otherwise the process completes by rejecting 

the order. If the order is confirmed, the shipment address is received and the requested product is 

shipped while the invoice is emitted and the payment is received. Afterwards, the order is 

archived and the process completes. 

3 Assessing 

loan 

applications 

Once a loan application is received by the loan provider, and before proceeding with its 

assessment, the application itself needs to be checked for completeness. If the application is 

incomplete, it is returned to the applicant, so that they can fill out the missing information and 

send it back to the loan provider. This process is repeated until the application is found complete 
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Example 1 - Invoice checking: This process presents a straightforward business process with a basic sequential flow and 

a conditional decision. 

 

Fig. 5. Generated business process for the Invoice checking process description 

Table 3. Generating and Evaluating the Invoice Checking Process 

Key 

Elements 

o Sequential flow: CheckForMismatches → PostInvoice / ResendInvoice / BlockInvoice → 

ParkInvoice 

o Conditional decision: The XOR gateway directs the flow based on the outcome of the mismatch 

check 

Generated 

Model 

o The model generated (as shown in Fig. 5) by the system correctly identifies the sequence of tasks and 

the decision point. The XOR gateway is used to handle the conditional branch, ensuring that the 

process flows according to the description 

Evaluation o Syntactical Accuracy: The system accurately models the sequence and decision logic, with no 

syntactical errors observed. 

o Soundness: The model is sound 

o Comments: The process flow is represented clearly, and the system handles simple decision points 

effectively 

Example 2 - Order-to-Cash: The process demonstrates moderate complexity by incorporating both parallel flows and 

conditional decisions. The parallelism in handling the shipping and invoicing tasks increases the need for accurate 

synchronization, while the conditional decision based on product availability introduces branching logic. In general, the 

system effectively captures these complexities, ensuring that the concurrent activities and decision points are modeled 

accurately and efficiently. 

 

Fig. 6. Generated business process for the Order-to-Cash process description 

Table 4. Generating and Evaluating the Order-to-Cash Process 

Key 

Elements 

o Sequential flow: ConfirmOrder → ReceiveShipmentAddress → ReceivePayment → ArchiveOrder 

o Conditional decision: The XOR gateway directs the flow based on product availability, either 

confirming or rejecting the order. 

o Parallel flow: The AND gateway enables concurrent execution of ShipProduct and EmitInvoice 

activities. 

Generated 

Model 

o The model generated (as shown in Fig. 6) ccurately represents the sequence of tasks, decision points, 

and parallel flows. The XOR gateway correctly handles the conditional logic, while the AND gateway 

ensures parallelism in shipping and invoicing. However, the convergence of AND split (ShipProduct 

and EmitInvoice) are not handle properly. 

Evaluation o Syntactical Accuracy: The system accurately models the sequence and decision logic. However, the 

end event after RejectOrder is not properly illustrated in the generated process model. 

o Soundness: The process model contains a lack of synchronization error at the XOR join. 

o Comments: While the system effectively models the sequence and decision logic, there are issues 

with properly illustrating the end event after RejectOrder. Additionally, the process model encounters 

a lack of synchronization at the XOR join, indicating the need for further refinement to ensure 

soundness. 

To address the issues identified during evaluation, the system leverages automated feedback loops that iteratively refine 

the process model. These feedback loops focus on resolving syntactical inaccuracies, such as properly illustrating the end 

event, and addressing soundness issues, such as the lack of synchronization at the XOR join. By continuously reprocessing 

and adjusting the model based on feedback, the system ensures that the generated process models are both accurate and 

logically sound, as shown in the updated diagram in Fig. 7. 

CheckForMismatches ParkInvoice

ResendInvoice

XORXOR PostInvoice

BlockInvoice

Mismatches can be corrected, resend the invoice

No mismatches, post the invoice

Mismatches cannot be corrected, block the invoice

ConfirmOrder

ReceivePayment ArchiveOrder

ShipProduct

XOR

XOR
EmitInvoice

ReceiveShipmentAddress AND

RejectOrder

if the product is in stock

if the product is not in stock
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Fig. 7. Generated business process for the Order-to-Cash process description after feedback loop 

Example 3 - Assessing loan applications: The process demonstrates moderate complexity by incorporating both 

conditional decisions and looping structures. The conditional decision at the completeness check introduces branching 

logic, while the looping mechanism ensures that incomplete applications are handled iteratively until they meet the 

required criteria. The system effectively captures these complexities, ensuring that decision points and the loopback logic 

are modeled accurately and efficiently. 

  

Fig. 8. Generated business process for the Assessing loan applications process description 

Table 5. Generating and Evaluating the Order-to-Cash Process 

Key 

Elements 

o Sequential flow: ReceiveLoanApplication → CheckApplicationCompleteness → 

AssessCompleteApplication. 

o Conditional decision: The XOR gateway directs the flow based on application completeness, either 

moving forward for assessment or returning the application to the applicant 

o Loopback flow: The XOR gateway enables the looping of the process for incomplete applications 

until all required information is provided. 

Generated 

Model 

o The model generated (as shown in Fig. 8) accurately represents the sequence of tasks, decision points, 

and loopback flows. The XOR gateway correctly handles the conditional logic, ensuring that 

incomplete applications are returned to the applicant and resubmitted for further processing. 

Evaluation o Syntactical Accuracy: The system accurately models the sequence and decision logic. 

o Soundness: The process does not contain any error. 

o Comments: The process flow is represented clearly, and the system handles decision points 

effectively. 

6. CONCLUSION AND FUTURE DIRECTIONS  

This paper presented the framework for generating accurate and sound business process models from text, which leverages 

large language models to automate the generation of business process models from unstructured textual descriptions. By 

integrating natural language processing with systematic prompt engineering, complex process narratives can be 

transformed into structured models, ensuring soundness through automatic verification and iterative refinement. The 

framework’s key contributions lie in its ability to reduce manual effort, improve model accuracy, and ensure sound 

process models, offering a scalable solution for business process modeling across different domains. The use of multiple 

LLMs for cost-efficiency and flexibility further strengthens the framework’s potential in real-world applications. 

Despite its innovative approach, the framework has certain limitations that warrant further attention. One major challenge 

is handling ambiguous or complex textual descriptions, which can lead to inaccuracies in the generated process models. 

Although feedback loops are implemented to address these issues, the framework’s ability to resolve ambiguities remains 

limited and requires improvement. Additionally, scalability becomes a concern as the complexity of process descriptions 

increases, posing challenges in maintaining performance and model soundness for large-scale processes. Moreover, while 

automatic feedback mechanisms help detect and correct errors, certain complex scenarios, such as nested loops or intricate 

decision points, still require manual intervention. Finally, the evaluation of the framework is currently based on a limited 

dataset, necessitating broader testing to fully assess its generalizability and robustness. 

Future work will focus on enhancing the framework by leveraging advancements in LLM techniques to better handle 

complex and ambiguous textual descriptions, improving context understanding, reducing errors, and minimizing human 

intervention. Scalability will be addressed through fine-tuning or domain-specific training of LLMs, enabling 

management of larger and more intricate process narratives. Additionally, incorporating reinforcement learning-based 

feedback will allow the system to learn from corrections over time, further refining model generation. Expanding 

evaluation across diverse datasets and industries will ensure the framework’s generalizability, while integration with 

existing BPM tools will smooth organizational adoption. As LLM techniques evolve, the framework could extend to 

support predictive analytics, automated process optimization, and real-time process monitoring, positioning it at the 

forefront of automated business process modeling. 

ConfirmOrder

ReceivePayment ArchiveOrder

ShipProduct

AND

XOR

EmitInvoiceReceiveShipmentAddress AND

RejectOrder

if product is in stock

if product is not in stock

XOR ResubmitApplication

FillMissingInformation

ReturnIncompleteApplication

CheckApplicationCompleteness XOR
if the application is complete

if the application is incomplete
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