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Abstract—Multivariate regression models, including classical least square, principal component regression,
and partial least square, combined with UV-Vis absorbance spectra, have been developed and validated to
simultaneously determine furosemide and spironolactone in tablets. The central composite design method is
used to design calibration and validation concentration sets for the models. The method was applied in the
concentration ranges of 4.4–15.6 mg/L for spironolactone and 2.4–13.6 mg/L for furosemide. The method
exhibited good correlation coefficients (R2) with low root mean square error of calibration values of 0.22,
0.16, and 0.17 mg/L for spironolactone and 0.20, 0.17, and 0.18 mg/L for furosemide, respectively. The root
mean square error of prediction values for spironolactone and furosemide are less than 10% of the average
concentration values, corresponding to 1 mg/L for spironolactone and 0.8 mg/L for furosemide. Precision
assessment encompassed repeatability and intermediate precision, while comparison with the HPLC method
revealed no statistically significant disparity (α = 0.05). Notably, classical least square, principal component
regression, and partial least square methods exhibited successful simultaneous quantification of spironolac-
tone and furosemide within the Spiromide-40 combination tablet. Additionally, the functions and code for
the analytical methods implemented in R are provided, facilitating easy usage for the readers.
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The combined administration of spironolactone
(SPR) and furosemide (FUR) demonstrates enhanced
efficacy in treating hypertension of unknown etiology,
congestive heart failure, and primary aldosteronism.
Additionally, it provides valuable support in managing
edema that is resistant to conventional diuretics, as
well as cirrhosis and secondary aldosteronism [1, 2].
Hence, the combination drug form of SPR-FUR
enjoys wide acceptance in the pharmaceutical market,
necessitating the development of simultaneous quan-
titative methods to ascertain the content of both SPR
and FUR in the formulation, ensuring drug quality.

The simultaneous determination methods of SPR
and FUR have been reported, including ultraviolet (UV)
absorption methods [3] and stability-indicating high-
performance liquid chromatography [4]. According to a
literature survey, no validated multivariate analysis
method is available for the simultaneous determina-
tion of SPR and FUR in pharmaceutical formulations.

Multivariate analysis involves studying the rela-
tionship between two or more independent variables
that influence a dependent variable simultaneously. In
spectral analysis, this method is utilized to establish

the link between spectral signals and concentration
through multivariate calibration methods. Univariate
calibration is only performed with a limited number of
absorption spectra values at specific wavelengths,
potentially leading to data wastage. In contrast, the
removal of interfering substances in the analysis sam-
ple necessitates the application of methods such as
chromatography, physical techniques, or the use of
specific reagents for masking or elimination. These
approaches, while common, introduce complexity
and increase the likelihood of errors during sample
processing [5–7]. On the other hand, in multivariate
calibration, the elimination of interfering factors is
achieved by using mathematical models for the data of
the analysis samples. Moreover, incorporating the
complete set of obtained spectral values in multivariate
calibration enhances the accuracy, reliability, and pre-
cision of the calibration model [8].

A multivariate calibration process typically consists
of three stages: constructing a calibration model, vali-
dating the model, and applying it to analyze real sam-
ples. The classical least squares (CLS) method, often
referred to as the “matrix K method”, is derived from
Lambert–Beer’s law: A = Kc, where K represents the
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coefficient, and it plays a pivotal role in determining
the calibration process’s coefficient K. Subsequently,
utilizing the acquired coefficient K, the concentration
of the analyte in the sample can be calculated [9].
Conversely, the principal component regression
(PCR) and partial least square 1 (PLS1) methods are
dimensionality reduction techniques. They combine
algorithms with the initial data to identify latent vari-
ables in a new space and then use the least squares
method to find the linear relationship between these
latent variables and the initial concentration [10–12].

R is a software framework that has been collabora-
tively built and continuously developed by statisticians
and mathematicians worldwide. This versatile plat-
form is designed to cater to various statistical analysis
and graphing needs, and it stands out as an open-
source software, available for free to users. Conse-
quently, individuals can effortlessly access and down-
load R for seamless utilization [13–16]. In the scien-
tific community, an increasing number of mathemati-
cians, statisticians, and researchers are progressively
embracing R as their preferred tool for the analysis of
scientific data.

The R software furnishes users with a comprehen-
sive repertoire of functions and a computer language
designed for elementary and straightforward analysis.
However, when faced with the demand for more intri-
cate analyses, additional packages need to be installed on
the computer. These packages, devised by statisticians,
serve as specialized software tailored to address spe-
cific issues and seamlessly integrate with the R system.

One advantage of the UV-Vis method is its afford-
ability, simple implementation process, and less strin-
gent solvent requirements compared to other modern
analytical methods such as HPLC. The use of multi-
variate analysis allows for the utilization of the entire
absorbance spectral data obtained from the UV-Vis
instrument, minimizing data wastage. Mathematical
and statistical methods are employed to enhance the
sensitivity, accuracy, and reliability of the method.
The combination of the UV-Vis method with multi-
variate regression eliminates the disadvantages of UV-
Vis compared to HPLC. The simultaneous quantifica-
tion of SPR and FUR using the UV-Vis method com-
bined with certain multivariate regression algorithms
represents a novel approach that has not been previ-
ously investigated.

In this study, we employed UV-Vis spectral data of
SPR and FUR, coupled with multivariate analysis tech-
niques encompassing CLS, PCR, PLS1, and the R soft-
ware version 4.3.0. Through these methodologies, we
aimed to calculate and determine the content of SPR
and FUR concurrently in Spiromide-40 tablets.

EXPERIMENTAL
Materials. Standard grade SPR (99.6%) and FUR

(99.7%) were purchased from the Drug Testing Insti-
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tute of Ho Chi Minh City, Vietnam. Methanol was
purchased from Fisher. Distilled water is obtained
from the Bibby Scientific A4000D water distillation
unit (United Kingdom).

Standard solutions. Standard solutions of SPR and
FUR, each with a concentration of 1000.0 mg/L, pre-
cisely weighing 50.0 mg of each respective standard
substance and dissolving it in sufficient MeOH to
achieve a final volume of 50.0 mL in a volumetric
flask. These accurately prepared standard solutions
were then stored in a refrigerator for preservation. For
daily usage, working solutions were directly prepared
from the standard solutions by employing calculated
ratios. Before the preparation of working solutions, the
standard solutions were taken out from the refrigerator
and allowed to equilibrate to room temperature (25°C)
to ensure consistency in the analytical process.

Sample preparation. Twenty tablets were accurately
weighed and ground into powder (  = 0.2398 g). An
amount of powder equivalent to half a tablet (m =
0.1199 g) was dissolved in a 50 mL volumetric f lask
with sufficient MeOH solvent, sonicated for 5 min,
and the solution was filtered through a 0.45 μm filter
membrane. Exactly 200 μL of the filtrate was trans-
ferred to a 10 mL volumetric f lask, MeOH was added
up to the mark, and the solution was thoroughly
mixed. The final solution was then subjected to UV-
Vis absorbance measurement in the range of 200–
300 nm (Δλ = 0.5 nm).

Commercial pharmaceutical preparation. The phar-
maceutical formulation of Spiromide-40 in tablet
form comprises SPR (50 mg per tablet) and FUR
(40 mg per tablet). This medication was procured from
Hapharco J.S.C Branch, a reputable pharmaceutical
company located in Hanoi, Vietnam, and is readily
available in Ho Chi Minh City. The specific batch
number of the product is C0033, produced on
06/12/2021, and the expiration date is 05/12/2023.
Each box of the medication contains three vials, and
within each vial, there are 10 tablets.

Design of experiment. In multivariate calibration,
the design of experiments plays a crucial role in accu-
rate calibration [17]. Without an optimized experi-
mental design, there can be either too many experi-
ments, resulting in a waste of time and chemicals with-
out effectively optimizing the calibration, or too few
experiments, leading to a calibration that does not
cover all possible cases that may occur during the anal-
ysis process. Therefore, the calibration set should con-
tain all components present in the sample or at least
include all the components that need to be analyzed.
The concentrations in the calibration set should cover
all concentrations encountered during the working
process. Additionally, for the calibration process to be
effective, the samples in the calibration set should be
in similar conditions as the samples being analyzed
and should be independent of each other [9, 18].

m
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Fig. 1. Experimental design according to the central com-
posite design.
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Figure 1 presents the calibration set design, accom-

plished through the central composite design method,
with the goal of establishing a robust calibration model
for SPR and FUR. The central point of the design
mirrors the analyte concentrations observed in real
samples, while the neighboring points encompass
concentration variations ranging from 50 to 150% of
the central concentration [19]. The detailed concen-
tration values of the calibration and validation samples
are presented in Table 1, where samples T1–T9 repre-
sent the concentrations of the calibration mixture set,
and samples V1–V6 represent the concentrations of
the validation mixture set. The spectra of the standard
and validation solution mixtures in the range of 200–
300 nm (Δλ = 0.5 nm) were recorded, and then the
obtained data were stored for late treatment. In R, the
experimental design for the calibration concentration
range is conducted using the “rsm” package [20].

Software. All algorithms and statistical processing
in this report are performed on R software, version
4.3.0. In this regard, to calculate using the CLS
method, the algorithms were implemented in R using
a custom program, which is introduced in the supple-
mentary information section. The PCR and PLS
methods are instructed in the “pls” package [21].
Additionally, statistical methods and graph plotting
are available in the “stats”, “graphics”, “ggplot2”, and
“datasets” packages.

RESULTS AND DISCUSSION
Stability of the absorption spectra of SPR and FUR.

To prepare the solutions of SPR and FUR, concentra-
tions of 10.0, 8.0 mg/L, and a mixture of 8.0–
10.0 mg/L for both substances were utilized. Absor-
bance spectra for all three solutions were recorded in
the range of 200–300 nm, with a wavelength incre-
ment of 0.5 nm, employing six scans with measure-
ments taken every 30 minutes. The outcomes of this
analysis are depicted in Fig. 2.

According to Fig. 2, SPR exhibits maximum
absorption at a wavelength of 238 nm, while FUR has
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 79  N

Table 1. Concentration data of the different mixtures used in 
ronolactone and furosemide

Sample SPR, mg/L FUR, mg/L

T1 6.0 4.0
T2 14.0 4.0
T3 6.0 12.0
T4 14.0 12.0
T5 10.0 8.0
T6 4.4 8.0
T7 15.6 8.0
T8 10.0 2.4
T9 10.0 13.6
two maximum absorptions at wavelengths of 233.5 and
274 nm. The mean absorption values are as follows:
AS̅PR = 0.464420 (λ = 238 nm), AF̅UR = 1.007488 (λ =
233.5 nm), A ̅Mix = 1.482973 (λ = 233.5 nm). The cor-
responding relative standard deviations (RSD) are
1.53 (SPR), 2.35 (FUR), and 0.85% (Mix). Further-
more, Fig. 2 demonstrates that the spectra of the stan-
dard solutions obtained from the measurements
exhibit a high degree of overlap, indicating clear and
non-interfered spectra. The low RSD values suggest
that the differences between measurements at different
times are insignificant, indicating that the absorption
spectrum of the mixture remains relatively unchanged
and unaffected under working conditions. The
absorption spectra of both individual compounds and
mixtures also demonstrate good additivity over the
investigated range of wavelengths.

Optimization of the variables for the PCR and PLS1
model. The calibration and prediction performance
when using PCR and PLS1 methods relies on the
o. 7  2024

the calibration and validation set for the determination of spi-

Sample SPR, mg/L FUR, mg/L

V1 8.0 6.4
V2 12.0 6.4
V3 8.0 9.6
V4 12.0 9.6
V5 10.0 8.0
V6 7.2 8.0
V7 12.8 8.0
V8 10.0 5.8
V9 10.0 10.2
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Fig. 2. Absorption spectra of spironolactone 10.0 mg/L, furosemide 8.0 mg/L, and the mixture was repeated six times.
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optimal selection of the number of principal compo-
nents or latent variables from the calibration set. This
is a crucial step because if more factors are retained
than required, it introduces noise into the model,
leading to inaccurate prediction capability. Con-
versely, if too few factors are retained, important and
necessary information for calibration may be over-
looked, resulting in poor calibration accuracy. The
number of retained factors should not exceed half of
the total number of factors in the entire model [6]. The
method used to optimize the number of factors is
called leave-one-out cross-validation, which involves
cross-validation using 9 leave-one-out segments. For
the set of 9 calibration spectra corresponding to the
samples in the training set in Table 1, PCR and PLS1
calibration were performed on the 8 training spectra,
and using these calibrations, the concentration of the
left-out sample during calibration was determined.
This process was repeated for each training sample,
with each sample being left out once.

In Fig. 3, it is evident that as the main components
in the model range from ncomp = 1 to ncomp =
3 (PCR model) or ncomp = 1 to ncomp = 2 (PLS1
model), the root mean square error of cross-validation
(RMSECV) values decrease. This signifies the effec-
tiveness of the data compression process, with the first
variables containing crucial information related to
absorbance in the calibration set. These variables
explain 99.99% of the spectral variance, leading to the
selection of 3 (PCR model) or 2 (PLS1 model) factors
for constructing a calibration model to predict the
concentration of substances in the analyzed samples
using the principal component regression or partial
least squares regression method.

However, when increasing the number of latent vari-
ables from 4 to 7 (PCR) or from 3 to 7 (PLS1), a slight
increase in the values of RMSECV is observed. This sug-
gests that the additional latent variables do not provide
relevant information and may be considered as noise
signals. The use of more latent variables can result in
overfitting and lead to inaccurate diagnostic models.

Development of multivariate analysis methods. The
development of a multivariate analysis method was
JOURNAL O
conducted on standard and validation samples. The
standard and validation samples are known concen-
tration samples designed according to the section
“Design of experiment”. The absorbance spectra of
samples containing SPR and FUR were measured in
the wavelength range of 200–300 nm (Δλ = 0.5 nm).
The suitability of the model was evaluated using the
algorithms of CLS, PCR, and PLS1.

The regression model was evaluated using the coef-
ficient of determination R2 and the root mean square
error (RMSE), a measure of the variation between the
predicted values and the reference values for a set of
samples. The RMSEs for calibration, validation, and
prediction were calculated using Eq. (1).

(1)

where cpred and cknown are the predicted and known
concentration values of the analyte, respectively, and n
is the number of samples used. RMSEC is the root
mean square error of calibration, indicating the good-
ness of fit of the model. The prediction ability of the
model for a new sample is expressed by the root mean
square error of cross-validation, explaining the robust-
ness of the model. When applying the model to a new
dataset, the root mean square error of prediction
(RMSEP) can be calculated if the reference values for
the new dataset are known in advance [22].

In a linear regression model, an R2 value quantifies
the relationship between the actual concentration and
the predicted concentration of the model. An R2 value
of 0 indicates no linear relationship, while an R2 value
closer to 1 indicates a better predictive model.

The results in Table 2 and Fig. 4 show that the CLS,
PCR, and PLS1 models were constructed for SPR and
FUR at concentration ranges of 4.4–15.6 and 2.4–
13.6 mg/L, respectively, with an R2 value > 0.9970.
This demonstrates that the difference between the pre-
dicted concentration and the actual concentration of
the substances in the standard sample is insignificant.
The RMSECV values for the PCR and PLS1 methods

2
pred known

1
(     )

RMSE   ,

n

i

c c

n
=

−
=


F ANALYTICAL CHEMISTRY  Vol. 79  No. 7  2024



A NOVEL METHOD OF THE SIMULTANEOUS DETERMINATION 927

Fig. 3. RMSEP plot of a calibration set prediction using cross validation using PCR and PLS1 models.
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are 0.31 and 0.26 mg/L for SPR, and 0.34 and
0.28 mg/L for FUR, respectively. The small
RMSECV values indicate the high accuracy of the
model’s predictions using cross-validation. The
RMSEC values for the CLS, PCR, and PLS1 methods
are 0.22, 0.16, and 0.17 mg/L for SPR, and 0.20, 0.17,
and 0.18 mg/L for FUR, respectively, indicating the
good performance of these methods.

Furthermore, residual analysis is an important part
of evaluating the suitability of a regression model for
predicting concentration variables. It is essential to
ensure that the discrepancies between known concen-
trations and predicted concentrations obtained from
the constructed methods are symmetrically distrib-
uted around zero, random, and independent. The
results of the residual analysis from the models indi-
cated that the residual values are randomly distrib-
uted, demonstrating constant variance, indepen-
dence, and close adherence to a zero-centered distri-
bution—as depicted in Fig. 5. Shapiro–Wilk test
conducted using the R software showed that all p-val-
ues were greater than 0.05. Therefore, there is not
enough evidence to reject the null hypothesis (H0) or
conclude that the residuals follow a normal distribu-
tion (Table 2).
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 79  N
Evaluation of the validation set. To assess the level of
accurate and reliable prediction achieved by the CLS,
PCR, and PLS1 algorithms, 9 mixed samples contain-
ing SPR and FUR at different concentrations as
shown in Table 3 were prepared. A smaller RMSEP
value is considered better, typically requiring it to be
less than 10% of the median value of the concentration
range of substances in the calibration set [23]. The
results in Table 3 show that the RMSEP values for the
CLS, PCR, and PLS1 methods are 0.43, 0.34, and
0.39 mg/L for SPR, and 0.37, 0.41, and 0.38 mg/L for
FUR, respectively. These values are all less than 10%
of the median value, which is 1 mg/L for SPR and
0.8 mg/L for FUR. The recovery and relative standard
deviation were calculated. The results indicated that
the recovery was within the acceptable range of 80–
110% (according to AOAC) [24]. The results obtained
demonstrate that the CLS, PCR, and PLS1 methods
can be used simultaneously to determine SPR and
FUR in pharmaceutical samples.

Evaluation of the analysis process. Accuracy. Addi-
tional standards were prepared at three different con-
centration levels, with each level repeated three times.
Therefore, the developed methods, including CLS,
PCR, and PLS1, were used to determine the presence
of SPR and FUR in the tablets. The accuracy of the
o. 7  2024
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Table 2. Statistical parameters for simultaneous determination of spironolactone and furosemide using CLS, PCR, PLS1
methods

Sample
Known concentration, 

mg/L
Predicted concentration, mg/L

CLS PLS1 PCR

SPR FUR SPR FUR SPR FUR SPR FUR

T1 6.0 4.0 5.66 4.48 5.86 4.32 5.84 4.22
T2 14.0 4.0 13.67 3.81 13.70 3.80 13.72 3.85
T3 6.0 12.0 5.80 12.02 5.89 11.96 5.88 11.96
T4 14.0 12.0 14.28 11.79 14.15 11.89 14.16 11.79
T5 10.0 8.0 10.19 7.95 10.14 7.94 10.07 7.92
T6 4.4 8.0 4.38 7.87 4.57 7.73 4.56 7.77
T7 15.6 8.0 15.79 8.06 15.64 8.16 15.61 8.17
T8 10.0 2.4 10.00 2.55 10.19 2.44 10.25 2.47
T9 10.0 13.6 9.92 13.73 9.86 13.77 9.92 13.85

n comp — — 2 2 3 3
RMSECV — — 0.26 0.28 0.31 0.34
RMSEC 0.22 0.20 0.17 0.18 0.16 0.17

R2 0.9975 0.9973 0.9980 0.9977 0.9981 0.9979
Shapiro test (p-value) 0.48 0.35 0.15 0.93 0.85 0.39

Table 3. Recovery (%) results obtained in synthetic mixtures for CLS, PCR, PLS1 methods

Mixtures added, mg/L CLS PCR PLS1

SPR FUR SPR FUR SPR FUR SPR FUR

8.0 6.4 97.9 98.6 96.9 98.6 99.3 97.0
12.0 6.4 102.5 102.8 101.4 104.2 102.8 102.8
8.0 9.6 100.6 105.1 98.4 105.8 101.5 104.6

12.0 9.6 104.2 105.5 101.7 105.9 103.8 106.0
10.0 8.0 100.8 100.9 99.8 102.0 101.5 100.5

7.2 8.0 91.7 105.5 89.3 103.5 92.8 104.5
12.8 8.0 107.3 107.1 104.3 108.9 106.3 108.0
10.0 5.8 100.3 101.2 100.2 101.6 101.1 100.2
10.0 10.2 102.5 103.8 101.1 104.9 103.0 103.8

Mean recovery, % 100.9 103.4 99.2 103.9 101.3 103.1
SD 4.35 2.75 4.27 2.98 3.75 3.35
RMSEP 0.43 0.37 0.34 0.41 0.39 0.38
methods was assessed based on the recovery rate,
which is presented in Table 4. For the CLS method,
the average recovery rates were found to be 104.0 and
103.9% for SPR and FUR, respectively. The PCR
method exhibited recovery rates of 96.6 and 105.7%
for SPR and FUR, respectively. Lastly, the PLS1
method showed recovery rates of 98.8 and 108.3% for
SPR and FUR, respectively. All the recovery values,
along with their corresponding relative standard devi-
JOURNAL O
ations, were found to fall within the specified range as
per AOAC guidelines, confirming the reliability and
accuracy of the developed methods.

Precision. Precision assessment encompasses two
important aspects: repeatability and intermediate pre-
cision. The samples were meticulously prepared fol-
lowing the procedure described in the “Sample prepa-
ration” section. Subsequently, the entire process was
repeated six times to ensure robustness and accuracy.
F ANALYTICAL CHEMISTRY  Vol. 79  No. 7  2024
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Fig. 4. Predicted concentrations vs. known concentrations for spironolactone and furosemide using CLS, PCR and PLS1
methods.
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The detailed results of the repeatability and intermedi-
ate precision evaluations are presented in Tables 5 and
6, respectively.

Repeatability. The RSD values of 6 for the analysis
of Spiromide-40 drug sample using the CLS, PCR,
and PLS methods show that these values are smaller
than half of the RSD calculated using the Horwitz
function (with RSDHorwitz = 21–0.5logc). Therefore, both
the analysis processes exhibit good repeatability for
both the SPR and FUR components.

Intermediate precision. The intermediate precision
evaluation results indicate good repeatability for both
components, with the value of RSD < 1/2RSDHorwitz.
Intermediate precision is performed similarly to
repeatability but on different days and by different
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 79  N
analysts. It demonstrates the influence of random
variables on the accuracy of the analytical procedure.
An F-test is conducted to confirm the similarity between
the results of two different experiments. The F-test results
show no significant difference in repeatability when the
experiments are conducted on different days and by dif-
ferent analysts for all three methods: CLS, PCR, and
PLS1 in the quantification of SPR and FUR.

Comparison with the HPLC method. To ascertain
the credibility of the research method, samples were
submitted to the Thua Thien Hue Pharmaceutical and
Cosmetic Testing Center in Vietnam for quantitative
analysis, utilizing the standard HPLC method. A
comprehensive comparison and assessment of the
analysis outcomes between the two methods were con-
ducted through statistical means. The findings, pre-
o. 7  2024
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Fig. 5. Residual vs. known concentration plots for spironolactone and furosemide using CLS, PCR and PLS1 methods.
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sented in Table 7, demonstrate that both Fcal and tcal

statistical values are smaller than the corresponding
Ftheory and ttheory values when comparing the repeatabil-
JOURNAL O
ity and quantitative results of the CLS, PCR, and
PLS1 methods with the HPLC method, at a signifi-
cance level of α = 0.05. This observation substantiates
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Table 4. Evaluation results of the recovery (%) performance using additional standardization techniques via CLS, PCR,
and PLS1 methods

Added to tablet, mg/L CLS PCR PLS1

SPR FUR SPR FUR SPR FUR SPR FUR

3.0 2.4 106.7 103.8 95.7 100.4 98.7 108.8
3.0 2.4 107.0 104.2 97.3 112.1 101.3 109.2
3.0 2.4 103.0 104.2 95.0 107.9 98.0 108.3

5.0 4.0 106.2 105.3 100.2 109.3 101.8 109.5
5.0 4.0 107.8 105.0 99.8 104.5 102.8 109.5
5.0 4.0 105.2 104.0 98.2 107.0 100.6 108.0

7.0 5.6 102.3 101.4 97.9 106.8 98.0 105.5
7.0 5.6 99.6 104.1 93.0 101.4 94.7 108.2
7.0 5.6 98.4 103.9 92.6 102.0 93.7 108.0

Mean 104.0 103.9 96.6 105.7 98.8 108.3
RSD, % 3.25 1.05 2.84 3.71 3.17 1.13

Table 5. Repeatability assessment results

Sample
SPR, mg/L FUR, mg/L

CLS PCR PLS1 CLS PCR PLS1

S1.1 9.60 9.34 9.57 7.59 7.73 7.57
S1.2 10.19 10.05 10.23 8.05 8.20 8.03
S1.3 9.79 9.60 9.79 7.75 7.93 7.72
S1.4 9.64 9.34 9.59 7.67 7.86 7.65
S1.5 9.65 9.39 9.62 7.73 7.90 7.70
S1.6 9.90 9.47 9.77 7.89 8.00 7.89

Mean 9.80 9.53 9.76 7.78 7.94 7.76
SD 0.22 0.27 0.25 0.16 0.16 0.17
RSD, % 2.29 2.85 2.54 2.12 1.98 2.18

1/2RSDHorwitz 5.66 5.85
the concurrent applicability of the CLS, PCR, and
PLS1 methods with HPLC in determining the pres-
ence of SPR and FUR in tablets.

Application. CLS, PCR, and PLS1 methods were
applied to simultaneously determine SPR and FUR in
Spiromide-40 tablets. The quantitative results showed
that the content of SPR and FUR fell within the permis-
sible range of 90.0 to 110.0% compared to the labeled
content according to the Vietnamese Pharmacopoeia V.

CONCLUSIONS
Previous studies have predominantly relied on pro-

prietary and commercial software, which require
licensing and incur fees, to process and compute
results from data. In this paper, the R programming
language was successfully applied to handle data and
compute results. The findings demonstrated that mul-
JOURNAL OF ANALYTICAL CHEMISTRY  Vol. 79  N
tivariate analysis, combined with R packages and the
flexibility of the R programming language, allowing
users to write their own programs for data processing
and computation. This method development provides
analysts with an additional tool for data handling,
computation, and analysis.

The CLS, PCR, and PLS methods were successful
in simultaneously quantifying spironolactone and
furosemide in combined tablet formulations. The sta-
tistical results complied with the AOAC regulations
and the Vietnamese Pharmacopoeia standards.
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Table 6. Intermediate precision evaluation results

Sample
SPR, mg/L FUR, mg/L

CLS PCR PLS1 CLS PCR PLS1

S2.1 10.01 9.72 9.98 7.87 8.00 7.85
S2.2 9.77 9.63 9.84 7.72 7.94 7.68
S2.3 10.03 9.79 10.04 7.90 8.05 7.88
S2.4 9.91 9.64 9.90 7.83 7.89 7.80
S2.5 9.71 9.61 9.78 7.70 7.81 7.66
S2.6 9.97 9.93 10.07 7.84 8.04 7.80

Mean 9.90 9.72 9.94 7.81 7.96 7.78
SD 0.13 0.12 0.11 0.081 0.094 0.09
RSD, % 1.33 1.26 1.15 1.04 1.18 1.16
1/2RSDHorwitz 5.66 5.85

Fcal 2.88 4.90 4.68 4.11 2.82 3.57
Ftheory (0.05; 5; 5) 5.82 5.82

Table 7. Comparison of quantitative results (content: H, mg/tablet) between CLS, PCR, PLS1 methods with HPLC method

No.
SPR FUR

CLS PCR PLS1 HPLC CLS PCR PLS1 HPLC

1 50.94 50.24 51.14 49.75 40.23 40.98 40.13 39.65

2 48.96 48.01 48.96 49.15 38.73 39.63 38.58 39.97

3 49.49 47.35 48.84 50.02 39.45 40.00 39.45 40.25

Mean 49.8 48.53 49.65 49.64 39.47 40.2 39.39 39.96

RSD, % 2.05 3.12 2.60 0.90 1.90 1.74 1.97 0.75

Fcal 5.26 11.55 8.40 6.23 5.41 6.67

Ftheory (0,05;2;2) 15.44 15.44

tcal 0.25 1.22 0.011 1.05 0.56 1.19

ttheory (0.05;4) 2.776 2.776
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ADDITIONAL INFORMATION

In terms of CLS method, the code to build a calibration
model for the CLS method is as follows:

CLS.model = function(A.sample) {K = A.train %*%
t(c.train) %*% solve(c.train %*% t(c.train))

c = solve(t(K) %*% K) %*% t(K) %*% A.sample
c = round(c, 2)}
In which, c.train is the concentration matrix in the cali-

bration set with dimensions of n components × I samples,
and A.train is the absorption matrix with dimensions of
JOURNAL O
J wavelengths × I samples obtained from UV-Vis absorption
spectra measurements of the samples in the calibration set.

The concentration in the sample matrices, c.sample, is
determined as follows:

In which, A.sample is the obtained absorption matrix of
the samples for which the concentrations need to be deter-
mined.
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