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Abstract
Background and Objectives  The diagnostic challenge of myasthenia gravis (MG) is exacerbated by the variable efficacy of 
current testing methodologies, necessitating innovative approaches to accurately identify the condition. This study aimed 
to assess ocular muscle fatigue in patients with MG using video-oculography (VOG) by examining repetitive saccadic eye 
movements and comparing these metrics to those of healthy control participants.
Methods  This prospective, cross-sectional study was conducted at a tertiary care center and involved 62 patients diagnosed 
with MG (48 with ocular MG and 14 with generalized MG) and a control group of 31 healthy individuals, matched for age 
and sex. The assessment involved recording saccadic eye movements within a ± 15° range, both horizontally and vertically, at 
a rate of 15 saccades per minute over a 5-min period, resulting in 75 cycles. Participants were afforded a 3-min rest interval 
between each set to mitigate cumulative fatigue. The primary outcome was the detection of oculomotor fatigue, assessed 
through changes in saccadic waveforms, range, peak velocity, latency, and the duration from onset to target, with a focus on 
comparing the second saccade against the average of the last five saccades.
Results  In the evaluation of repetitive saccadic movements, patients with MG exhibited a reduced saccadic range and a 
prolonged duration to reach the target, compared to healthy subjects. Furthermore, a significant elevation in the frequency of 
multistep saccades was observed among MG patients, with a marked rise observed over consecutive trials. Receiver operating 
characteristic (ROC) analysis revealed the discriminative performance of multistep saccade frequency, in conjunction with 
variations in saccadic range and duration from onset to target achievement between the second saccade and the mean of the 
final five saccades, as effective in distinguishing MG patients from healthy subjects. Although alterations in peak saccadic 
velocity and latency were less pronounced, they were nevertheless detectable.
Discussion  The utilization of VOG for repetitive saccadic testing in the diagnosis of MG has demonstrated considerable 
diagnostic precision. This methodology affords significant accuracy in evaluating ocular muscle fatigue in MG patients, 
providing class III evidence supportive of its clinical application.

Keywords  Myasthenia gravis (MG) · Saccade · Saccade quantification · Oculomotor fatigue · Video-oculography (VOG) · 
Diagnostic implications

Introduction

Myasthenia Gravis (MG) is an autoimmune disorder 
characterized by impaired neuromuscular transmission, 
resulting in fatigable, fluctuating muscle weakness [1]. It 
represents the most prevalent disorder of neuromuscular 
transmission, primarily affecting adults, with an incidence 
rate ranging from 0.3 to 2.8 per 100,000 individuals [2]. 
The onset of symptoms often initially affects ocular 
muscles, manifesting as double vision or ptosis, and may 
extend to impact facial, neck, bulbar, limb, and respiratory 
muscles [3]. The diagnostic process for MG encompasses a 
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comprehensive medical history, clinical examination, and 
specific laboratory tests, including autoantibody detection 
and electrophysiologic and pharmacologic assessments 
[3, 4]. While serology for acetylcholine receptor (AChR) 
and muscle-specific kinase (MuSK) antibodies is pivotal in 
raising suspicion for MG, its diagnostic efficacy is tempered 
by variable sensitivity and specificity, alongside the delay 
in seroconversion, which compels the consideration of 
alternative diagnostic strategies [1]. The heterogeneity in 
antibody detection rates, notably for AChR and MuSK, 
contributes to a subset of patients being classified as 
seronegative [4, 5]. The sensitivity for newly recognized 
antibodies, such as those against lipoprotein-receptor-
related protein 4 (LRP4), is currently limited to advanced 
research facilities. The diagnosis of ocular MG, where 
symptoms are confined to the extra-ocular muscles, poses 
additional challenges. While recent advances in non-invasive 
diagnostic techniques, like repetitive ocular vestibular-
evoked myogenic potential (oVEMP), show promise for 
detecting decreased extra-ocular muscle activity in MG, 
they are restricted by the need for specialized equipment 
[6]. Furthermore, although single-fiber electromyography 
(SFEMG) exhibits high sensitivity for MG detection, its 
specificity is influenced by a range of factors  [7, 8].

In response to the need for improved diagnostic 
methodologies for MG, our latest research underscores 
the importance of diminished oculomotor range following 
repetitive saccades as an indicator of MG-related oculomotor 
fatigue [9]. Employing three-dimensional video-oculography 
(VOG), this study aims to precisely assess the impact of 
fatigue on saccadic eye movements in MG patients relative 
to healthy individuals. Prior investigations have identified 
reductions in oculomotor range post-repetitive saccadic 
movements; the current study seeks to further explore 
detailed saccadic parameters. The primary objective is an 
in-depth analysis of saccadic eye movements using three-
dimensional VOG, striving to distinguish MG patients from 
healthy controls effectively.

Methods

Study design and participants

This cross-sectional study was conducted at the Jeonbuk 
National University Hospital, South Korea, from August 
2022 to September 2023, adhering to the Declaration of 
Helsinki. All participants provided written informed consent, 
with the study receiving approval from the Institutional 
Review Board of Jeonbuk National University Hospital 
(Approval No. 2022-04-044-001). Patients diagnosed with 
MG were identified in the Neurology Department, with 
diagnoses confirmed by clinical evidence of fluctuating 

muscle weakness and supportive tests, including serological 
tests for Acetylcholine Receptor (AchR) or Muscle-Specific 
Kinase (MuSK) antibodies, the neostigmine test, and/or 
significant decrement in repetitive nerve stimulation (RNS). 
Patients were categorized as having ocular MG (OMG) if 
symptoms were limited to ocular muscles, or generalized 
MG (GMG) if symptoms extended to facial, bulbar, neck, or 
limb muscles. Age- and sex-matched healthy controls (HCs) 
without neuromuscular or neurological disorders were also 
included.

Quantitative measures of saccades

A single video-oculography (VOG) session was conducted 
for each participant by a trained examiner in a dimly lit 
room, using a three-dimensional VOG system (SMI, 
Teltow, Germany), capturing eye movements at a 60 Hz 
sampling rate and 0.1° resolution during saccadic tasks. To 
ensure optimal testing conditions, participants were asked 
to avoid caffeine, alcohol, acetylcholinesterase inhibitors 
for 24 h, and corticosteroids for 72 h before the test. The 
session included a comprehensive five-point calibration 
for both eyes, followed by saccadic tasks covering ± 15° 
in both horizontal and vertical directions, with targets 
alternating every second at a frequency of 15 saccades per 
minute (0.25 Hz) across 75 cycles. To reduce the impact 
of cumulative fatigue, a 3-min rest was allowed between 
trials. A forehead bar stabilized participants' heads at a 
viewing distance of 1.5 m, with custom software facilitating 
calibration, target presentation, and blink-related deviation 
filtering.

Data analysis, performed using MATLAB, focused on 
saccadic range, peak velocity, latency, time to target, and 
saccade waveform (Fig. 1). Saccadic onset and end were 
determined based on eye velocity thresholds of 30°/sec, and 
the end of a saccade was marked when it dropped below 
this threshold [10, 11]. The duration from saccade onset 
to target was calculated from the onset time to the time of 
eye's arrival at the target. Peak velocity was identified as 
the highest velocity during the saccade [11], and latency 
measured the time from target presentation to saccade 
initiation [12, 13].

The analysis aimed to identify the pulse and step 
components of saccades, assessing their accuracy in 
achieving a normometric refixation. The saccadic waveforms 
were categorized as 'single-step' or 'multiple-step' based 
on eye position and velocity time series analyses (Fig. 1). 
Multiple-step saccades characterized by distinctive velocity 
profiles suggestive of premature saccade termination. 
This classification into hypometric or hypermetric 
saccades within the multiple-step category relied on 
analyzing their segmented refixation patterns. In contrast 
to the straightforward trajectory of single-step saccades, 
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multiple-step saccades featured several distinct saccadic 
pulses. These were further categorized into 'staircase' or 
'overlapping' types, based on their velocity profiles and 
patterns of refixation [14]. 'Staircase' saccades were marked 
by successive short-latency intervals (Fig. 1B), whereas 
'overlapping' saccades occurred with negligible latency 
periods between movements (Fig. 1C) [15, 16]. Both saccade 
types were observed to potentially exhibit dynamic, glissadic 
overshoots, undershoots, or a mix of these behaviors. This 
classification provided insights into ocular motor function 
dynamics and the physiological basis of saccadic refixations, 

typically involving minor corrections for overshoots or 
undershoots [14]. A significant refixation discrepancy was 
defined as movements exceeding 2° in amplitude [17].

Oculomotor performance fatigability was assessed by 
comparing the second saccade's performance to the average 
performance of the last five saccades. The second saccade 
was used as a representative baseline measure, reflecting 
the initial state of the oculomotor system before significant 
fatigue onset. Using the second saccade minimizes the 
influence of initial adjustments that often impact the first 
saccade, thereby enhancing consistency and reliability 

Fig. 1   Classification of saccadic eye movements. A Normal saccadic 
eye movement dynamics. This panel illustrates the trajectory of a 
typical saccadic eye movement as the participant's gaze sequentially 
follows a moving target. The green line denotes the position of the 
target, while the red line represents the participant’s eye movement. 
Key metrics quantified include latency (the time interval between 
target onset and the beginning of the saccade), peak velocity 
(maximum velocity during saccade execution), range (total degree 
of eye movement as the participant follows the target position), and 

duration from onset to target (the total duration of the participant's 
eye movement while tracking the target). B Depicts staircase-type 
saccades in patients with MG. Here, the eye velocity trace drops to 
zero after reaching the first peak, indicating an intersaccadic interval, 
followed by several small discrete saccades. C Demonstrates that 
MG patients also exhibit multiple hypometric saccades. These occur 
with no latency or intersaccadic interval between them, forming an 
overlapping type of multiple-step saccadic pattern
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by reducing variability associated with initial subject 
acclimatization. The average performance of the last five 
saccades served as an indicator of accumulated fatigue 
effects over the testing period, capturing the progressive 
decline in saccadic performance—a critical marker of 
oculomotor fatigability in MG patients. Averaging these 
saccades reduces the impact of any single anomalous 
saccade, thus providing a more robust measure of 
fatigability.

Statistical analysis

The analysis was performed utilizing SPSS Statistics version 
23.0 (IBM Corp., Armonk, NY, USA) and R software version 
4.3.0. Categorical data were summarized as frequencies and 
proportions, while continuous variables, not adhering to 
normal distribution, were presented as median values with 
95% confidence intervals (CIs). Group comparisons, both 
between MG patients and HCs and within MG subgroups 
(ocular vs. generalized MG), were conducted using Fisher’s 
exact test for categorical variables and the Mann–Whitney 
U test for continuous variables. A p-value of less than 
0.05 was considered statistically significant. The ability 
of saccadic parameters to discriminate MG patients from 
HCs was evaluated through receiver operating characteristic 
(ROC) analysis using the R package pROC, with the analysis 
yielding the area under the ROC curve (AUC), sensitivity, 
specificity, predictive values, and the statistically significant 
cutoff value for optimal discrimination.

Data sharing statement

The raw data for this study were collected at Jeonbuk 
National University Hospital. The derived data supporting 
the conclusions of this investigation are available from the 
corresponding author [S.-Y Oh], upon reasonable request.

Results

Study population

This cohort consisted of 62 patients diagnosed with MG, 
including 48 individuals (77%) with ocular MG (OMG) and 
14 (23%) with generalized MG (GMG). Additionally, age- 
and sex-matched 31 HCs were recruited for comparative 
analysis. Table 1 delineates the comprehensive demographic 
and clinical characteristics. No statistically significant 
differences were noted between the OMG and GMG groups 
regarding sex, age, and duration of disease. The prevalence 
of ptosis was significantly higher in the OMG group (91.7%) 
than in the GMG group (57.1%) (p = 0.006, Mann–Whitney 
U test). AchR antibodies were elevated in 43 participants 

(69.4% of the study population), with a higher incidence 
observed in the GMG subgroup (92.9%) compared to the 
OMG subgroup (62.5%) (p = 0.046, Mann–Whitney U 
test). MuSK antibodies were identified in a single patient 
(1.6%). Repetitive nerve stimulation (RNS) tests indicated 
abnormalities in 24 patients (38.7%), more frequently in 
the GMG group (78.6%) versus the OMG group (27.1%) 
(p = 0.001, Mann–Whitney U test). The edrophonium test 
showed abnormal results in 35 participants (56.4%), with 
no significant difference between MG subgroups (p = 0.76, 
Mann–Whitney U test). Thymoma was detected in 8 patients 
(12.9%), and thymic hyperplasia was observed in 11 
individuals (17.7%). Eligibility for the study required at least 
one abnormal test result among these evaluations, thereby 
excluding individuals with normal findings in all tests.

Quantitative analysis of saccades

Our study undertook a comprehensive evaluation of saccadic 
parameters, including saccadic range, peak velocity, latency, 
and time from onset to target, alongside the classification 
of saccade waveforms. Initial comparisons for the second 
saccade revealed no significant differences in horizontal and 
vertical saccadic ranges and peak velocities between MG 
patients and HCs (Table 2). However, MG patients exhibited 
longer times from onset to target for both horizontal 
(130.1 ms vs. 110.9 ms; p = 0.069) and vertical saccades 
(130.4 ms vs. 122.4 ms; p = 0.14), although these differences 
were not statistically significant. Subsequent analysis of the 
average of the last five saccades indicated a considerable 
reduction in saccadic range for MG patients compared to 
HCs in both horizontal and vertical planes (23.9° vs. 27.0° 
and 23.0° vs. 25.6°, respectively; p < 0.001 for both) and 
significantly extended durations from saccade onset to 
target (horizontal: 227.8 ms vs. 128.9 ms; vertical: 226.4 ms 
vs. 136.6 ms; p < 0.001 for both). A decrease in vertical 
saccadic peak velocity was noted for MG patients (355.8°/s 
vs. 400.9°/s; p = 0.02), with no significant differences in 
horizontal peak velocities. Latencies for horizontal and 
vertical saccades between MG patients and HCs did not 
differ significantly (Table 2).

Comparative analysis from the second to the average of 
the last five saccades within MG patients showed marked 
declines in saccadic ranges and increased durations from 
onset to target, with vertical saccadic latency notably 
prolonged; however, no significant changes were observed 
in peak velocities or horizontal saccadic latency (Fig. 2 
and Table  2). Subgroup analysis comparing OMG and 
GMG revealed no significant differences in saccadic 
measurements. Supplementary Table 1 that divides the 
parameters for the more and less affected eyes, reveals that 
significant reductions in saccade range and increases in 
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duration from onset to target were observed in both the more 
and less affected eyes (Supplementary Table 1).

Regarding saccadic waveforms, MG patients frequently 
exhibited multiple-step saccades characterized by distinctive 
velocity profiles suggestive of premature saccade termination 
(Fig. 1). Over a session of 75 saccadic cycles, the occurrence 
of both 'staircase' and 'overlapping' saccade types was 
significantly higher in MG patients than in healthy controls 
(HCs) for both horizontal (39.1% vs. 29.9%, p < 0.001) and 
vertical saccades (45.6% vs. 24.6%, p < 0.001), as shown in 
our results. No significant differences were found between 
MG subgroups in these patterns (Table 3).

Receiver operating characteristic (ROC) curve 
analysis

The discriminative ability of the frequency of multistep 
saccades, along with changes in saccadic range and time 
from onset to target between the second saccade and 
the average of the last five saccades, to distinguish MG 
patients from HCs was assessed using ROC curve analysis 

(Fig. 3A–C). For the proportion of multistep saccades, 
the area under the curve (AUC) was 0.788 for horizontal 
saccades (95% CI 0.676–0.901; p < 0.001), with an 
optimal cutoff value of 31.82%, achieving a sensitivity of 
80.6% and specificity of 83.9%. In vertical saccades, the 
AUC was 0.822 (95% CI 0.728–0.916; p < 0.001), with a 
best cutoff value of 33.7%, yielding a sensitivity of 82.3% 
and specificity of 74.2% (Fig. 3A). For the decrement in 
saccadic range, the AUC values were 0.702 for horizontal 
saccades (95% CI 0.587–0.817; p < 0.001), with a best 
cutoff value of − 8%, corresponding to a sensitivity of 
64.5% and specificity of 90.3%, and 0.772 for vertical 
saccades (95% CI 0.655–0.890; p < 0.001), with a cutoff 
value of − 6.6%, leading to a sensitivity of 75.8% and 
specificity of 83.9% (Fig. 3B). The analysis of increased 
duration from onset to target yielded AUC values of 0.795 
for horizontal saccades (95% CI 0.701–0.888; best cutoff 
value, 49.2%; sensitivity 71.0%, specificity 96.8%) and 
0.792 for vertical saccades (95% CI, 0.699–0.884; best 
cutoff value, 57.7%; sensitivity 56.5%, specificity 96.8%) 
(Fig. 3C).

Table 1   Clinical characteristics of myasthenia gravis (MG) patients and healthy control (HC) group

AchR, acetylcholine receptor; F; Fisher’s exact test; IQR, interquartile range; M, Mann–Whitney U test; MG, myasthenia gravis; SD, standard 
deviation
The bold indicates the section headings within the table

MG (n = 62) HC (n = 31) p-valueF

Ocular MG (n = 48) Generalized 
MG (n = 14)

p-valueF,M Total (n = 62)

Age
 < 50 years, n (%) 18 (37.5) 7 (50) 0.538 25 (40.3) 16 (51.6) 0.232
 ≥ 50 years, n (%) 30 (62.5) 7 (50) 37 (59.7) 15 (48.4)

Gender
 Female, n (%) 18 (37.5) 7 (50) 0.538 25 (40.3) 17 (54.8) 0.352
 Male, n (%) 30 (62.5) 7 (50) 37 (59.7) 14 (45.2)

Clinical presentation
 Ptosis, n (%) 44 (91.7) 8 (57.1) 0.006 52 (83.8) – –
 Diplopia, n (%) 45 (93.8) 11 (78.6) 0.12 56 (90.3) – –
 Bulbar symptom, n (%) – 7 (50) – 9 (14.5) – –
 Limb weakness, n (%) – 12 (85.7) – 12 (19.4) – –
 Disease duration (month), mean ± SD 52.46 ± 80.21 45.4 ± 46.4 0.09 50.87 ± 73.67 – –

Antibody positivity
 AchR antibody, n (%) 30 (62.5) 13 (92.9) 0.046 43 (69.4) – –
 Musk antibody, n (%) – 1 (7.1) – 1 (1.6) – –
 AchR antibody titer (nM), mean ± SD 2.2 ± 3.88 7.49 ± 6.7 0.003 3.4 ± 5.1 – –
 Repetitive nerve stimulation test positivity, n(%) 13 (27.1) 11 (78.6) 0.001 24 (38.7)
 Edrophonium test positivity, n (%) 28 (58.3) 7 (50) 0.76 35 (56.4) – –

Chest CT
 Thymoma, n (%) 7 (14.6) 1 (7.1) 0.851 8 (12.9) – –
 Thymic hyperplasia, n (%) 8 (16.7) 3 (21.4) 0.75 11 (17.7) – –
 Not tested, n (%) 1 (2.1) 0 (0) – 1 (1.6) – –
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Table 2    Saccadic parameter analysis comparing the second saccade with the average of the last five saccades in both eyes of MG patients and 
the healthy control group

MG (n = 62) HC (n = 31) p-valueM 
(MG vs. 
HC)Ocular MG (n = 48) Generalized MG 

(n = 14)
p-valueM Total (n = 62)

The second saccade 
(horizontal)

 Ranges, deg, median 
(95% CI)

27.2 (24.8, 29.5) 27.9 (26.7, 29.1) 0.46 27.8 (26.7, 28.8) 28.5 (26.9, 30.2) 0.5

 Peak velocity, deg/s, 
median (95% CI)

419.5 (397.9, 441.0) 416.3 (364.9, 467.8) 0.78 418.8 (399.2, 438.3) 410.6 (382.8, 438.3) 0.63

 Latency, ms, median 
(95% CI)

251.7 (237.4, 266.1) 262.7 (229.3, 296.1) 0.96 254.2 (241.2, 267.2) 226.0 (214.2, 237.8) 0.008

 Duration from onset 
to target point, ms, 
median (95% CI)

129.2 (114.3, 144.1) 133.1 (105.0, 161.1) 0.78 130.1 (117.3, 142.8) 110.9 (99.7, 122.2) 0.069

Mean of the last 5 
saccades (horizontal)

 Ranges, deg, median 
(95% CI)

22.4 (19.7, 25.2) 24.3 (22.9, 25.6) 0.22 23.9 (22.7, 25.1) 27.0 (25.1, 29.0) 0.001

 Peak velocity, deg/s, 
median (95% CI)

408.2 (381.2, 435.1) 380.9 (327.5, 434.4) 0.16 402.5 (370.7, 434.3) 402.0 (378.5, 425.6) 0.4

 Latency, ms, median 
(95% CI)

258.6 (241.5, 275.7) 258.6 (221.3, 295.9) 0.92 258.6 (243.4, 273.7) 235.3 (219.5, 251.1) 0.49

 Duration from onset 
to target point, ms, 
median (95% CI)

230.2 (209.7, 250.7) 219.5 (186.3, 252.7) 0.62 227.8 (210.6, 244.9) 128.9 (121.5, 136.4) < 0.001

Difference between the second saccade and the 
mean of the last 5 saccades

 Ranges, deg, median 
(95% CI)

− 4.8 (− 8.1, − 1.4) − 3.7 (− 4.8, − 2.5) 0.67 − 3.9 (− 5.0, − 2.8) − 1.5 (− 3.4, 0.39) 0.002

 Peak velocity, deg/s, 
median (95% CI)

− 16.3 (− 42.7, 
− 23.7)

− 26.4 (− 73.7, 20.8) 0.29 − 18.6 (− 41.0, 3.7) − 22.6 (− 46.6, 1.5) 0.5

 Latency, ms, median 
(95% CI)

9.8 (− 3.5, 23.0) 8.3 (− 6.2, 22.7) 0.46 9.4 (1.2, 20.0) 15.4 (0.67, 30.2) 0.33

 Duration from onset 
to target point, ms, 
median (95% CI)

101.0 (81.7, 120.4) 86.4 (41.4, 131.4) 0.6 97.7 (80.2, 115.2) 17.9 (9.9, 26.1) < 0.001

The second saccade 
(vertical)

 Ranges, deg, median 
(95% CI)

27.9 (26.7, 29.1) 26.7 (23.2, 30.3) 0.88 27.6 (26.4, 28.8) 27.6 (25.5, 29.7) 0.71

 Peak velocity, deg/s, 
median (95% CI)

371.2 (246.6, 395.7) 374.9 (314.7, 435.2) 0.50 372.0 (349.6, 394.5) 389.9 (258.7, 421.2) 0.45

 Latency, ms, median 
(95% CI)

249.7 (235.3, 264.0) 256.7 (221.1, 292.2) 0.58 251.3 (238.0, 264.4) 250.5 (231.1, 269.9) 0.50

 Duration from onset 
to target point, ms, 
median (95% CI)

127.1 (113.3, 140.9) 142.0 (118.1, 165.8) 0.33 130.4 (118.7, 142.2) 122.4 (107.7, 137.0) 0.14

Mean of the last 5 
saccades (vertical)

 Ranges, deg, median 
(95% CI)

23.1 (21.7, 24.4) 22.9 (19.8, 25.9) 0.96 23.0 (21.8, 24.2) 25.6 (23.3, 27.9) 0.01

 Peak velocity, deg/s, 
median (95% CI)

356.5 (331.3, 381.7) 353.3 (292.3, 414.3) 0.82 355.8 (332.8, 378.8) 400.9 (369.9, 431.9) 0.02

 Latency, ms, median 
(95% CI)

266.5 (249.8, 283.2) 273.6 (236.5, 310.6) 0.71 268.1 (253.2, 283.0) 250.1 (234.5, 265.6) 0.18
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Discussion

This investigation aimed to determine if VOG quantification 
of saccadic eye movements could distinguish MG patients 
from HCs by identifying signs of oculomotor fatigue. 
Building upon prior research, this study incorporated a larger 
cohort and examined a broad array of saccadic parameters, 
including latency, peak velocity, saccadic range, duration 
from onset to target, and waveform patterns. Our analyses 

revealed marked differences in saccadic range and the time 
from onset to target between the second saccade and the 
average of the last five saccades, suggesting oculomotor 
fatigue. Notably, the frequency of multistep saccades was 
significantly higher in MG patients. The ROC curve analysis 
validated the utility of these saccadic parameters especially 
the frequency of multistep saccades, reduced saccadic range, 
and extended saccade duration from onset to target, as 
robust metrics for differentiating MG patients from healthy 
subjects.

The bold indicates the section headings within the table
CI, confidence interval; M, Mann–Whitney U test; MG, myasthenia gravis

Table 2   (continued)

MG (n = 62) HC (n = 31) p-valueM 
(MG vs. 
HC)Ocular MG (n = 48) Generalized MG 

(n = 14)
p-valueM Total (n = 62)

 Duration from onset 
to target point, ms, 
median (95% CI)

225.7 (206.1, 245.4) 228.8 (189.6, 267.9) 0.93 226.4 (209.4, 243.5) 136.6 (128.5, 144.7) < 0.001

Difference between the second saccade and the 
mean of the last 5 saccades

 Ranges, deg, median 
(95% CI)

− 4.8 (− 5.9, − 3.8) − 3.9 (− 6.0, − 2.1) 0.47 − 4.6 (− 5.5, − 3.7) − 1.9 (− 3.9, − 0.03) < 0.001

 Peak velocity, deg/s, 
median (95% CI)

− 37.5 (− 62.5, 
− 12.6)

− 7.8 (− 32.4, 16.9) 0.10 − 30.8 (− 50.8, 
− 10.8)

− 0.7 (− 33.4, 32.1) 0.06

 Latency, ms, median 
(95% CI)

16.1 (1.0, 31.3) 10.1 (− 20.1, 40.3) 0.47 14.8 (1.6, 27.9) 2.38 (− 13.9, 18.7) 0.002

 Duration from onset 
to target point, ms, 
median (95% CI)

98.7 (74.2, 123.2) 86.8(47.5, 125.9) 0.55 95.9 (85.5, 116.4) 14.3 (0.3, 28.2) < 0.001

Fig. 2   Analysis of saccadic parameters. Analysis of various saccadic 
parameters for the second saccade (blue) and the mean of the last 5 
saccades (red) in ocular MG, generalized MG, and control groups 
for horizontal saccades (A–D) and vertical saccades (E–H). The 
difference between the second saccade and the mean of the last 

5 saccades, reduced range, and increased duration from onset to 
the target point was significant in MG patients compared to HCs. 
Subgroup analysis comparing ocular MG and generalized MG did not 
reveal a significant difference
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Saccades are rapid eye movements that transition 
the gaze between fixation points [11], requiring precise 
coordination of the burst and step phases for initiation and 
stabilization, respectively [18]. The examination of these 
movements is crucial for understanding ocular myasthenia's 
pathogenesis and contributing to its differential diagnosis 
[19–22]. Changes in saccadic properties, such as gain, 
accuracy, velocity, and latency after extended saccadic 
tasks, have been implicated in indicating fatigue [23, 
24]. The vulnerability of extraocular muscles (EOMs) to 
neuromuscular transmission failure is heightened due to 
their reduced safety factor, exacerbated by exercise-induced 
stress [19, 25–29]. Additionally, the oculomotor system's 
central control mechanisms may face challenges in quickly 
compensating for asymmetries and varying deficits in 
EOMs, which heavily depend on visual feedback.

Our research explored the decline in saccadic ranges with 
consecutive 30° saccades over a series of 75 cycles. In a 
controlled comparison, individuals with MG demonstrated a 
notable diminution in saccadic range during a 10° downward 
vertical saccade relative to healthy participants [30]. This 
finding is consistent with a noticeable decline in saccadic 
range after three minutes of continuous 30° saccades [31], 
reinforcing the concept of oculomotor fatigability in MG 

as previously identified in our and other research. These 
observations of reduced oculomotor range, both in saccadic 
and smooth pursuit movements after sustained eye activity, 
serve as markers of oculomotor fatigue in MG [9, 32].

Studies examining saccadic peak velocities in MG 
patients have yielded varied results [31]. Some studies 
report a reduction in peak velocity following repetitive eye 
movements, indicating variable signs of fatigue among MG 
patients, which are not consistently observed across the 
spectrum [20–22, 31, 33]. Noteworthy is the use of binocular 
phase plane analysis to uncover disconjugacy in saccade 
velocities, a feature initially absent in MG patients who 
later exhibit this characteristic, contrasting with conditions 
such as internuclear ophthalmoplegia or cranial nerve palsy 
[33]. The decrement in velocity observed in a subset of MG 
patients suggests a relationship with the amplitude of the 
target and the influence of the orbit's restricting forces on 
maintaining normal saccade velocity [34]. Our study aligns 
with these findings, observing a trend towards reduced 
mean peak velocity in the latter saccades, although these 
differences were not statistically significant.

Saccadic latency, the time elapsed from stimulus 
presentation to the initiation of eye movement, is generally 
around 200  ms [35]. Previous research indicated no 

Table 3   Saccadic wave analysis of MG patients and control group

The bold indicates the section headings within the table
CI, confidence interval; GMG, generalized myasthenia gravis; M, Mann–Whitney U test; MG, myasthenia gravis; OMG, ocular myasthenia 
gravis

MG (n = 62) HC (n = 31) p-valueM (MG 
vs. Control)

Ocular MG (n = 48) Generalized MG 
(n = 14)

p-value 
(OMG vs. 
GMG)

Total (n = 62)

Horizontal saccades 
type (%)

 Single-step, median 
(95% CI)

60.6% (57.6, 63.7%) 64.1% (57.6, 70.6%) 0.252 61.4% (58.7, 64.1%) 72.0% (67.3, 76.8%) < 0.001

 Multiple-step, 
median (95% CI)

40.0% (36.7, 43.3%) 35.8% (29.4, 42.3%) 0.181 39.1% (36.6, 41.9%) 29.9% (26.8, 32.7%) < 0.001

 Staircase, median 
(95% CI)

37.3% (34.0, 40.5%) 31.4% (23.1, 39.7%) 0.170 36.0% (32.9, 39.0%) 27.9% (23.2, 32.7%) < 0.001

 Overlapping, median 
(95% CI)

2.7% (0.8, 4.6%) 4.4% (0.0, 10.5%) 0.800 3.1% (1.2, 5.0%) 0.04% (0.0, 0.1%) 0.012

Vertical saccades type 
(%)

 Single-step, median 
(95% CI)

55.1% (50.6, 59.6%) 55.0% (44.9, 65.1%) 0.711 55.1% (51.0, 59.1%) 75.3% (69.3, 81.3%) < 0.001

 Multiple-step, 
median (95% CI)

45.7% (41.4, 50.1%) 45.0% (34.8, 55.1%) 0.590 45.6% (41.6, 49.5%) 24.7% (18.7, 30.7%) < 0.001

 Staircase, median 
(95% CI)

38.4% (33.1, 43.7%) 40.1% (28.1, 52.2%) 0.953 38.8% (34.1, 43.5%) 24.4% (18.4, 30.4%) 0.001

 Overlapping, median 
(95% CI)

7.3% (4.1, 10.6%) 4.8% (0.0, 10.3%) 0.514 6.8% (4.0, 9.5%) 0.3% (0.0, 0.6%) < 0.001
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significant difference in saccadic latency for 10° saccades 
between MG patients and controls, but an increased latency 
was observed in MG patients during 20° saccades [22]. 
This suggests that although MG pathophysiology might not 
directly influence saccadic latency, the cumulative fatigue 
associated with repetitive ocular movements in MG could 
lead to a slight latency delay. Our investigation aligns with 
these observations, revealing a modest increase in horizontal 
saccadic latency among MG subjects [30].

The typical duration of a saccade ranges from 80 to 
120  ms. However, our data reveal prolonged saccadic 
durations within the MG group, often marked by premature 
cessation or temporary deceleration [10, 20]. Saccades 
characterized by multiple steps and exceeding 2° in 
refixation displacement are defined as "fragmented" or 
"stepwise," [17] a pattern previously linked to cerebellar 
disorders and increasingly observed in neurological 
conditions such as Parkinson's disease [15, 17, 36, 37]. The 
genesis of these multistep saccades likely involves a complex 
interaction among lower and higher oculomotor structures, 
including the cerebellum, basal ganglia, and cerebral cortex, 
along with midbrain elements like omnipause and burst 
neurons crucial for eye movement control [38, 39]. In the 

context of MG, computational models have highlighted 
the role of EOM tonic fiber dysfunction and the resultant 
hypometric response due to paresis. A compensatory central 
proprioceptive adjustment seems to modify the pulse-step 
neural command, triggering repeated, corrective saccades 
until the target is fixated [40, 41]. Additionally, the high 
motor neuron firing rates required during saccades in MG 
may lead to variability in motor commands and subsequent 
saccadic fragmentation as individual motoneurons lose 
synchrony [42]. While neuromuscular transmission deficits 
are evident in MG, an observed adaptive extension in 
the burst phase of central neural firing, particularly with 
multistep saccades, suggests a primary central rather than 
peripheral mechanism. Therefore, the saccadic behavior 
in MG reflects an intricate balance of central adaptations 
and peripheral neuromuscular challenges, manifesting in 
extended saccadic durations and the distinct occurrence of 
multistep saccades [39, 42].

Fatigue within the saccadic system, manifesting as 
reduced saccadic range, prolonged duration, and the 
emergence of multistep saccades, is notably exacerbated by 
repetitive saccadic activities [29]. These effects illustrate 
the significant impact of fatigue on the precision and 

Fig. 3   The receiver operating characteristic (ROC) analysis. The 
ROC analysis in our study produced a fitted ROC curve, illustrating 
the effectiveness of multistep saccades and the differences in range 
and duration from onset to target between the second saccade and 
the average of the last five saccades in distinguishing between 
MG patients and HCs. A The area under the curve (AUC) for the 
proportion of multistep saccade was 0.788 for horizontal saccades 

and 0.822 for vertical saccades, indicating that vertical saccades may 
be a more reliable predictor of MG diagnosis. With the decrease 
in range (B) and increase in duration from onset to target (C), the 
area under the curve (AUC) for vertical and horizontal saccades 
were depicted. The blue circle shows the optimal  cutoff value for 
horizontal saccades, while the red circle indicates the optimal cutoff 
value for vertical saccades
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efficiency of ocular motility in MG. Previous investigations 
have identified saccadic subtypes displaying intrasaccadic 
anomalies indicative of fatigue, including a stutter and 
decrescendo pattern characterized by multiple saccadic 
fragments in MG patients [39, 43]. Intriguingly, such 
abnormal saccadic patterns have been observed even in 
eyes not directly afflicted by MG, which corroborates our 
findings. The identification of these specific intrasaccadic 
variations may facilitate the differentiation of MG from 
other neurological disorders associated with brainstem 
lesions [44]. Based on our analysis, it is possible that the 
most diagnostically useful parameter is the frequency of 
multistep saccades. The frequency of multistep saccades 
demonstrated the highest diagnostic value, with a ROC 
analysis showing an AUC of 0.822 for vertical saccades 
and 0.788 for horizontal saccades. Multistep saccades are 
indicative of impaired neuromuscular transmission and 
increased fatigability, which are hallmark features of MG. 
This parameter effectively captures the cumulative impact 
of fatigue on the oculomotor system, providing a clear 
distinction between MG patients and healthy individuals. 
While the decrement in saccadic range was slightly less 
effective than the frequency of multistep saccades, it also 
provided valuable diagnostic insights with an AUC of 0.772 
for vertical saccades and 0.702 for horizontal saccades. The 
parameter of increased duration from onset to target showed 
significant diagnostic potential, with an AUC of 0.795 for 
horizontal and 0.792 for vertical saccades, further supporting 
the identification of MG-related oculomotor fatigue. In 
addition, our study found that vertical saccades are more 
affected than horizontal saccades in MG patients (Fig. 3). 
This difference is likely due to the unique anatomical and 
physiological characteristics of the EOMs. Notably, a study 
by Cleary et al. observed that elevator muscle weakness, 
particularly in the superior rectus and inferior oblique 
muscles, was more prevalent in MG patients compared to 
controls [45]. This finding aligns with our previous research, 
where decrements in repetitive vertical saccades showed the 
highest diagnostic value, with an AUC of 0.91 (p < 0.001; 
cutoff value, 6.401%; sensitivity, 78.3%; specificity, 95.8%) 
[9]. Vertical saccades require more precise control and 
neuromuscular coordination due to gravitational effects 
and the necessity for maintaining binocular alignment. 
Therefore, vertical muscles may have a higher proportion 
of fibers susceptible to fatigability, leading to greater 
impairment in vertical saccades. Clinically, this underscores 
the importance of assessing both vertical and horizontal 
saccades in the diagnostic evaluation of MG. Vertical 
saccadic impairment may be a more sensitive indicator of 
oculomotor fatigability.

The limitations of this research warrant consideration. 
This study's scope, confined to a single tertiary care 
center, may not encompass the entire spectrum of MG 

manifestations. Future investigations should adopt a multi-
centered approach, encompassing a broader demographic of 
MG patients and including individuals with ophthalmoplegic 
conditions not attributed to MG. Additionally, examining 
patients pre- and post-treatment could further validate our 
findings.

In summary, our research underscores the diagnostic 
utility of video-oculography (VOG) for quantifying saccadic 
eye movements as a non-invasive method for detecting 
MG. This study represents a significant step forward in 
quantifying a comprehensive array of saccadic parameters 
and patterns, offering vital diagnostic insights, particularly 
when conventional diagnostic tests are inconclusive. The 
application of eye movement recording, a technique proven 
in other neurological disorders, holds promise for enhancing 
early detection and management of MG, with the potential 
to substantially improve patient outcomes.
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