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Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is
considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of
the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states
corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of
channeling of the particles and their angular distribution at the exit crystal surface are calculated.
Characteristic experimental parameters for observation the quantum effects are estimated.
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1. Introduction

The first experimental observation of the charged particle chan-
neling in a bent single crystal was reported in Ref. [1]. This phe-
nomenon was theoretically predicted by Tsyganov in Ref. [2]. At
present, the effect is considered as an perspective method in high
energy physics to control the charged particle beams. A lot of
experimental works were done in order to investigate accurately
various aspects of the phenomenon both for positively [3–7,11]
and negatively charged particles [8–10] with different energies.
The length of dechanneling for high-energy protons in the bent
crystal was measured with high precision [11]. In the papers
[12,13] the undulator on the basis of the bent crystal was consid-
ered theoretically and was realized recently in [14].

The angle of the particle beam rotation is defined by the crystal
length and its curvature radius Rcr. This value was estimated in
dependence on the particle energy in Ref. [2]. All above mentioned
experiments were operated with the crystals having the bent
radius R � Rcr. In this case the theoretical simulation of the particle
channeling can be fulfilled in the framework of the classical
mechanics as it takes place for the channeling in the straight
crystal.

The maximal angle of the particle beam rotation corresponds to
the minimal possible crystal curvature radius R � Rcr. However, as
it was shown in Ref. [15], the classical theory is not applicable in
this case. Therefore, it is of interest to investigate in detail the
particle motion in the bent crystals taking into account the factors
that are not described within the framework of the classical theory
of the phenomenon.

In this paper (see also in [15]) the quantum theory of the planar
channeling of the relativistic particles in a bent single-crystal is
built and the quantum effects are described at the crystal curvature
radius in the range R � Rcr. It is shown that in this case the particle
states in a bent crystal are changed substantially because of
tunneling under the barrier created by the crystallographic planes.
It leads to the change of the efficiency of capture in the channeling
modes and the angular distribution of the particles at the exit
surface of the bent crystal. All numerical calculations are fulfilled
for the proton channeling in the Si crystals but the analysis is valid
also for the negatively charged particles.

2. Stationary states of the particle channeled by the bent crystal.

Let us consider the equation, which follows from the Dirac
equation and determines the stationary states of the relativistic
particle with energy E and massm � E in a crystal if the small spin
effects are not taken into account [15,16] (the natural system of
units with �h ¼ c ¼ 1 is used):
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The average potential of the crystallographic planes in the bent
crystal has cylindrical symmetry [3] and is described by the
following function

VðrÞ ¼
Xn1

n¼�n1

V1ðr � R� ndÞ:

Here V1ðr � R� ndÞ is the potential of a single plane; R is the
curvature radius of the central channel, 2n1 is the number of
crystallographic planes in the direction perpendicular to the bend;
d � R is the interplane distance.

The variables in Eq. (1) can be separated in the cylindrical
coordinate system due to the potential symmetry:

Wð~rÞ ¼ uðrÞffiffiffi
r

p exp½iðluþ pzzÞ�; l ¼ 0;�1;�2; . . . :

To solve this equation it is convenient to introduce relative
radial variable x ¼ r � R; jxj < n1d � R and use the condition
jVðrÞj � E. Then the equation for the function uðrÞ becomes similar
to Schrodinger equation for the particle transverse motion in the
case of planar channeling [17]

� d2

dx2
þ 2E0Veff ðxÞ

( )
uðxÞ ¼ euðxÞ:

The total energy eigenvalue in Eq. (1) is determined by the
quantum numbers l; pz and the energy of radial motion e in the
effective potential Veff ðxÞ:

E � E0 þ e; E2
0 ¼ m2 þ p2

z þ
l2 � 1=4

R2 ;

Veff ðxÞ ¼ VðxÞ þ p2
0

E0R
x ¼ VðxÞ þ p0v

R
x; p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 �m2 � p2

z

q
; ð2Þ

with v ¼ p0=E0 as the particle velocity.
From the classical point of view the bound state of the particle

in a channel is appeared when the potential energy Veff ðxÞ has a
minimum in the range �d=2 6 x 6 d=2. When considering Eq. (2)
this condition takes the following form:

� j V 0ðxÞjmax þ
p0v
R

6 0: ð3Þ

The crystallographic plane potential is the monotonically
increasing function for x ! �d=2, therefore the condition (3) is
equivalent to the following inequality for the average radius of
the crystal curvature:

R P
p0v

j V 0ðxÞjmax

� Rcr; ð4Þ

which coincides with expression obtained by Tsyganov [2].
In order to illustrate the further results quantitatively let us

choose Si crystal bent along the planes (110) (d ¼ 1:92 Å) as an
example. In this case the potential of a single plane is well
approximated by the Peschl-Teller potential [17]:

V1ðxÞ ¼ aPTtanh
2ðx=bPTÞ; ð5Þ

with the parameters aPT ¼ 23 eV, bPT ¼ 0:145d and
V 0

1max ¼ 6:37 GeV/cm.
Remind, that the channeling potential have already took into

account averaging of the microscopic particle-crystal potential
over the atomic thermal vibrations [17]. Deviations from this
potential conditioned by the particle-phonon interaction lead to
an incoherent scattering and define one of the contributions to
the dechanneling processes.

If one considers the channeling of protons with the energy
E ¼ 70 GeV, for which one of the first experiments with a bent
crystal was carried out [1], Rcr � 11:01 cm. Fig. 1 shows the
potential Veff ðxÞ, obtained by (5) and (2) with E0 ¼ 70 GeV, and
the curvature radius R ¼ 12:01 cm.

However, in a quantum theory the condition (4) is not sufficient
to ensure that the particle could be captured in channel and change
the velocity direction at a large angle. It happens because of the
possibility of the particle tunneling under potential barrier
(between the points x1 and x0 in Fig. 1). In the result it passes to
the continuous spectrum state corresponding to a direct motion
of the particle. Lifetime of the particle in a bent channel, and
consequently, the angle of the particle rotation depends on the
concrete form of the potential.

Note that one can consider the quantum effect of under-barrier
tunneling as an additional mechanism of the particle dechanneling
along with the known classical processes [3,11]. At the considered
particle energy such quantum effects are negligible in the case of
planar channeling in the straight crystal. But the barrier penetra-
bility grows significantly when the curvature radius of the crystal
is close to its critical value. Fortunately in this case all calculations
can be conducted analytically for arbitrary VðxÞ, because Veff ðxÞ can
be taken into account in the harmonic approximation. With the
above parameters Rcr � 11:01 cm and we will choose the crystal
bend radius close to this value, for example, R ¼ 12:01 cm
(Fig. 1). In this case, the potential of a bent channel near barrier
can be approximately written in the following form:

Veff ðxÞ �
V1 ¼ 1

2V
00ðx0Þðx� x0Þ2; x0 < x < x0;

V2 ¼ DV � 1
2 j V 00ðx1Þ j ðx� x1Þ2; x < x0:

(
ð6Þ

Here the point x0 is determined from the matching condition
V1ðx0Þ ¼ V2ðx0Þ and DV ¼ Vmaxðx1Þ � Vminðx0Þ.

In order to avoidmisunderstanding it should be stressed that the
harmonic approximation (6) for Veff ðxÞ differs essentially from that
one for channeling potential in the straight crystal. The latter one
is used usually for x near the minimum of VðxÞ. On the contrary
the points x0; x1 corresponding to the minimal value of Veff ðxÞ are
disposed near the point of inflection xd for VðxÞ : V 0ðxdÞmax;

V 00ðxdÞ ¼ 0; jx0 � xdj 	 ðR� RcrÞ (Fig. 1). All these points are close to
the atomic planes and correspond to the potential maximum for
the positively charged particles and to the potential minimum for
the negatively charged particles. Interpolation (6) does not depend
on the detailed form of the channeling potential on the whole
interval but only on the values V 00ðx0Þ;V 00ðx1Þ. It can be verified that
these values change unessentially for all commonly used model
channeling potential and for both particle charges [17].

For the potential (6) the quasi-stationary energy levels for the
particle in the bent channel can be approximately calculated by
means of the formula:

ek � x kþ 1
2

� �
� iCk=2 � eð0Þk � iCk=2;x ¼ V 00ðx0Þ

E0

� �1=2
: ð7Þ

The width Ck of the level can be found by using the quasi-
classical expression for the penetration coefficient of the potential
barrier [18]

Ck ¼ Ax exp �2
Z a

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ðVeff ðxÞ � eð0Þk Þ

q
dx

� �
; ð8Þ

where A � 1 is pre-exponentials and the two turning points a and b
are defined by the expression:

a; b ¼ x1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DV � 2kþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffi
V 00ðx0Þ
E0

q
j V 00ðx1Þ j

vuut
:

Maximal number of the levels corresponding to the particle
bound states is defined by the condition:

kmax <
DV
x

� 1
2



Fig. 2. Rotation of a beam in a bent crystal.

Fig. 1. Effective potential for the particle in the bent crystal.
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For example, when the particle energy E0 ¼ 70 GeV it leads to:

Vmin ¼ 456:788; Vmax ¼ 457:193; x ¼ 0:112;

so that

kmax <
Vmax � Vmin

x
� 1
2
¼ 3:12

This means that there are 4 bound levels with quantum
numbers k = 0, 1, 2, 3. Widths of these levels were calculated using
the formula (8). Analogous calculations can be executed for other
particle energy. Table 1 shows some results.

By the definition of width, the particle that is trapped at the kth
bound level in the bent channel remains at it moving through
entire crystal length L if the following condition is fulfilled

CkL < 1: ð9Þ
It allows one to introduce the characteristic value Lk ¼ 1=Ck as

the distance which the particle at the k-th bound level moves being
captured in the bent channel. This length should be taken into
account only for the levels close to the top of the barrier. Its values
strongly depend on the particle energy and also presented in
Table 1. As one can see at the considered energies only two lowest
levels are effective for the capture of particles.

3. Efficiency of the particle capture in the bent channels.

Let us consider the following geometry for observation of a
beam rotation by a bent crystal (Fig. 2). Here ~p0 is the incident
particle momentum. Crystal is supposed to be homogeneous in
the z-axis direction, so without violation of generality it is possible
Table 1
Parameters of the bound states for particle in the bent channel.

E0ðGeVÞ xðeVÞ k C2=x C3=x L2ðcmÞ L3ðcmÞ
70 0.112 0,1,2,3 0:24
 10�3 0:42 0:24 0.0002

80 0.099 0,1,2 1:32
 10�3 – 0:06 –
to choose p0z ¼ 0; p0x � E0 sin b; p0y � E0 cos b; angle b determines
divergence of the momentum in the incident beam; Lx ¼ 2n1d is
the crystal width, Lz ¼ h is its height and L is its length.

In order to calculate the population of the bound levels in a bent
channel one should use the continuity condition at u ¼ 0 for the
wave function, describing the incident wave packet and superposi-
tion of the stationary wave functions being solutions of the
Schrödinger equation in the crystal.

For the levels satisfying the condition (9) the wave function of
bound state of the particle in the bent channel with number p is
written as follows:

Wpz ;l;p;k ¼
eipzzffiffiffiffiffiffiffiffiffi
2ph

p eiluffiffiffiffiffiffiffi
2p

p 1

k!2k

ffiffiffiffi
a
p

r !1=2

e�
1
2ax

2 Hk
ffiffiffi
a

p
x

� �
ffiffiffi
r

p ; ð10Þ

where x ¼ r � Rn � x0 � pd ¼ r � rp;a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0V

00ðx0Þ
p

;Hk is the Her-
mite polynomials.

The energy corresponding to the wave function (10) is defined
by four quantum numbers



Table 2
Acceptance of the particle capture in the bent channel.

E0 k1 Aq Acl

70 3 3.94% 0.69%
80 2 2.44% 0.54%
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Epz ;l;p;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

z þ
l2 � 1=4

R2
n

vuut þ pDV þx kþ 1
2

� �
:

It should be noted that the expression (10) is similar to the
formula for the wave function of the channeled particle in a plane
crystal [17].However, becauseof absenceperiodicityof thepotential
in the radial direction the energy levels for isolated pits do not form
energy zonewith2n1 sublevels but they staydifferent for each chan-
nel. Then the quantum number p determines the channel number.

Before proceeding to study the boundary problem, let us remind
the classical estimation for the capture efficiency (‘‘acceptance”) of
the particle in the bent channels. This value Acl in framework of the
classical theory can be estimated as ratio of the phase volume
corresponding to the finite movement of the particles in the
channel to the total phase volume of the incident beam [3,12]:

Acl � 1� Rcr

R

� �2

F
phc
4Db

� �
;

FðuÞ ¼ 1; u > 1;
FðuÞ ¼ u; u < 1;

	
ð11Þ

with hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aPT=E0

p
and Db determine the Lindhard angle and the

angular divergence of the incident beam, correspondingly.
Strictly speaking, Eq. (11) is valid for R � Rcr . However, we will

use it also for R 	 Rcr for approximate comparison with our results.
Let us now deduce the formula for the acceptance Aq in the

quantum case. The wave function of the incident particle in the
range u < 0 is defined by the following wave packet:

W0 ¼
Z

d~q

ð2pÞ3=2
að~p0 �~qÞ exp½iðqz �~q~riÞ�

X
l

ð�1ÞlJlðq?rÞeilðu�bÞ:

Here the function að~p0 �~qÞ determines distribution of the parti-
cle momentum relatively its central value ~p0. It is normalized by

the condition
R
d~q j að~p0 �~qÞj2 ¼ 1. The vector ~ri determines the

point, where the single-particle wave packet is localized when it
gets to the crystal; Jlðq?rÞ is the Bessel functions.

Wave function of the electron in the bent crystal is defined by
the following superposition:

W1 ¼
X
k

CkWkðrÞ; ð12Þ

where k includes all quantum numbers pz; l; k;p; WkðrÞ is the sta-
tionary wave function (10) and the coefficients Ck are defined by
the integral:

Ck ¼
Z 1

�1
dz
Z 1

0
rdr½W0W

�
k�u¼0 ¼

Z
d~q

ð2pÞ3=2
að~p0�~qÞexp½�ið~q~riþ lbÞ�



Z 1

�1
dz

eiðqz�pzÞzffiffiffiffiffiffiffiffiffi
2ph

p
Z 1

0
dr

ffiffiffi
r

p
Jlðq?rÞCke�

ax2
2 Hkð

ffiffiffi
a

p
xÞ; ð13Þ

Ck ¼ 1
k!2k

ffiffiffia
p

p
 �1=2
is the normalization constant.

Using the integral representation for the Bessel function and the
saddle-point method with the condition q?R � 1 [19] one can find
the value Ck in the following form:

Ck ¼
Z

d~q

ð2pÞ3=2
að~p0 �~qÞ exp½�ið~q~ri þ lbÞ�CkðiÞkþ1=2

ffiffiffi
R

p

q?


 dðpz � kzÞffiffiffi
h

p 
 e
� a

2q2?
ðl�q?rpÞ2

Hk
q?ffiffiffi
a

p j q?rp � l j
� �

: ð14Þ

Let us suppose that the incident beam is monochromatic by
energy and has the Gaussian distribution over the angles with
the angular width Db ¼ h � hc . Then the probability of the particle
will be captured at one of the bound levels in the bent channel is
defined by the following expression:
Pðri; rpÞ ¼
Xk1
k¼0

X
l

hffiffiffiffi
p

p e�h2ðl�p0riÞ2 h

k!2k

ffiffiffiffi
a
p

r
V 00ðx0Þ
p0

rp � l
p0

� �2


 Ra
p0DV

e
� a

p2
0

ðl�p0rpÞ2
H2

k

ffiffiffi
a

p
p0

j l� p0rp j
� �

; ð15Þ

where k1 is maximal value of k for which the inequality (9) is
fulfilled.

The acceptance Aq can be calculated in the result of averaging
the value Pðri; rpÞ over the coordinates of the incident particles
within the cross-sectional area Sb ¼ hLb of the beam and
summation over numbers of the channels �n1 < p < n1. Besides,
the sum over l in Eq. (15) can be replaced by the integral because
in the considered case of the relativistic particles the number of
various values of l contributed to this sum is very large
(Dl � p0n1d � 1).

In a result of calculation of all integrals one can find the
acceptance Aq in the following form:

Aq ¼
Xn1
�n1

Z
dxidzi
Sb

Pðri; rpÞ ¼
Xk1
k¼0

kþ 1
2

� �
Lx
Lb

V 00ðx0ÞR
dp2

0DV

� Lx
Lb

Xk1
k¼0

kþ 1
2

� �
x2

dV 0ðx0ÞDV
¼ Lx

Lb

x
dV 0ðx0Þ

k1ðk1 þ 2Þ
2k1 þ 1

: ð16Þ

It is assumed that the beam width Lb is wider than the crystal
width Lx.

Table 2 shows a comparison of the acceptance Aq value with its
classical values of Acl, which was calculated according to the
formula (11), for the particle energies E0 ¼ 70 GeV and 80 GeV.

In our knowledge, the existing experiments with bent crystals
corresponded to the case R � Rcr and we could not compare the
theoretical values (16) with experimental data. Therefore we used
an extrapolation of Eq. (11) beyond the framework of its validity
for rough estimation of the classical acceptance (last column in
Table 2) in the case R 	 Rcr . One can see that the simple geometri-
cal calculation (11) underestimates essentially the acceptance
value because the larger phase volume is taken into account in
the quantum calculation of the occupation coefficients (13).

4. Angular distribution of the particles exited from the crystal

In the present paper let us consider the pure quantum effects
neglecting the dechanneling and volume capture processes [3]. In
this case the particles that occupied the levels with quantum num-
ber k < k1 will move on the circular trajectory with radius R. It
leads to rotation of the occupied part of the beam at the angle

bðLrÞ ¼ Lr
R
;

where Lr 6 L is the length of the particle path in the bent crystal.
In the framework of the quantum–mechanical description the

state of the beam after passing of the way Lr is determined by
evolution of the population coefficients in the expansion of the
wave function (12) over the quasi-stationary states:

W1ðLrÞ ¼
X
k

CkWkðrÞei�kLr : ð17Þ

Taking into account the level widths of the bound levels (7) one
can calculate the probability to find the particle at kth level after
passing the distance Lr as follows:
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Fig. 3. Angular distribution of the particles exited from the crystal.
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PkðLrÞ � Ly
Lb

ð2kþ 1Þ
ð2k1 þ 1Þ

x
dV 0ðx0Þ

e�
Lr
Lk : ð18Þ

Under barrier tunneling is significant only for the upper levels,
for which the values of Lk at the considered parameters are shown
in Table 1 (for the lower levels Lk � L).

One can see from Eq. (18) that this process is described by the
exponential law similarly to other dechanneling mechanisms con-
ditioned by the particle multiple scattering on the crystal electrons
and nuclei [11]. The latter processes are characterized by the
dechanneling lengths Le and Ln correspondingly and can be consid-
ered as over barrier processes. In the present paper we are
restricted by the qualitative estimation of their influence on the
quantum effect because the existing experimental data refer to
the case R � Rcr . As it was mentioned above the point x0 (Fig. 1)
is arranged near the crystal plane where the electron density is
small [11] and Le � Lk. From the other side the estimation shows
that this point is situated out of the ‘‘nuclear corridor” [11] for
the considered experimental parameters. Therefore one can expect
that Ln � Lk from Table 1 and the tunneling effect still can be
observed.

In the crystal with length L the angle of the particle rotation is
determined only by that part of trajectory when particle was
staying at the bound level and it can be calculated using the
following formula:

bk ¼
Lk
R

1� e�
L
Lk

h i
: ð19Þ

Let us, for example, consider a model of the incident beam with
the uniform density along the axis x (Lb ¼ Lx) and the Gaussian
distribution on angle b with a width h:

hffiffiffiffi
p

p U0ðbÞ; U0ðbÞ ¼ e�
b2

h2 :
Then the angular distribution of beam intensity at the exit of
the crystal is described by the following expression:

IðbÞ ¼ I0UðbÞ; I0 ¼ h

ð2k1 þ 1Þ ffiffiffiffi
p

p x
dV 0ðx0Þ

;

UðbÞ ¼
Xk1
k¼0

ð2kþ 1ÞU0ðb� bkÞ; ð20Þ

where the values bk are defined by the formula (19). Characteristic
form of this function is shown in Fig. 3, for two energies of the
particles and the crystal length L ¼ 0:5 cm , h ¼ 10�3 rad. The
logarithmic scale for the exit angles was used.

One can see that the angular distributions have only one peak
for each of the particle energies if the quantum tunneling is not
taken into account (Lk � L were chosen artificially for all levels).
However, several fractions of the particles rotated at different
angles were appeared if the real values of the tunneling lengths
Lk from Table 1 were used. Such fine structure in the particle
angular distribution could confirm qualitatively the considered
quantum-size effect.

5. Conclusions

In the result, it shown in the paper that a fine structure of
angular distribution in the rotated beam should appear in the
framework of the quantum–mechanical effects for the particles
channeled by the bent crystal. Its characteristic form depends on
the number of the particle localized states in the average potential
of the planes. Experimental investigation of this phenomenon may
demonstrate the quantum-size effects for high energy physics and
may be useful for optimization of the bent crystal parameters.

When the crystal curvature radius is closed to its critical value
the quantum tunneling of the captured particles should be taken
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into account together with the classical dechanneling processes.
The sample calculations were fulfilled for the positively charged
particles (protons) but the qualitative results can be also corrected
for electrons. It seems that the main problem for observation of the
considered quantum effects is defined by manufacturing of the
crystal with rather small bend radius.
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