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Abstract. In the realm of recommender systems, enhancing the quality of rec-

ommendation lists has become a focal point for researchers. This paper presents 

a novel approach integrating clustering structures with Graph Convolutional 

Network (GCN) techniques to improve recommendation quality. Initially, we 

employ a hierarchical tree structure to cluster similar users and items based on 

energy-based similarity measures. This allows for a more accurate modeling of 

user and product groups. We then construct graphs representing user relation-

ships (SU-Graph) and item relationships (SI-Graph) based on these clusters, as 

well as a graph derived from the user-item rating matrix. Utilizing this frame-

work, we train a GCN to predict user ratings for previously unseen items, sig-

nificantly enhancing the accuracy of recommendations. Finally, we refine the 

recommendation lists by balancing precision and diversity, ensuring users re-

ceive suggestions that are both relevant and varied. Experimental results on the 

MovieLens dataset validate the effectiveness of our proposed approach, demon-

strating substantial improvements over traditional methods. 

Keywords: Recommender Systems, Clustering, Diversity, Graph Convolution-

al Network. 

1 Introduction 

Recommendation systems are an essential tool in various fields such as e-commerce, 

social media, and online entertainment. They help users find the most suitable prod-

ucts or content based on personal preferences, habits, and activity history [1, 2]. 

Providing accurate and personalized suggestions not only enhances user experience 

but also contributes to increased revenue and overall satisfaction. Traditional recom-

mendation systems typically rely on two main methods: content-based filtering and 

collaborative filtering [3]. Content-based filtering uses the features of products and 

user information to suggest items similar to those the user has previously shown inter-

est in. This is achieved by analyzing data related to preferences, product description 

keywords, or other detailed attributes to create an appropriate predictive model. How-

ever, this method has limitations when faced with scenarios where there is a lack of 

user or product data, which can reduce the effectiveness of the recommendations. 

Conversely, collaborative filtering primarily relies on user behavior data to make 
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suggestions. This method uses data from various users to identify trends and common 

preferences, thereby building connections between users and products based on simi-

larities in behavior. A significant advantage of this method is its ability to make rec-

ommendations regardless of product content, as it does not require a detailed analysis 

of product attributes [4]. 

 

Recent studies have focused on applying deep learning techniques based on graphs, 

including GNN (Graph Neural Networks), GCN, and other variations, to enhance 

collaborative filtering systems. These models leverage graph structures to represent 

complex relationships between users and products. Instead of relying solely on simple 

matrix calculations, using GCN allows the model to learn more complex and pro-

found features, such as influencing factors across multiple connection layers in the 

user-product network [5-8]. Systems based on GNN and GCN not only help improve 

the accuracy of recommendations but also expand the system's adaptability to large 

and diverse data. Graph structures also aid in identifying clusters of users or products 

with similar characteristics, thereby enhancing the ability to detect potential connec-

tions that traditional methods may find difficult to recognize. This is particularly im-

portant in the context of today’s large and complex data, where information is not just 

linear but intertwined through multiple multi-dimensional relationships [9, 10]. The 

quality of recommendation lists has become an essential focus in the research of rec-

ommender systems. This paper proposes an advanced method that integrates complex 

clustering structures with GCN techniques to comprehensively enhance recommenda-

tion quality. 

The contributions of the paper include: (1) utilizing a hierarchical tree structure to 

group users and products based on energy-based similarity measures, enabling accu-

rate modeling of user and product groups; (2) constructing graphs representing user 

relationships (SU-Graph) based on similar user clusters, item relationships (SI-Graph) 

based on similar item clusters, and a graph representing the relationships between 

users and items based on the rating matrix; (3) training the GCN to predict user rat-

ings for unseen products, thereby improving the accuracy and relevance of recom-

mendations; (4) refining the final recommendation list through a balance between 

precision and diversity, ensuring that users receive suggestions that are both highly 

relevant and varied. 

2 Related Work 

In the rapidly evolving field of information technology, improving recommenda-

tion systems has become increasingly vital due to the growing volume of user data. 

Traditional methods often struggle with the complex relationships between users and 

products, leading recent studies to explore Graph Neural Networks (GNN) and Graph 

Convolutional Networks (GCN) as effective solutions. These approaches leverage the 

graph structure of user and product data to uncover hidden patterns, enhancing the 

accuracy and personalization of recommendations. By integrating information from 

neighboring nodes, GCN has been shown to improve recommendation relevance, 



3 

while the combination of GNN with traditional collaborative filtering methods opti-

mizes user experience by providing diverse and relevant suggestions. Overall, these 

advancements offer valuable insights for developing more effective recommendation 

systems. 

Edoardo et al. introduced an advanced model called Item Graph Convolution Col-

laborative Filtering (IGCCF) aimed at handling dynamic graphs and leveraging in-

formation from user-item graphs through graph convolutional networks. This method 

facilitates the learning of latent item features, enhancing the accuracy of recommen-

dations and prediction capabilities for new users without requiring a complex retrain-

ing process. Experimental results on various real-world datasets show that IGCCF 

outperforms previous graph-based models in terms of recommendation accuracy and 

performance. However, one drawback that needs to be addressed is the high computa-

tional complexity when processing large graphs, which impacts training time and 

resources. Jiani Zhang et al. introduced a new architecture aimed at improving the 

performance of recommendation systems, particularly in cold start scenarios. This 

method combines stacked GCN encoder-decoder blocks with intermediate supervi-

sion, enhancing prediction accuracy [11]. However, some drawbacks may include the 

complexity of handling large graphs due to the need to learn parameters for each 

block separately. Ultimately, STAR-GCN has achieved state-of-the-art performance 

across multiple benchmark datasets, demonstrating its significant potential in address-

ing recommendation-related challenges. LeWu et al. introduced the Adaptive Graph 

Convolutional Network (AGCN) for improving item recommendations and inferring 

user/item attributes in scenarios where data is incomplete. The key strength of AGCN 

lies in its ability to iteratively refine both the graph embeddings and attribute esti-

mates, leading to significant performance improvements across multiple tasks [12]. 

However, the approach may face challenges with high computational complexity and 

sensitivity to the quality of initial attribute estimates. Experimental results demon-

strate that AGCN achieves superior performance compared to state-of-the-art meth-

ods, particularly in the context of incomplete data. Xiang Wang et al. proposed a new 

method in recommendation systems called Neural Graph Collaborative Filtering 

(NGCF). This method utilizes the user-item graph structure to enhance the quality of 

user and item embeddings by propagating information through high-order connec-

tions. Experimental results demonstrate that NGCF significantly outperforms current 

models such as HOP-Rec and Collaborative Memory Network, thanks to its effective 

exploitation of collaborative signals [7]. However, the study still faces some challeng-

es, including the integration of attention mechanisms to improve prediction accuracy. 

The findings from this work open up new research directions in understanding user 

behavior through more complex networks. Chong Li et al. presented a novel approach 

for learning representations in bipartite graphs. This method utilizes a hierarchical 

framework to effectively capture the relationships between two distinct sets of nodes, 

enhancing the quality of the learned embeddings. The results demonstrate significant 

performance improvements compared to existing models, showcasing the advantages 

of this hierarchical approach in terms of capturing complex interdependencies. How-

ever, the method may face challenges in scalability when applied to large datasets due 

to increased computational complexity. Overall, the proposed technique offers a 
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promising direction for further research in representation learning for graph-based 

data. 

In light of recent advancements in recommendation systems, my study seeks to en-

hance this evolving field by addressing key aspects that improve user experience. By 

utilizing advanced modeling techniques and specialized graph structures, this research 

aims to predict user ratings for unseen products while balancing precision and diversi-

ty in recommendations. This approach builds upon existing models' strengths and 

seeks to overcome their limitations, paving the way for more effective recommenda-

tion systems. 

3 Recommender system Model   

In this paper, the recommendation system is constructed with a modular structure to 

provide users with a diverse and accurate recommendation list. First, the system clus-

ters of users and items based on common characteristics from the rating matrix of the 

MovieLens dataset. This clustering module employs a tree structure and energy dis-

tance measure to enhance the accuracy and efficiency in grouping users and items. 

Next, the system builds a user-item graph, where nodes represent users and items, and 

edges indicate similarity or interaction relationships between the nodes. This graph 

structure is then used as input for the GCN network to predict ratings between users 

and items that have not yet been rated, thereby increasing the system's recommenda-

tion accuracy. The GCN module consists of three main parts: the user graph, the item 

graph, and the user-item graph, allowing the system to deeply exploit the features of 

both users and items. Finally, the recommendation list diversification algorithm inte-

grates accuracy and diversity factors, creating a highly personalized and rich recom-

mendation list. Each module works together to optimize the user experience, ensuring 

that recommendations are not only tailored to preferences but also offer significant 

diversity, allowing users to discover more new options. 

 

3.1 User-item clustering  

In this study, we focus on clustering similar users and items from the MovieLens 

dataset, which comprises a comprehensive user-item rating matrix detailing how users 

have rated various films. To facilitate the clustering process, we adopt a tree structure 

that is inherited from previous research [13], leveraging its efficiency in organizing 

and grouping data. However, rather than relying on the traditional Euclidean distance 

for calculating the similarity between users and items, we employ an Energy distance 

measure [14]. This approach allows us to better capture the nuanced relationships 

within the data, enhancing the effectiveness of the clustering framework we construct. 

By doing so, we aim to achieve more meaningful clusters that reflect true similarities 

in user preferences and item characteristics. 

Energy Distance is a powerful tool for multivariate analysis [2, 15, 16]. It is used to 

test for independence, and multivariate normality, and to perform non-parametric 

analysis of complex structured data. Energy distance is applied to random vectors of 

any size in Euclidean space. 
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Suppose we have two sets of independent random vectors 𝐼 = {𝐼1, 𝐼2, … 𝐼𝑝}  and 𝐼 =

{𝐽1, 𝐽, … 𝐽𝑞}. The distance between 𝐼 and 𝐽 is defined as: 
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where: 𝐼′and 𝐽′ are independent random copies, distributed identically to 𝐼 and 𝐽, re-

spectively. 

This formula defines the "potential energy" of the independent random variables 𝐼 and 

𝐽, denoted as 𝜀𝑝,𝑞(𝐼, 𝐽): 

𝜀𝑝,𝑞(𝐼, 𝐽) = 2𝐸[𝛿(𝐼, 𝐽)] − 𝐸[𝛿(𝐼, 𝐼′)] − 𝐸[𝛿(𝐽, 𝐽′)] 
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Properties: The energy distance 𝜀𝑝,𝑞(𝐼, 𝐽) is always non-negative and equals zero if 

and only if 𝐼 and 𝐽 have the same distribution. 

The step of clustering similar users and items serves as the foundation for con-

structing the user-item similarity graph in the next phase of the study. This grouping 

creates a clear structure of relationships within the data, enhancing our understanding 

of user behavior. The similarity graph will allow us to leverage these relationships for 

more accurate recommendations. The ultimate goal is to improve the effectiveness of 

the recommendation system. 

 

3.2 Graph construction 

In this section, we construct graph structures to represent relationships among users, 

items, and between users and items. The structure of the graphs is created with nodes 

representing users and items, while the edges signify the relationships among them. 

Edges are connected between users if they exhibit a high degree of similarity in rat-

ings or behavior, helping to identify user groups with common preferences. Similarly, 

items are connected if they share common characteristics, supporting the discovery of 

relationships among items. Notably, edges between users and items are created when 

users have rated an item, reflecting the connection between users and the items they 

have interacted with. The goal of this graph structure is to serve as input for GCN 

(Graph Convolutional Network) to predict user ratings for unknown items, thereby 

improving the accuracy of the recommendation system. 
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To support accurate and diverse recommendations, constructing appropriate data 

structures is crucial. In this study, we design three specific types of graphs to model 

the relationships between users and items. These graphs not only help capture the 

structure and correlations within the data but also facilitate the efficient training of 

GCNs. The structure of the graphs is defined as follows: 

User Graph (SU-Graph): 

Definition 1. The 𝑆𝑈_𝐺𝑟𝑎𝑝ℎ = (𝑉𝑢, 𝐸𝑢) is a graph representing the relationships 

between users, where the vertex set 𝑉𝑢 = {𝑢𝑖 ∈ 𝑈}, U = {u1, u2, … , u𝑛} is the set of 

users in the system; the edge set 𝐸𝑢 = {𝑒𝑢,𝑣}, 𝑢, 𝑣 ∈ 𝐶𝑘, with 𝐶𝑘 is the cluster of simi-

lar users  and 𝑣 ∈ 𝐾𝑁𝑁(𝑢), with 𝐾𝑁𝑁(𝑢)is the set of 𝐾 nearest neighbors of user 𝑢 

within 𝐶𝑘. 

 

Fig. 1. Graph representing the relationships between users. 

Item Graph (SI-Graph): 

Definition 2. The 𝑆𝐼_𝐺𝑟𝑎𝑝ℎ = (𝑉𝑖 , 𝐸𝑖) is a graph representing the relationships be-

tween items, where the vertex set 𝑉𝑖 = {𝑖𝑖 ∈ 𝐼}, I = {i1, i2, … , i𝑚} is the set of items 

available in the system; the edge set 𝐸𝑖 = {𝑒𝑖,𝑗}, 𝑖, i ∈ 𝐶𝑡, with 𝐶𝑡 is the cluster of simi-

lar items  and 𝑖 ∈ 𝐾𝑁𝑁(𝑗), with 𝐾𝑁𝑁(𝑖) is the set of 𝐾 nearest neighbors of item 𝑖 
within 𝐶𝑡. 

SI-Graph is constructed similarly to the SU-Graph. 

User-Item Graph: 

Definition 3. The 𝑈𝐼_𝐺𝑟𝑎𝑝ℎ = (𝑉, 𝐸) is a graph describes the relationships be-

tween users and items based on the rating matrix, where the vertex set 𝑉 = 𝑈 ∪ 𝐼; the 

edge set 𝐸 = {(𝑢, 𝑖)}, where user 𝑢 has rated item 𝑖. 

 

Fig. 2. The experimental results on the MovieLens -10M dataset. 
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After constructing the graph structure that represents the relationships between us-

ers and items, we will use Graph Convolutional Networks (GCN) to leverage these 

interactions. GCN allows us to effectively model the complex dependencies within 

the graph, thereby enhancing prediction and recommendation capabilities for users. 

The following section will detail the implementation and training of GCN on the cre-

ated graph, aimed at providing accurate suggestions based on user preferences and 

item characteristics. 

 

3.3 Rating prediction using Graph Convolutional Networks 

Graph Convolutional Networks are designed to process and leverage information 

from complex graph structures. In the context of recommendation systems, GCN 

helps to capture the interaction relationships between users and items through the 

features of nodes and edges in the graph. This allows GCN to effectively model user 

behavior and provide more accurate recommendations based on the relationships 

between items that users have interacted with. Here are some key benefits that GCN 

brings in enhancing the effectiveness of recommendation systems. 

GCN models view the recommendation system as a bipartite graph consisting of 

two sets of nodes, users, and items, with edges representing rating values from users 

to items. The goal is to predict ratings for items that users have not yet rated, based on 

a small set of known ratings. There are two types of tasks: transductive rating predic-

tion (using data available in the training set) and inductive rating prediction (applied 

to new nodes that appear only during testing). 

While traditional methods struggle to solve the inductive task without retraining, 

models like CDL [17] and DropoutNet [18] use neural networks to learn content fea-

tures but depend on this information. STAR-GCN [11] leverages both the content and 

structural information of the graph to learn embeddings for new nodes, effectively 

solving the cold-start problem even in the absence of content information, making it 

superior to previous methods. Our GCN model training process is based on the work 

of [11]. We add user and item feature information aggregated from similarity graphs 

to enhance the user-item graph's input features for the GCN, aiming to improve pre-

diction accuracy. 

In this section, we use three GCN networks based on three different types of input 

graphs: the user graph, the item graph, and the user-item graph. The GCN for the user 

graph updates user embeddings based on relationships and information from neigh-

boring nodes. Similarly, the GCN for the item graph generates item embeddings by 

propagating information between related items. Then, the GCN for the user-item 

graph combines both user and item embeddings to create comprehensive feature vec-

tors. These embeddings integrate information from both sides, enabling accurate pre-

dictions of the match between users and items. 
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Fig. 3. Training the GCN model for users. 

 

Fig. 4. Training the GCN model for items. 

 

 

Fig. 5. Training the GCN model to predict user ratings for items. 

The detailed steps are presented below. 

Step 1. Training GCN on the SU-Graph 

Use the user similarity graph as input to train the GCN, connecting users with simi-

lar attributes or interactions. Initialize and propagate through GCN layers to extract 

user embeddings. 

Step 2. Training GCN on the SI-Graph 

Use the item similarity graph as input for the GCN, connecting items with similar 

attributes or interactions. Initialize and propagate through GCN layers to obtain item 

embeddings. 

Step 3. Create features for the UI-Graph 
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Combine user and item embeddings into a single vector, assign it to the edges of 

the user-item graph as input for the next GCN network. 

Step 4. Training GCN on the UI-Graph 

The GCN propagates and aggregates information from the neighbors of each node. 

The features of user and item nodes are updated to new embeddings. 

Step 5. Predict user rating for items 

Combine the final embeddings of users and items into a single vector, passing it 

through hidden layers of a neural network to explore relationships between features. 

The neural network generates 5 possible rating levels, which are converted to proba-

bilities via Softmax. The rating with the highest probability is selected, indicating the 

item’s suitability for the user. 

 

3.4 Re-ranking items 

In recent years, numerous studies have focused on how to increase the diversity of 

recommendation lists while maintaining a certain level of accuracy. The traditional 

approach to generating highly diverse recommendation lists involves a two-stage 

process as follows: 

Stage 1: Generate the initial candidate list. The system applies the CF method (or 

possibly a hybrid method) to create an initial recommendation list 𝐿𝑁(𝑢)  consisting 

of 𝑁 candidate items focused on accuracy (the 𝑇𝑜𝑝_𝑁 items with the highest predict-

ed rating values). 

Stage 2: Refine the final list. The system refines the initial recommendation list 

𝐿𝑁(𝑢)) from Stage 1 by re-ranking or removing similar items, resulting in a final 

recommendation list 𝐿𝑀(𝑢) consisting of only 𝑀 items (𝑀 ≤ 𝑁) with higher diversity 

compared to the initial list 𝐿𝑁(𝑢). 

However, a significant limitation of this traditional two-stage approach is that, in 

some cases, Stage 2 cannot significantly change the diversity level of the recommen-

dation list 𝐿𝑁(𝑢)  from Stage 1. Specifically, if  𝐿𝑁(𝑢)  contains N items with high 

accuracy but too much similarity, Stage 2 will only filter out a list 𝐿𝑀(𝑢)  that still 

contains many similar items, resulting in a low diversity level for 𝐿𝑀(𝑢). In other 

words, if the initial recommendation list 𝐿𝑁(𝑢) already consists of highly similar 

items, no matter how the system filters in Stage 2, the final recommendation list 

𝐿𝑀(𝑢)  will still include similar items, offering limited diversity and fewer choices for 

the user. 

To address this limitation, the “Diversify the recommendation list” algorithm sim-

ultaneously integrates both factors: the predicted rating value (focused on accuracy) 

and the distance 𝑑(𝑢, 𝑖) (focused on diversity) from the beginning, as expressed in the 

following formula: 

𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑖) = 𝑘 × 𝑟̂𝑢,𝑖 + 𝛾 × (1 − 𝑘) × 𝑑(𝑢, 𝑖); 𝑘 ∈ [0.1] 

where 𝑑(𝑢, 𝑖) is the distance between item I and the profile of user 𝑢: 

𝑑(𝑢, 𝑖) = 1 − 𝑠𝑖𝑚(𝑢, 𝑖) 

, and 
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Since the predicted rating score lies in the range [1, 5] and 𝑑(𝑢, 𝑖) is between [0, 

1], the algorithm scales 𝑑(𝑢, 𝑖) to the same range by multiplying it by 5. The pseudo-

code is illustrated in Algorithm 2. 

Algorithm 2. Diversify the recommendation list 

Input:  user profile of user u, I ={ items (content)}, 𝐿𝑖𝑠𝑡𝑅𝑢 = {𝑟̂(𝑢, 𝑖), 𝑖 ∈ 𝐼} 

    Threshold   TH , 𝑇𝑜𝑝𝑀 items to recommend 

Output: 𝑇𝑜𝑝𝑀 recommendation list 𝐿𝑀(𝑢). 

Begin  

Foreach (𝑟 in 𝐿𝑖𝑠𝑡𝑅𝑢 ) 

{ 

 Compute d(u, i) ; 

 Compute 𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑖) =  𝑘 ∗ 𝑟̂(𝑢, 𝑖)  + (1 − 𝑘) ∗ 𝛾 ∗ 𝑑(𝑢, 𝑖); 

 Sc[i] = 𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑖); 

 } 

 SSc = SortItem(I*, Sc[i]); 

 //Function SortItem sort the items  𝑖 ∈ 𝐼∗ in descending order of scores Sc[i]; 

𝐿𝑀(𝑢) = Filter_TopM(SSc); 

// Function Filter_TopM selects the 𝑇𝑜𝑝𝑀 items 𝐿𝑀(𝑢) recommend for  user 𝑢; 

 Return 𝐿𝑀(𝑢); 

end 

Thus, after calculating 𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑖) for all items, the Algorithm 1 selects the 𝑡𝑜𝑝𝑀 

items with the highest scores for the final recommendation list 𝐿𝑀(𝑢) for user 𝑢, 

without needing to generate an initial candidate list 𝐿𝑀(𝑢). 

4 Experimental Procedure 

The preparation process for the experiments in the paper includes: preparing the da-

taset, setting parameter values, selecting comparison algorithms, and choosing 

measures to evaluate the effectiveness of the algorithms. 

4.1 Experimental data 

The experiments in this paper are conducted using datasets including: MovieLens 

100k (ML-100K), MovieLens 1M (ML-1M), and MovieLens 10M (ML-10M). These 

are considered some of the standard datasets for testing in the field of recommenda-

tion systems. The dataset ML-100K contains 100,000 ratings provided by 943 users 

on 1,682 movies across 19 different genres. The ML-10M dataset consists of 10 mil-

lion movie ratings provided by users, along with various attributes of the items. Each 

movie is categorized into multiple genres, such as action, science fiction, and others. 

To obtain reliable results, we utilizes the pre-split training and testing datasets from 
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MovieLens, with 80% of the data allocated for training and 20% for testing prediction 

quality. 

4.2 Methodology 

The effectiveness of the WH algorithm is analyzed based on the coefficient 𝑘. Re-

garding the parameters of the algorithms, the study will select "popular" and unbiased 

values to ensure the objectivity of the experimental results: 

• The size of 𝐿𝑁(𝑢) consists of the initial candidate items: 𝑁 = 50 (𝑇𝑜𝑝_𝑁 

items with the highest predicted scores) 

• The effectiveness or quality of the algorithms will be analyzed based on the 

size of 𝐿𝑀(𝑢): 𝑇𝑜𝑝_𝑀 = {10, 20, 30, 40, 50} (𝑀 ≤  𝑁) 

• The 𝑘 coefficient of the WH algorithm is chosen with a value of 0.5 (the av-

erage value) 

Additionally, to ensure the reliability of the results, we only considers users who 

have provided a sufficient number of ratings: 

• Minimum number of ratings in the testing set: 𝛼 ≥  30 

• Minimum number of ratings in the training set: 𝛽 ≥  20 

To evaluate the effectiveness of the algorithms, the study is based on accuracy and 

three diversity measures. There are many measures that can be applied for the accura-

cy of the recommendation list, and we uses the most common measure, MAE (Mean 

Absolute Error), as shown in the following formula: 

𝑀𝐴𝐸 =
1

𝑛
∑

∣ 𝑟̂𝑢,𝑖 − 𝑟𝑢,𝑖 ∣

𝑙
𝑖∈𝐿𝑀(𝑢)

 

where the denominator is 𝑙, representing the rating scale, and: 

• 𝐿𝑀(𝑢): the 𝑇𝑜𝑝_𝑀 list of recommended items for user 𝑢 

• 𝑛: the size of 𝐿𝑀(𝑢) 

• 𝑟̂𝑢,𝑖 : the predicted rating of user 𝑢 for item 𝑖 

• 𝑟𝑢,𝑖: the actual rating of user 𝑢 for item 𝑖 

The lower the MAE value, the higher the accuracy of the algorithm. Therefore, the 

value of (1 – MAE) can be considered an indication of the algorithm's accuracy. 

For diversity, three measures: IntraDistance, AggDivNum, and IntraDistanceProfile is 

used.  

The diversity of the recommendation list LM(u) is considered as the degree of dif-

ference between the items in the LM(u) list. This diversity is often defined as the 

average distance between two items in the recommendation list LM(u) and is calcu-

lated using the following formula: 

 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐿𝑀(𝑢)) =
2

𝑛(𝑛−)
∑ 𝑑(𝑖, 𝑖′)𝑖∈𝐿𝑀(𝑢)  

 where, 𝑑(𝑖, 𝑖’) is the energy distance between item 𝑖 and item 𝑖’; 𝑛 is the size of 

𝐿𝑀(𝑢)  

Note that the value of 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐿𝑀(𝑢)) is higher when the diversity of 

𝐿𝑀(𝑢) is higher. Additionally, 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐿𝑀(𝑢)) is considered personal and 

will be referred to as individual diversity, as it depends on the recommendation lists 

for each individual user. 
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Aggregate diversity is defined as the total number of items that the system has rec-

ommended to all users as shown in the following formula: 

𝐴𝑔𝑔𝐷𝑖𝑣𝑁𝑢𝑚 = |⋃ 𝐿𝑀(𝑢)

𝑢∈𝑈

| 

where, 𝑈 is the set of users of the system 

The diversity of the recommendation list 𝐿𝑀(𝑢) is defined as the average distance 

of all items in the recommendation list to the user's profile. 

𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝐿𝑀(𝑢)) =
1

𝑛
∑ 𝑑(𝑢, 𝑖)

𝑖∈𝐿𝑀(𝑢)

 

 where, 𝑑(𝑢, 𝑖) is the energy distance between the profile of user 𝑢 and item 𝑖; 𝑛 is 

the size of 𝐿𝑀(𝑢). Note that the value of 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝐿𝑀(𝑢)) is higher 

when the diversity of 𝐿𝑀(𝑢) is higher. 

Additionally, accuracy and diversity are generally opposing (increasing the value of 

one measure will decrease the value of the other and vice versa), so the paper also 

employs the 𝐹_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 to balance these two measures as follows: 

𝐹_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × (1 − 𝑀𝐴𝐸) × IntraDistanceProfile

(1 − 𝑀𝐴𝐸) + IntraDistanceProfile
 

The experiments were conducted on a PC with the following specifications: CPU 

13th Gen Intel(R) Core(TM) i9-13900H 2.60 GHz, RAM 32.0 GB (31.6 GB usable), 

64-bit operating system, x64-based processor. 

Subsequent paragraphs, however, are indented. 

4.3 Results and experimental analysis  

Below are the experimental results of the recommendation system evaluated using 

various metrics, applied to recommendation lists from Top 10 to Top 50. These fig-

ures illustrate the changes in accuracy, diversity, and overall performance as the rec-

ommendation range is expanded. 

Table 1. The experimental results on the MovieLens -100K dataset. 

Measures Top 10 Top 20 Top 30 Top 40 Top 50 

1-MAE 0.829 0.806 0.797 0.735 0.701 

IntraDistance 0.758 0.734 0.721 0.695 0.674 

AggDivNum 532 608 713 825 924 

IntraDistanceProfile 0.749 0.706 0.674 0.649 0.628 

F_Measure 0.787 0.753 0.731 0.689 0.663 

Table 2. The experimental results on the MovieLens -1M dataset. 

Measures Top 10 Top 20 Top 30 Top 40 Top 50 

1-MAE 0.834 0.801 0.795 0.775 0.731 
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IntraDistance 0.851 0.804 0.765 0.710 0.711 

AggDivNum 612 711 824 898 1044 

IntraDistanceProfile 0.822 0.816 0.805 0.715 0.699 

F_Measure 0.828 0.808 0.800 0.744 0.715 

Table 3. The experimental results on the MovieLens -10M dataset. 

Measures Top 10 Top 20 Top 30 Top 40 Top 50 

1-MAE 0.846 0.821 0.814 0.775 0.751 

IntraDistance 0.879 0.846 0.818 0.755 0.716 

AggDivNum 646 724 773 876 1286 

IntraDistanceProfile 0.884 0.836 0.802 0.785 0.736 

F_Measure 0.865 0.828 0.808 0.780 0.743 

 

 

 

 

Fig. 6. The experimental results on the MovieLens -100K dataset. 
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Fig. 7. The experimental results on the MovieLens -1M dataset. 

 

Fig. 8. The experimental results on the MovieLens -10M dataset. 

The experimental results from the MovieLens datasets provide important insights 

into the performance of recommendation models. The Mean Absolute Error (1-MAE) 

shows a decreasing trend in error rates as the number of recommendations increases, 
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with the MovieLens -10M dataset reaching the highest MAE of 0.846 for the top 10 

recommendations, indicating improved accuracy with more recommendations. Intra-

Distance measures reveal that larger datasets yield higher similarity among recom-

mended items, particularly in the top 10 (0.879) and top 20 (0.846) categories. The 

Aggregate Diversity (AggDivNum) significantly increases, with MovieLens -10M 

achieving a diversity score of 1286 for the top 50 recommendations, showcasing 

greater variety in suggestions. Additionally, IntraDistanceProfile shows lower dis-

tance values for larger datasets, suggesting tighter item clustering. Finally, 

F_Measure values peak at 0.865 for the top 10 recommendations in the MovieLens -

10M dataset, highlighting the model's effectiveness in balancing precision and diver-

sity. 

Below is a comparison table of the performance of different methods on the ML-

100K, ML-1M, and ML-10M datasets based on the MAE metric. The results help 

assess the accuracy of each method and demonstrate the competitiveness of the pro-

posed method compared to previous approaches. 

Methods ML-100K ML-1M ML-10M 

GRALS [Rao et al., 2015] [19] 0.945 - - 

CF-NADE [Zheng et al., 2016] [20] - 0.829 0.771 

Factorized EAE [Hartford et al., 2018] [21] 0.910 0.860 - 

GC-MC [Berg et al., 2017] [22] 0.910 0.832 0.777 

STAR-GCN [Jiani Zhang et al., 2019] [11]    

Proposed method 0.854 0.831 0.769 

The performance comparison table shows that the proposed method achieves the 

lowest MAE on ML-100K with 0.854, indicating better accuracy compared to other 

methods such as GRALS (0.945) and GC-MC (0.910). On ML-1M, the proposed 

method has an MAE of 0.831, slightly higher than CF-NADE (0.829) but better than 

other methods like GC-MC (0.832). For ML-10M, the proposed method also demon-

strates relatively good performance with an MAE of 0.769, lower than CF-NADE 

(0.771) and GC-MC (0.777), showcasing its competitiveness on large datasets. 

The system achieves impressive performance by utilizing a hierarchical tree struc-

ture to group users and products based on energy-based similarity, enabling accurate 

modeling of preferences. The construction of SU-Graph and SI-Graph for user and 

product relationships allows for a deeper understanding of the data, leading to more 

accurate predictions. Training the Graph Convolutional Network (GCN) to predict 

ratings for unseen products enhances the accuracy and personalization of recommen-

dations. Finally, refining the recommendation list through a balance of precision and 

diversity ensures that users receive relevant and varied suggestions, increasing overall 

satisfaction. 
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5 Conclusion 

This paper proposes an improved method for enhancing the quality of recommen-

dation lists by combining clustering structures with Graph Convolutional Networks. 

Key contributions include utilizing a hierarchical tree to group users and products 

based on energy-based similarity measures, constructing graphs representing relation-

ships between users and products, and training the GCN to predict ratings for unseen 

products. Experimental results on the MovieLens dataset indicate that the accuracy of 

predictions improves as the number of recommendations increases, with the highest 

MAE value of 0.846 for the top 10 recommendations in the MovieLens -10M dataset. 

Additionally, the IntraDistance measures show higher similarity among recommended 

items, while the Aggregate Diversity Number reflects greater variety in suggestions. 

Finally, F_Measure values peak at 0.865, highlighting the model's effectiveness in 

balancing precision and diversity, thereby providing a better user experience. 
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