
Enhancing the quality of recommendation lists using

Graph Convolutional Networks

Le Thi Vinh Thanh1, Le Manh Thanh1, and Nguyen Van Long2

1University of Sciences, Hue University, Hue, Vietnam
2 University of Transport and Communications, Ha Noi, Viet Nam

lethivinhthanh.hcm@gmail.com,lmthanh@hueuni.edu.vn,

nvlongdt@utc.edu.vn

Abstract. In the realm of recommender systems, enhancing the quality of rec-

ommendation lists has become a focal point for researchers. This paper presents

a novel approach integrating clustering structures with Graph Convolutional

Network (GCN) techniques to improve recommendation quality. Initially, we

employ a hierarchical tree structure to cluster similar users and items based on

energy-based similarity measures. This allows for a more accurate modeling of

user and product groups. We then construct graphs representing user relation-

ships (SU-Graph) and item relationships (SI-Graph) based on these clusters, as

well as a graph derived from the user-item rating matrix. Utilizing this frame-

work, we train a GCN to predict user ratings for previously unseen items, sig-

nificantly enhancing the accuracy of recommendations. Finally, we refine the

recommendation lists by balancing precision and diversity, ensuring users re-

ceive suggestions that are both relevant and varied. Experimental results on the

MovieLens dataset validate the effectiveness of our proposed approach, demon-

strating substantial improvements over traditional methods.

Keywords: Recommender Systems, Clustering, Diversity, Graph Convolution-

al Network.

1 Introduction

Recommendation systems are an essential tool in various fields such as e-commerce,

social media, and online entertainment. They help users find the most suitable prod-

ucts or content based on personal preferences, habits, and activity history [1, 2].

Providing accurate and personalized suggestions not only enhances user experience

but also contributes to increased revenue and overall satisfaction. Traditional recom-

mendation systems typically rely on two main methods: content-based filtering and

collaborative filtering [3]. Content-based filtering uses the features of products and

user information to suggest items similar to those the user has previously shown inter-

est in. This is achieved by analyzing data related to preferences, product description

keywords, or other detailed attributes to create an appropriate predictive model. How-

ever, this method has limitations when faced with scenarios where there is a lack of

user or product data, which can reduce the effectiveness of the recommendations.

Conversely, collaborative filtering primarily relies on user behavior data to make

mailto:lethivinhthanh.hcm@gmail.com
mailto:nvlongdt@utc.edu.vn

2

suggestions. This method uses data from various users to identify trends and common

preferences, thereby building connections between users and products based on simi-

larities in behavior. A significant advantage of this method is its ability to make rec-

ommendations regardless of product content, as it does not require a detailed analysis

of product attributes [4].

Recent studies have focused on applying deep learning techniques based on graphs,

including GNN (Graph Neural Networks), GCN, and other variations, to enhance

collaborative filtering systems. These models leverage graph structures to represent

complex relationships between users and products. Instead of relying solely on simple

matrix calculations, using GCN allows the model to learn more complex and pro-

found features, such as influencing factors across multiple connection layers in the

user-product network [5-8]. Systems based on GNN and GCN not only help improve

the accuracy of recommendations but also expand the system's adaptability to large

and diverse data. Graph structures also aid in identifying clusters of users or products

with similar characteristics, thereby enhancing the ability to detect potential connec-

tions that traditional methods may find difficult to recognize. This is particularly im-

portant in the context of today’s large and complex data, where information is not just

linear but intertwined through multiple multi-dimensional relationships [9, 10]. The

quality of recommendation lists has become an essential focus in the research of rec-

ommender systems. This paper proposes an advanced method that integrates complex

clustering structures with GCN techniques to comprehensively enhance recommenda-

tion quality.

The contributions of the paper include: (1) utilizing a hierarchical tree structure to

group users and products based on energy-based similarity measures, enabling accu-

rate modeling of user and product groups; (2) constructing graphs representing user

relationships (SU-Graph) based on similar user clusters, item relationships (SI-Graph)

based on similar item clusters, and a graph representing the relationships between

users and items based on the rating matrix; (3) training the GCN to predict user rat-

ings for unseen products, thereby improving the accuracy and relevance of recom-

mendations; (4) refining the final recommendation list through a balance between

precision and diversity, ensuring that users receive suggestions that are both highly

relevant and varied.

2 Related Work

In the rapidly evolving field of information technology, improving recommenda-

tion systems has become increasingly vital due to the growing volume of user data.

Traditional methods often struggle with the complex relationships between users and

products, leading recent studies to explore Graph Neural Networks (GNN) and Graph

Convolutional Networks (GCN) as effective solutions. These approaches leverage the

graph structure of user and product data to uncover hidden patterns, enhancing the

accuracy and personalization of recommendations. By integrating information from

neighboring nodes, GCN has been shown to improve recommendation relevance,

3

while the combination of GNN with traditional collaborative filtering methods opti-

mizes user experience by providing diverse and relevant suggestions. Overall, these

advancements offer valuable insights for developing more effective recommendation

systems.

Edoardo et al. introduced an advanced model called Item Graph Convolution Col-

laborative Filtering (IGCCF) aimed at handling dynamic graphs and leveraging in-

formation from user-item graphs through graph convolutional networks. This method

facilitates the learning of latent item features, enhancing the accuracy of recommen-

dations and prediction capabilities for new users without requiring a complex retrain-

ing process. Experimental results on various real-world datasets show that IGCCF

outperforms previous graph-based models in terms of recommendation accuracy and

performance. However, one drawback that needs to be addressed is the high computa-

tional complexity when processing large graphs, which impacts training time and

resources. Jiani Zhang et al. introduced a new architecture aimed at improving the

performance of recommendation systems, particularly in cold start scenarios. This

method combines stacked GCN encoder-decoder blocks with intermediate supervi-

sion, enhancing prediction accuracy [11]. However, some drawbacks may include the

complexity of handling large graphs due to the need to learn parameters for each

block separately. Ultimately, STAR-GCN has achieved state-of-the-art performance

across multiple benchmark datasets, demonstrating its significant potential in address-

ing recommendation-related challenges. LeWu et al. introduced the Adaptive Graph

Convolutional Network (AGCN) for improving item recommendations and inferring

user/item attributes in scenarios where data is incomplete. The key strength of AGCN

lies in its ability to iteratively refine both the graph embeddings and attribute esti-

mates, leading to significant performance improvements across multiple tasks [12].

However, the approach may face challenges with high computational complexity and

sensitivity to the quality of initial attribute estimates. Experimental results demon-

strate that AGCN achieves superior performance compared to state-of-the-art meth-

ods, particularly in the context of incomplete data. Xiang Wang et al. proposed a new

method in recommendation systems called Neural Graph Collaborative Filtering

(NGCF). This method utilizes the user-item graph structure to enhance the quality of

user and item embeddings by propagating information through high-order connec-

tions. Experimental results demonstrate that NGCF significantly outperforms current

models such as HOP-Rec and Collaborative Memory Network, thanks to its effective

exploitation of collaborative signals [7]. However, the study still faces some challeng-

es, including the integration of attention mechanisms to improve prediction accuracy.

The findings from this work open up new research directions in understanding user

behavior through more complex networks. Chong Li et al. presented a novel approach

for learning representations in bipartite graphs. This method utilizes a hierarchical

framework to effectively capture the relationships between two distinct sets of nodes,

enhancing the quality of the learned embeddings. The results demonstrate significant

performance improvements compared to existing models, showcasing the advantages

of this hierarchical approach in terms of capturing complex interdependencies. How-

ever, the method may face challenges in scalability when applied to large datasets due

to increased computational complexity. Overall, the proposed technique offers a

4

promising direction for further research in representation learning for graph-based

data.

In light of recent advancements in recommendation systems, my study seeks to en-

hance this evolving field by addressing key aspects that improve user experience. By

utilizing advanced modeling techniques and specialized graph structures, this research

aims to predict user ratings for unseen products while balancing precision and diversi-

ty in recommendations. This approach builds upon existing models' strengths and

seeks to overcome their limitations, paving the way for more effective recommenda-

tion systems.

3 Recommender system Model

In this paper, the recommendation system is constructed with a modular structure to

provide users with a diverse and accurate recommendation list. First, the system clus-

ters of users and items based on common characteristics from the rating matrix of the

MovieLens dataset. This clustering module employs a tree structure and energy dis-

tance measure to enhance the accuracy and efficiency in grouping users and items.

Next, the system builds a user-item graph, where nodes represent users and items, and

edges indicate similarity or interaction relationships between the nodes. This graph

structure is then used as input for the GCN network to predict ratings between users

and items that have not yet been rated, thereby increasing the system's recommenda-

tion accuracy. The GCN module consists of three main parts: the user graph, the item

graph, and the user-item graph, allowing the system to deeply exploit the features of

both users and items. Finally, the recommendation list diversification algorithm inte-

grates accuracy and diversity factors, creating a highly personalized and rich recom-

mendation list. Each module works together to optimize the user experience, ensuring

that recommendations are not only tailored to preferences but also offer significant

diversity, allowing users to discover more new options.

3.1 User-item clustering

In this study, we focus on clustering similar users and items from the MovieLens

dataset, which comprises a comprehensive user-item rating matrix detailing how users

have rated various films. To facilitate the clustering process, we adopt a tree structure

that is inherited from previous research [13], leveraging its efficiency in organizing

and grouping data. However, rather than relying on the traditional Euclidean distance

for calculating the similarity between users and items, we employ an Energy distance

measure [14]. This approach allows us to better capture the nuanced relationships

within the data, enhancing the effectiveness of the clustering framework we construct.

By doing so, we aim to achieve more meaningful clusters that reflect true similarities

in user preferences and item characteristics.

Energy Distance is a powerful tool for multivariate analysis [2, 15, 16]. It is used to

test for independence, and multivariate normality, and to perform non-parametric

analysis of complex structured data. Energy distance is applied to random vectors of

any size in Euclidean space.

5

Suppose we have two sets of independent random vectors 𝐼 = {𝐼1, 𝐼2, … 𝐼𝑝} and 𝐼 =

{𝐽1, 𝐽, … 𝐽𝑞}. The distance between 𝐼 and 𝐽 is defined as:

𝐷2(𝐼, 𝐽) = 2 ∑ ∑‖𝐼 − 𝐽‖ − ∑ ∑‖𝐼 − 𝐼′‖ −

𝑝

𝑗=1

𝑝

𝑖=1

∑ ∑‖𝐽 − 𝐽′‖

𝑞

𝑗=1

𝑞

𝑖=1

𝑞

𝑗=1

𝑝

𝑖=1

where: 𝐼′and 𝐽′ are independent random copies, distributed identically to 𝐼 and 𝐽, re-

spectively.

This formula defines the "potential energy" of the independent random variables 𝐼 and

𝐽, denoted as 𝜀𝑝,𝑞(𝐼, 𝐽):

𝜀𝑝,𝑞(𝐼, 𝐽) = 2𝐸[𝛿(𝐼, 𝐽)] − 𝐸[𝛿(𝐼, 𝐼′)] − 𝐸[𝛿(𝐽, 𝐽′)]

where:

𝐸[𝛿(𝐼, 𝐽)] =
1

𝑝𝑞
∑ ∑‖𝐼𝑖 − 𝐽𝑗‖

𝑞

𝑗=1

𝑝

𝑖=1

𝐸[𝛿(𝐼, 𝐼′)] =
1

𝑝2
∑ ∑‖𝐼𝑖 − 𝐼′𝑗‖

𝑝

𝑗=1

𝑝

𝑖=1

[𝛿(𝐽, 𝐽′)] =
1

𝑞2
∑ ∑‖𝐽𝑖 − 𝐽′𝑗‖

𝑞

𝑗=1

𝑞

𝑖=1

Properties: The energy distance 𝜀𝑝,𝑞(𝐼, 𝐽) is always non-negative and equals zero if

and only if 𝐼 and 𝐽 have the same distribution.

The step of clustering similar users and items serves as the foundation for con-

structing the user-item similarity graph in the next phase of the study. This grouping

creates a clear structure of relationships within the data, enhancing our understanding

of user behavior. The similarity graph will allow us to leverage these relationships for

more accurate recommendations. The ultimate goal is to improve the effectiveness of

the recommendation system.

3.2 Graph construction

In this section, we construct graph structures to represent relationships among users,

items, and between users and items. The structure of the graphs is created with nodes

representing users and items, while the edges signify the relationships among them.

Edges are connected between users if they exhibit a high degree of similarity in rat-

ings or behavior, helping to identify user groups with common preferences. Similarly,

items are connected if they share common characteristics, supporting the discovery of

relationships among items. Notably, edges between users and items are created when

users have rated an item, reflecting the connection between users and the items they

have interacted with. The goal of this graph structure is to serve as input for GCN

(Graph Convolutional Network) to predict user ratings for unknown items, thereby

improving the accuracy of the recommendation system.

6

To support accurate and diverse recommendations, constructing appropriate data

structures is crucial. In this study, we design three specific types of graphs to model

the relationships between users and items. These graphs not only help capture the

structure and correlations within the data but also facilitate the efficient training of

GCNs. The structure of the graphs is defined as follows:

User Graph (SU-Graph):

Definition 1. The 𝑆𝑈_𝐺𝑟𝑎𝑝ℎ = (𝑉𝑢, 𝐸𝑢) is a graph representing the relationships

between users, where the vertex set 𝑉𝑢 = {𝑢𝑖 ∈ 𝑈}, U = {u1, u2, … , u𝑛} is the set of

users in the system; the edge set 𝐸𝑢 = {𝑒𝑢,𝑣}, 𝑢, 𝑣 ∈ 𝐶𝑘, with 𝐶𝑘 is the cluster of simi-

lar users and 𝑣 ∈ 𝐾𝑁𝑁(𝑢), with 𝐾𝑁𝑁(𝑢)is the set of 𝐾 nearest neighbors of user 𝑢

within 𝐶𝑘.

Fig. 1. Graph representing the relationships between users.

Item Graph (SI-Graph):

Definition 2. The 𝑆𝐼_𝐺𝑟𝑎𝑝ℎ = (𝑉𝑖 , 𝐸𝑖) is a graph representing the relationships be-

tween items, where the vertex set 𝑉𝑖 = {𝑖𝑖 ∈ 𝐼}, I = {i1, i2, … , i𝑚} is the set of items

available in the system; the edge set 𝐸𝑖 = {𝑒𝑖,𝑗}, 𝑖, i ∈ 𝐶𝑡, with 𝐶𝑡 is the cluster of simi-

lar items and 𝑖 ∈ 𝐾𝑁𝑁(𝑗), with 𝐾𝑁𝑁(𝑖) is the set of 𝐾 nearest neighbors of item 𝑖
within 𝐶𝑡.

SI-Graph is constructed similarly to the SU-Graph.

User-Item Graph:

Definition 3. The 𝑈𝐼_𝐺𝑟𝑎𝑝ℎ = (𝑉, 𝐸) is a graph describes the relationships be-

tween users and items based on the rating matrix, where the vertex set 𝑉 = 𝑈 ∪ 𝐼; the

edge set 𝐸 = {(𝑢, 𝑖)}, where user 𝑢 has rated item 𝑖.

Fig. 2. The experimental results on the MovieLens -10M dataset.

7

After constructing the graph structure that represents the relationships between us-

ers and items, we will use Graph Convolutional Networks (GCN) to leverage these

interactions. GCN allows us to effectively model the complex dependencies within

the graph, thereby enhancing prediction and recommendation capabilities for users.

The following section will detail the implementation and training of GCN on the cre-

ated graph, aimed at providing accurate suggestions based on user preferences and

item characteristics.

3.3 Rating prediction using Graph Convolutional Networks

Graph Convolutional Networks are designed to process and leverage information

from complex graph structures. In the context of recommendation systems, GCN

helps to capture the interaction relationships between users and items through the

features of nodes and edges in the graph. This allows GCN to effectively model user

behavior and provide more accurate recommendations based on the relationships

between items that users have interacted with. Here are some key benefits that GCN

brings in enhancing the effectiveness of recommendation systems.

GCN models view the recommendation system as a bipartite graph consisting of

two sets of nodes, users, and items, with edges representing rating values from users

to items. The goal is to predict ratings for items that users have not yet rated, based on

a small set of known ratings. There are two types of tasks: transductive rating predic-

tion (using data available in the training set) and inductive rating prediction (applied

to new nodes that appear only during testing).

While traditional methods struggle to solve the inductive task without retraining,

models like CDL [17] and DropoutNet [18] use neural networks to learn content fea-

tures but depend on this information. STAR-GCN [11] leverages both the content and

structural information of the graph to learn embeddings for new nodes, effectively

solving the cold-start problem even in the absence of content information, making it

superior to previous methods. Our GCN model training process is based on the work

of [11]. We add user and item feature information aggregated from similarity graphs

to enhance the user-item graph's input features for the GCN, aiming to improve pre-

diction accuracy.

In this section, we use three GCN networks based on three different types of input

graphs: the user graph, the item graph, and the user-item graph. The GCN for the user

graph updates user embeddings based on relationships and information from neigh-

boring nodes. Similarly, the GCN for the item graph generates item embeddings by

propagating information between related items. Then, the GCN for the user-item

graph combines both user and item embeddings to create comprehensive feature vec-

tors. These embeddings integrate information from both sides, enabling accurate pre-

dictions of the match between users and items.

8

Fig. 3. Training the GCN model for users.

Fig. 4. Training the GCN model for items.

Fig. 5. Training the GCN model to predict user ratings for items.

The detailed steps are presented below.

Step 1. Training GCN on the SU-Graph

Use the user similarity graph as input to train the GCN, connecting users with simi-

lar attributes or interactions. Initialize and propagate through GCN layers to extract

user embeddings.

Step 2. Training GCN on the SI-Graph

Use the item similarity graph as input for the GCN, connecting items with similar

attributes or interactions. Initialize and propagate through GCN layers to obtain item

embeddings.

Step 3. Create features for the UI-Graph

9

Combine user and item embeddings into a single vector, assign it to the edges of

the user-item graph as input for the next GCN network.

Step 4. Training GCN on the UI-Graph

The GCN propagates and aggregates information from the neighbors of each node.

The features of user and item nodes are updated to new embeddings.

Step 5. Predict user rating for items

Combine the final embeddings of users and items into a single vector, passing it

through hidden layers of a neural network to explore relationships between features.

The neural network generates 5 possible rating levels, which are converted to proba-

bilities via Softmax. The rating with the highest probability is selected, indicating the

item’s suitability for the user.

3.4 Re-ranking items

In recent years, numerous studies have focused on how to increase the diversity of

recommendation lists while maintaining a certain level of accuracy. The traditional

approach to generating highly diverse recommendation lists involves a two-stage

process as follows:

Stage 1: Generate the initial candidate list. The system applies the CF method (or

possibly a hybrid method) to create an initial recommendation list 𝐿𝑁(𝑢) consisting

of 𝑁 candidate items focused on accuracy (the 𝑇𝑜𝑝_𝑁 items with the highest predict-

ed rating values).

Stage 2: Refine the final list. The system refines the initial recommendation list

𝐿𝑁(𝑢)) from Stage 1 by re-ranking or removing similar items, resulting in a final

recommendation list 𝐿𝑀(𝑢) consisting of only 𝑀 items (𝑀 ≤ 𝑁) with higher diversity

compared to the initial list 𝐿𝑁(𝑢).

However, a significant limitation of this traditional two-stage approach is that, in

some cases, Stage 2 cannot significantly change the diversity level of the recommen-

dation list 𝐿𝑁(𝑢) from Stage 1. Specifically, if 𝐿𝑁(𝑢) contains N items with high

accuracy but too much similarity, Stage 2 will only filter out a list 𝐿𝑀(𝑢) that still

contains many similar items, resulting in a low diversity level for 𝐿𝑀(𝑢). In other

words, if the initial recommendation list 𝐿𝑁(𝑢) already consists of highly similar

items, no matter how the system filters in Stage 2, the final recommendation list

𝐿𝑀(𝑢) will still include similar items, offering limited diversity and fewer choices for

the user.

To address this limitation, the “Diversify the recommendation list” algorithm sim-

ultaneously integrates both factors: the predicted rating value (focused on accuracy)

and the distance 𝑑(𝑢, 𝑖) (focused on diversity) from the beginning, as expressed in the

following formula:

𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑖) = 𝑘 × 𝑟̂𝑢,𝑖 + 𝛾 × (1 − 𝑘) × 𝑑(𝑢, 𝑖); 𝑘 ∈ [0.1]

where 𝑑(𝑢, 𝑖) is the distance between item I and the profile of user 𝑢:

𝑑(𝑢, 𝑖) = 1 − 𝑠𝑖𝑚(𝑢, 𝑖)

, and

10

, ,

2 2
2 2 , ,

.
.

(,) cos(,)
xy

xy xy

x s y s

s S

x s y s

s S s S

r r
x y

sim x y x y
x y r r



 

= = =




 

Since the predicted rating score lies in the range [1, 5] and 𝑑(𝑢, 𝑖) is between [0,

1], the algorithm scales 𝑑(𝑢, 𝑖) to the same range by multiplying it by 5. The pseudo-

code is illustrated in Algorithm 2.

Algorithm 2. Diversify the recommendation list

Input: user profile of user u, I ={ items (content)}, 𝐿𝑖𝑠𝑡𝑅𝑢 = {𝑟̂(𝑢, 𝑖), 𝑖 ∈ 𝐼}

 Threshold TH , 𝑇𝑜𝑝𝑀 items to recommend

Output: 𝑇𝑜𝑝𝑀 recommendation list 𝐿𝑀(𝑢).

Begin

Foreach (𝑟 in 𝐿𝑖𝑠𝑡𝑅𝑢)

{

 Compute d(u, i) ;

 Compute 𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑖) = 𝑘 ∗ 𝑟̂(𝑢, 𝑖) + (1 − 𝑘) ∗ 𝛾 ∗ 𝑑(𝑢, 𝑖);

 Sc[i] = 𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑖);

 }

 SSc = SortItem(I*, Sc[i]);

 //Function SortItem sort the items 𝑖 ∈ 𝐼∗ in descending order of scores Sc[i];

𝐿𝑀(𝑢) = Filter_TopM(SSc);

// Function Filter_TopM selects the 𝑇𝑜𝑝𝑀 items 𝐿𝑀(𝑢) recommend for user 𝑢;

 Return 𝐿𝑀(𝑢);

end

Thus, after calculating 𝑠𝑐𝑜𝑟𝑒(𝑢, 𝑖) for all items, the Algorithm 1 selects the 𝑡𝑜𝑝𝑀

items with the highest scores for the final recommendation list 𝐿𝑀(𝑢) for user 𝑢,

without needing to generate an initial candidate list 𝐿𝑀(𝑢).

4 Experimental Procedure

The preparation process for the experiments in the paper includes: preparing the da-

taset, setting parameter values, selecting comparison algorithms, and choosing

measures to evaluate the effectiveness of the algorithms.

4.1 Experimental data

The experiments in this paper are conducted using datasets including: MovieLens

100k (ML-100K), MovieLens 1M (ML-1M), and MovieLens 10M (ML-10M). These

are considered some of the standard datasets for testing in the field of recommenda-

tion systems. The dataset ML-100K contains 100,000 ratings provided by 943 users

on 1,682 movies across 19 different genres. The ML-10M dataset consists of 10 mil-

lion movie ratings provided by users, along with various attributes of the items. Each

movie is categorized into multiple genres, such as action, science fiction, and others.

To obtain reliable results, we utilizes the pre-split training and testing datasets from

11

MovieLens, with 80% of the data allocated for training and 20% for testing prediction

quality.

4.2 Methodology

The effectiveness of the WH algorithm is analyzed based on the coefficient 𝑘. Re-

garding the parameters of the algorithms, the study will select "popular" and unbiased

values to ensure the objectivity of the experimental results:

• The size of 𝐿𝑁(𝑢) consists of the initial candidate items: 𝑁 = 50 (𝑇𝑜𝑝_𝑁

items with the highest predicted scores)

• The effectiveness or quality of the algorithms will be analyzed based on the

size of 𝐿𝑀(𝑢): 𝑇𝑜𝑝_𝑀 = {10, 20, 30, 40, 50} (𝑀 ≤ 𝑁)

• The 𝑘 coefficient of the WH algorithm is chosen with a value of 0.5 (the av-

erage value)

Additionally, to ensure the reliability of the results, we only considers users who

have provided a sufficient number of ratings:

• Minimum number of ratings in the testing set: 𝛼 ≥ 30

• Minimum number of ratings in the training set: 𝛽 ≥ 20

To evaluate the effectiveness of the algorithms, the study is based on accuracy and

three diversity measures. There are many measures that can be applied for the accura-

cy of the recommendation list, and we uses the most common measure, MAE (Mean

Absolute Error), as shown in the following formula:

𝑀𝐴𝐸 =
1

𝑛
∑

∣ 𝑟̂𝑢,𝑖 − 𝑟𝑢,𝑖 ∣

𝑙
𝑖∈𝐿𝑀(𝑢)

where the denominator is 𝑙, representing the rating scale, and:

• 𝐿𝑀(𝑢): the 𝑇𝑜𝑝_𝑀 list of recommended items for user 𝑢

• 𝑛: the size of 𝐿𝑀(𝑢)

• 𝑟̂𝑢,𝑖 : the predicted rating of user 𝑢 for item 𝑖

• 𝑟𝑢,𝑖: the actual rating of user 𝑢 for item 𝑖

The lower the MAE value, the higher the accuracy of the algorithm. Therefore, the

value of (1 – MAE) can be considered an indication of the algorithm's accuracy.

For diversity, three measures: IntraDistance, AggDivNum, and IntraDistanceProfile is

used.

The diversity of the recommendation list LM(u) is considered as the degree of dif-

ference between the items in the LM(u) list. This diversity is often defined as the

average distance between two items in the recommendation list LM(u) and is calcu-

lated using the following formula:

 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐿𝑀(𝑢)) =
2

𝑛(𝑛−)
∑ 𝑑(𝑖, 𝑖′)𝑖∈𝐿𝑀(𝑢)

 where, 𝑑(𝑖, 𝑖’) is the energy distance between item 𝑖 and item 𝑖’; 𝑛 is the size of

𝐿𝑀(𝑢)

Note that the value of 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐿𝑀(𝑢)) is higher when the diversity of

𝐿𝑀(𝑢) is higher. Additionally, 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐿𝑀(𝑢)) is considered personal and

will be referred to as individual diversity, as it depends on the recommendation lists

for each individual user.

12

Aggregate diversity is defined as the total number of items that the system has rec-

ommended to all users as shown in the following formula:

𝐴𝑔𝑔𝐷𝑖𝑣𝑁𝑢𝑚 = |⋃ 𝐿𝑀(𝑢)

𝑢∈𝑈

|

where, 𝑈 is the set of users of the system

The diversity of the recommendation list 𝐿𝑀(𝑢) is defined as the average distance

of all items in the recommendation list to the user's profile.

𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝐿𝑀(𝑢)) =
1

𝑛
∑ 𝑑(𝑢, 𝑖)

𝑖∈𝐿𝑀(𝑢)

 where, 𝑑(𝑢, 𝑖) is the energy distance between the profile of user 𝑢 and item 𝑖; 𝑛 is

the size of 𝐿𝑀(𝑢). Note that the value of 𝐼𝑛𝑡𝑟𝑎𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃𝑟𝑜𝑓𝑖𝑙𝑒(𝐿𝑀(𝑢)) is higher

when the diversity of 𝐿𝑀(𝑢) is higher.

Additionally, accuracy and diversity are generally opposing (increasing the value of

one measure will decrease the value of the other and vice versa), so the paper also

employs the 𝐹_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 to balance these two measures as follows:

𝐹_𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × (1 − 𝑀𝐴𝐸) × IntraDistanceProfile

(1 − 𝑀𝐴𝐸) + IntraDistanceProfile

The experiments were conducted on a PC with the following specifications: CPU

13th Gen Intel(R) Core(TM) i9-13900H 2.60 GHz, RAM 32.0 GB (31.6 GB usable),

64-bit operating system, x64-based processor.

Subsequent paragraphs, however, are indented.

4.3 Results and experimental analysis

Below are the experimental results of the recommendation system evaluated using

various metrics, applied to recommendation lists from Top 10 to Top 50. These fig-

ures illustrate the changes in accuracy, diversity, and overall performance as the rec-

ommendation range is expanded.

Table 1. The experimental results on the MovieLens -100K dataset.

Measures Top 10 Top 20 Top 30 Top 40 Top 50

1-MAE 0.829 0.806 0.797 0.735 0.701

IntraDistance 0.758 0.734 0.721 0.695 0.674

AggDivNum 532 608 713 825 924

IntraDistanceProfile 0.749 0.706 0.674 0.649 0.628

F_Measure 0.787 0.753 0.731 0.689 0.663

Table 2. The experimental results on the MovieLens -1M dataset.

Measures Top 10 Top 20 Top 30 Top 40 Top 50

1-MAE 0.834 0.801 0.795 0.775 0.731

13

IntraDistance 0.851 0.804 0.765 0.710 0.711

AggDivNum 612 711 824 898 1044

IntraDistanceProfile 0.822 0.816 0.805 0.715 0.699

F_Measure 0.828 0.808 0.800 0.744 0.715

Table 3. The experimental results on the MovieLens -10M dataset.

Measures Top 10 Top 20 Top 30 Top 40 Top 50

1-MAE 0.846 0.821 0.814 0.775 0.751

IntraDistance 0.879 0.846 0.818 0.755 0.716

AggDivNum 646 724 773 876 1286

IntraDistanceProfile 0.884 0.836 0.802 0.785 0.736

F_Measure 0.865 0.828 0.808 0.780 0.743

Fig. 6. The experimental results on the MovieLens -100K dataset.

14

Fig. 7. The experimental results on the MovieLens -1M dataset.

Fig. 8. The experimental results on the MovieLens -10M dataset.

The experimental results from the MovieLens datasets provide important insights

into the performance of recommendation models. The Mean Absolute Error (1-MAE)

shows a decreasing trend in error rates as the number of recommendations increases,

15

with the MovieLens -10M dataset reaching the highest MAE of 0.846 for the top 10

recommendations, indicating improved accuracy with more recommendations. Intra-

Distance measures reveal that larger datasets yield higher similarity among recom-

mended items, particularly in the top 10 (0.879) and top 20 (0.846) categories. The

Aggregate Diversity (AggDivNum) significantly increases, with MovieLens -10M

achieving a diversity score of 1286 for the top 50 recommendations, showcasing

greater variety in suggestions. Additionally, IntraDistanceProfile shows lower dis-

tance values for larger datasets, suggesting tighter item clustering. Finally,

F_Measure values peak at 0.865 for the top 10 recommendations in the MovieLens -

10M dataset, highlighting the model's effectiveness in balancing precision and diver-

sity.

Below is a comparison table of the performance of different methods on the ML-

100K, ML-1M, and ML-10M datasets based on the MAE metric. The results help

assess the accuracy of each method and demonstrate the competitiveness of the pro-

posed method compared to previous approaches.

Methods ML-100K ML-1M ML-10M

GRALS [Rao et al., 2015] [19] 0.945 - -

CF-NADE [Zheng et al., 2016] [20] - 0.829 0.771

Factorized EAE [Hartford et al., 2018] [21] 0.910 0.860 -

GC-MC [Berg et al., 2017] [22] 0.910 0.832 0.777

STAR-GCN [Jiani Zhang et al., 2019] [11]

Proposed method 0.854 0.831 0.769

The performance comparison table shows that the proposed method achieves the

lowest MAE on ML-100K with 0.854, indicating better accuracy compared to other

methods such as GRALS (0.945) and GC-MC (0.910). On ML-1M, the proposed

method has an MAE of 0.831, slightly higher than CF-NADE (0.829) but better than

other methods like GC-MC (0.832). For ML-10M, the proposed method also demon-

strates relatively good performance with an MAE of 0.769, lower than CF-NADE

(0.771) and GC-MC (0.777), showcasing its competitiveness on large datasets.

The system achieves impressive performance by utilizing a hierarchical tree struc-

ture to group users and products based on energy-based similarity, enabling accurate

modeling of preferences. The construction of SU-Graph and SI-Graph for user and

product relationships allows for a deeper understanding of the data, leading to more

accurate predictions. Training the Graph Convolutional Network (GCN) to predict

ratings for unseen products enhances the accuracy and personalization of recommen-

dations. Finally, refining the recommendation list through a balance of precision and

diversity ensures that users receive relevant and varied suggestions, increasing overall

satisfaction.

16

5 Conclusion

This paper proposes an improved method for enhancing the quality of recommen-

dation lists by combining clustering structures with Graph Convolutional Networks.

Key contributions include utilizing a hierarchical tree to group users and products

based on energy-based similarity measures, constructing graphs representing relation-

ships between users and products, and training the GCN to predict ratings for unseen

products. Experimental results on the MovieLens dataset indicate that the accuracy of

predictions improves as the number of recommendations increases, with the highest

MAE value of 0.846 for the top 10 recommendations in the MovieLens -10M dataset.

Additionally, the IntraDistance measures show higher similarity among recommended

items, while the Aggregate Diversity Number reflects greater variety in suggestions.

Finally, F_Measure values peak at 0.865, highlighting the model's effectiveness in

balancing precision and diversity, thereby providing a better user experience.

References

1. Lin, W., et al., Transformer-empowered content-aware collaborative filtering. arXiv

preprint arXiv:2204.00849, 2022.

2. Tran, T.C.T., L.P. Phan, and H.X. Huynh, Energy-based collaborative filtering

recommendation. International Journal of Advanced Computer Science and

Applications, 2022. 13(7).

3. Mouhiha, M., O.A. Oualhaj, and A. Mabrouk. Combining Collaborative Filtering

and Content Based Filtering for Recommendation Systems. in 2024 11th

International Conference on Wireless Networks and Mobile Communications

(WINCOM). 2024. IEEE.

4. Glauber, R. and A. Loula, Collaborative filtering vs. content-based filtering:

differences and similarities. arXiv preprint arXiv:1912.08932, 2019.

5. He, X., et al. Neural collaborative filtering. in Proceedings of the 26th international

conference on world wide web. 2017.

6. Li, C., et al. Hierarchical Representation Learning for Bipartite Graphs. in IJCAI.

2019.

7. Wang, X., et al. Neural graph collaborative filtering. in Proceedings of the 42nd

international ACM SIGIR conference on Research and development in Information

Retrieval. 2019.

8. Tan, Q., et al. Learning to hash with graph neural networks for recommender

systems. in Proceedings of The Web Conference 2020. 2020.

9. Sun, J., et al. Multi-graph convolution collaborative filtering. in 2019 IEEE

International Conference on Data Mining (ICDM). 2019. IEEE.

10. Sun, J., et al. Neighbor interaction aware graph convolution networks for

recommendation. in Proceedings of the 43rd international ACM SIGIR conference on

research and development in information retrieval. 2020.

17

11. Zhang, J., et al., Star-gcn: Stacked and reconstructed graph convolutional networks

for recommender systems. arXiv preprint arXiv:1905.13129, 2019.

12. Wu, L., et al. Joint item recommendation and attribute inference: An adaptive graph

convolutional network approach. in Proceedings of the 43rd International ACM

SIGIR conference on research and development in Information Retrieval. 2020.

13. Le, T.M. AN IMPROVEMENT OF R-TREE FOR CONTENT-BASED IMAGE

RETRIEVAL. in Annales Universitatis Scientiarum Budapestinensis de Rolando

Eötvös Nominatae. Sectio Computatorica. 2022.

14. Rizzo, M.L. and G.J. Székely, Energy distance. wiley interdisciplinary reviews:

Computational statistics, 2016. 8(1): p. 27-38.

15. Edelmann, D., T.F. Móri, and G.J. Székely, On relationships between the Pearson

and the distance correlation coefficients. Statistics & probability letters, 2021. 169: p.

108960.

16. Tran, T.C.T., L.P. Phan, and H.X. Huynh, Approach of Item-Based Collaborative

Filtering Recommendation Using Energy Distance. Journal of Advances in

Information Technology, 2024. 15(1).

17. Wang, H., N. Wang, and D.-Y. Yeung. Collaborative deep learning for recommender

systems. in Proceedings of the 21th ACM SIGKDD international conference on

knowledge discovery and data mining. 2015.

18. Volkovs, M., G. Yu, and T. Poutanen, Dropoutnet: Addressing cold start in

recommender systems. Advances in neural information processing systems, 2017. 30.

19. Rao, N., et al., Collaborative filtering with graph information: Consistency and

scalable methods. Advances in neural information processing systems, 2015. 28.

20. Zheng, Y., et al. A neural autoregressive approach to collaborative filtering. in

International Conference on Machine Learning. 2016. PMLR.

21. Hartford, J., et al. Deep models of interactions across sets. in International

Conference on Machine Learning. 2018. PMLR.

22. Berg, R.v.d., T.N. Kipf, and M. Welling, Graph convolutional matrix completion.

arXiv preprint arXiv:1706.02263, 2017.

