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ABSTRACT 

The advent of quantum computers poses a direct threat to the security of traditional digital signature 

schemes, which are based on the Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC) 

cryptosystems. Shor's algorithm allows solving the Discrete Logarithm Problem (DLP) in polynomial time, 

whereas Grover's algorithm significantly reduces the effort required for brute-force attacks on symmetric 

hash functions and ciphers. Although many post-quantum solutions have been proposed, such as lattice-

based schemes (e.g., CRYSTALS-Dilithium, Falcon) or hash-based schemes (e.g., SPHINCS+), they still 

have some limitations to overcome, such as large public keys, bulky signatures, high computational costs, 

and difficulties in integrating into existing Public Key Infrastructures (PKIs). In this paper, we propose a 

new type of hard problem, defined over a finite prime field, in which the generator is kept secret to prevent 

any direct Shor attack and is only subject to a limited influence from Grover. Based on this newly 

proposed hard problem, we construct a post-quantum digital signature scheme that is both Shor-resistant 

and Grover-resistant, secure against classical attacks, and fully compatible with current PKI 

infrastructures. Compared with existing post-quantum digital signature schemes, our solution significantly 

optimizes the size of public keys and signatures while increasing the speed of signing and verification. The 

newly proposed hard problem cannot be solved by known classical or quantum algorithms, thus ensuring 

long-term security. Performance evaluation results show that the scheme provides an optimal balance 

between performance and security, opening up a cost-effective implementation path for the post-quantum 

cryptography era. 

Keywords-post-quantum digital signature; new hard problem; Shor's algorithm; Grover's algorithm; Public 

Key Infrastructure (PKI) 

I. INTRODUCTION  

The advent and continued development of quantum 
computers offer tremendous computational potential, yet they 
also pose serious challenges to current cryptographic security. 
The two core algorithms of quantum cryptography, Shor's 
algorithm [1] and Grover's algorithm [2], have demonstrated 
the ability to break most classical cryptographic tools. 
Specifically, Shor solves the Discrete Logarithm Problem 

(DLP) and Integer Factorization Problem (IFP) in polynomial 
time, fundamentally weakening Rivest–Shamir–Adleman 
(RSA), Elliptic Curve Cryptography (ECC), and cyclic group-
based schemes; whereas Grover reduces the complexity of 
brute-force attacks on hash functions and symmetric ciphers 

from �(2�)  to �(2�/�) . As a result, both traditional digital 
signatures and many symmetric encryption mechanisms face 
the risk of security breakthroughs when large-scale quantum 
computing becomes a reality. 
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To address the "quantum shock," the cryptography 
community has proposed a series of Post Quantum 
Cryptography (PQC) solutions, including: lattice-based 
schemes (e.g. CRYSTALS-Dilithium [3], Falcon [4]), based on 
the Shortest Vector Problem (SVP) or Learning with Errors 
(LWE); hash based signatures (e.g., SPHINCS+ [5]), taking 
advantage of the one-way nature of hash functions; and code-
based and multivariate schemes based on the problems of 
correcting code errors or solving systems of polynomial 
equations. 

Despite being standardized and evaluated, these PQC 
schemes often face practical problems: public keys can be tens 
of kilobytes in size, signatures are cumbersome, computational 
costs are high, and sometimes extensive changes to the existing 
Public Key Infrastructure (PKI) are required. This is a major 
obstacle to rapid deployment in real-world applications, from 
digital authentication and the Internet of Things (IoT) to e-
banking services, where resources are limited and backward 
compatibility with legacy systems is necessary.  

Table I compares the public key and signature sizes of 
traditional signature schemes (RSA, Elliptic Curve Digital 
Signature Algorithm (ECDSA)) with those of post-quantum 
signature schemes at NIST Level 1 equivalent security (~128 
bits). 

TABLE I.  SECURITY LEVEL, PUBLIC KEY SIZE, AND 
SIGNATURE SIZE FOR SELECTED DIGITAL SIGNATURE 

SCHEMES 

Scheme Security level 
Public key 

size (bytes) 

Signature 

size (bytes) 

RSA 2048 ≈112 bit 256 256 

ECDSA 256 ≈128 bit 64 64 

CRYSTALS-

Dilithium2 

NIST Level 1 

(≈128 bit) 
1312 2420 

Falcon-512 
NIST Level 1 

(≈128 bit) 
897 752 

SPHINCS+SHA2

-128 

NIST Level 1 

(≈128 bit) 
32 7856 

 
The data from Table I show that RSA 2048 uses a modulus 

of 2048 bits, so the public key and signature each occupy 256 
bytes. ECDSA-256 represents the public key as two 
coordinates, X and Y, each 32 bytes, totaling 64 bytes. The 
signature is also 64 bytes long. Post-quantum NIST Level 1 
schemes choose different trade-offs: CRYSTALS-Dilithium2 
[6] uses a 1.3 KB key and a 2.4 KB signature; Falcon 512 
requires only a 0.9 KB key and a 0.75 KB signature; 
SPHINCS+ [5] keeps the key as small as 32 bytes but the 
signature is up to 7.8 KB. 

In this context, the research task is to construct a post-
quantum digital signature scheme that is resistant to both Shor 
and Grover, while maintaining advantages in key size, 
computational efficiency, and compatibility with existing PKIs. 
We address this requirement by proposing a new type of hard 
problem, defined over a finite prime field �	. The key point of 

the design is to keep the group generator secret, thereby 
preventing any direct attack using Shor's algorithm and only 
being marginally affected by Grover attacks. 

Based on the newly proposed problem, we design a post-
quantum digital signature scheme with the following 
properties: 

• Simultaneous Shor and Grover resistance: protection 
against both quantum algorithm attacks and brute force 
attacks. 

• Optimal keys and signatures: the public key and signature 
sizes are significantly smaller than those of standard PQCs. 

• High performance: competitive signing and verification 
speeds, suitable for real-time applications. 

• Existing PKI compatibility: no changes to the deployed 
digital certificate structure are required, enabling easy 
migration to existing infrastructures. 

In summary, the advent of quantum computing has 
undermined the security foundation of traditional digital 
signature schemes, forcing the research community to develop 
entirely new cryptographic approaches. Although many post-
quantum solutions have made significant progress, they still 
face obstacles such as large key sizes, low performance, and 
difficulty in integrating into existing PKI infrastructures. 
Therefore, it is necessary to explore alternative approaches, 
built on new mathematical problems, to create digital 
signatures that are both resistant to quantum attacks and meet 
practical operational requirements. Before introducing our 
digital signature scheme, the next section clarifies the threat 
posed by the two quantum algorithms, Shor and Grover, to 
schemes based on IFP and DLP. 

II. QUANTUM THREATS AND RELATED WORKS 

In this section, we analyze in detail the two quantum 
algorithms, Shor's algorithm and Grover's algorithm, whose 
breakthroughs undermine IFP and DLP, and we review related 
work that has sought to mitigate their impact on digital 
signature schemes. 

A. Threats Posed by Shor's Algorithm 

Shor's algorithm [1], published in 1994, marked a 
watershed in quantum cryptography by solving two 
foundational classical problems, the IFP and DLP, in 
polynomial time. At its core, Shor's method reduces these 
arithmetic challenges to a period-finding problem on a 
quantum computer and then employs the Quantum Fourier 
Transform (QFT) to efficiently determine that period. 

In terms of computational complexity, the IFP with 
modulus 
 can be solved on a classical computer in ��[1/3] 
time (sub-exponential), whereas Shor reduces it to polynomial 
time �((���
)�) . Similarly, Shor solves the DLP in cyclic 
groups also in polynomial time in the input length. 

With RSA, security relies on the impossibility of factoring 

 = � × �  when �  and �  are large enough. Shor breaks this 
assumption by finding �  and �  directly. With ECC, security 
relies on the difficulty of the DLP on elliptic curves; Shor also 
solves this problem in polynomial time. As a result, all RSA, 
ECC, and other signature schemes based on these problems 
lose their security once an adversary has a quantum computer 
with enough qubits and stability. 
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Therefore, there is an urgent need to develop new signature 
schemes that Shor's algorithm cannot exploit, namely, hard 
problems that cannot be reduced to an appropriate 
period-finding instance for the QFT. This motivates our 
proposal of an entirely new foundational problem over prime 
finite fields, in which the generator is kept secret, thereby 
preventing the periodic mapping step required by Shor. 

B. Threats Posed by Grover's Algorithm 

Grover's algorithm [2], published in 1996, is an 
unstructured search algorithm on quantum computers that 
reduces the complexity of a brute-force attack from �(
) to 

�(√
)  with a high probability of success. The most direct 
application in cryptography is for symmetric key systems and 
hash functions: instead of having to try 2� keys, Grover only 

needs about 2�/� steps, which is equivalent to halving the key 
length. As a result, a cipher like AES 128, which is secure 
against a classical attack with 2��� possibilities, becomes only 
about 2��  difficult on a quantum computer. 

Similarly, the security of an �-bit hash function (e.g., SHA-

256) degrades to 2�/�  against pre-image and collision attacks. 
Although Grover does not break the underlying mathematical 
structure as Shor does, the halving of the "bit security" still 
represents a serious threat: to maintain 128 bits of security, the 
symmetric key must be increased to at least 256 bits. 

Therefore, any post-quantum signature scheme must not 
only resist Shor's algorithm against its public key component 
but also withstand Grover's impact on hash functions and 
symmetric elements. Our design achieves this by only slightly 
increasing parameter lengths to offset Grover's advantage, 
while keeping the overall system compact and efficient. 

C. Related Works 

To address the threat posed by quantum computers, many 
studies have focused on developing post-quantum digital 
signatures. The most common approach relies on established 
post-quantum algorithms such as lattice-based, hash-based, and 
code-based schemes [7]. Other research takes a different path, 
avoiding direct use of traditional post-quantum algorithms and 
instead leveraging new mathematical problems to build 
signature schemes that are both quantum-resistant and 
compatible with existing PKIs. Three representative studies are 
summarized below: 

• The study by authors in [8] introduces a signature scheme 
based on the DLP hidden within a two-dimensional cyclic 
group. This approach offers small public keys and 
signatures, facilitating deployment, while leveraging the 
concealed group structure to increase mathematical 
hardness against quantum attacks. However, further 
evaluation of practical performance and testing against 
specific quantum-attack scenarios are needed to confirm its 
security. 

• The study by authors in [9] proposes a signature scheme 
based on non-abelian groups, leveraging the complexity of 
non-commutative algebraic problems to enhance quantum 
resistance compared to schemes over abelian groups. This 
approach delivers high security and opens a new direction 

for post-quantum signatures, but its complex mathematical 
structure may pose deployment challenges and requires 
further analysis of performance and resilience against 
specific quantum attacks. 

• Authors in [10] introduced a new class of post-quantum 
signature schemes based on group actions. This approach 
differs significantly from earlier group-based signatures and 
applies a cryptographic framework built on group actions, 
offering an alternative to traditional signature schemes. 

Post-quantum signature schemes, despite extensive study, 
still suffer from large key sizes and challenging PKI 
integration. Conversely, "classical" approaches that avoid 
quantum algorithms offer better compatibility but lack 
thorough security and performance evaluation. This 
underscores the need for a new digital signature solution that is 
both quantum-resistant and easily deployable on existing 
infrastructures. 

III. PROPOSED NEW HARD PROBLEM 

In this section, we introduce a new hard problem designed 
as the foundation for post-quantum digital signature schemes. 
This problem can be viewed as a variant of the DLP [11], 
whether over finite fields or elliptic curves (Elliptic Curve 
Discrete Logarithm Problem (ECDLP)) [12], in which a critical 
parameter (the generator �  in DLP or the base point #  in 
ECDLP) is kept secret. Hiding this parameter disrupts 
conventional solution methods, making the problem 
significantly harder than the traditional DLP/ECDLP [13, 14]. 
We will formally define the problem, analyze its mathematical 
hardness, and prove its resistance against both classical and 
quantum attacks, including Shor's and Grover's algorithms. 

A. Proposed New Hard Problem over Prime Finite Fields 

Based on the DLP over the prime finite field �	, we propose 

the following two new hard-problem variants. If the parameter 
� (the generator of the multiplicative group �	

∗, with � prime) 

is kept secret, the problem becomes infeasible to solve. In the 
simplest case, the generator � is replaced with a secret key %. 
The new hard problem over the finite field is then stated as 
follows: 

• Form 1: Given a prime number �, and for each positive 
integer & in �	, find an integer % that satisfies the equation: 

& = %' (�) �. 

• Form 2: Given a prime number � , and for each pair of 
integers (*, ,)  in �	 , find an integer %  that satisfies the 

equation: *' ≡ %. (�) �. 

It is clear that, apart from brute-force search, the standard 
algorithms for solving the DLP over finite fields, such as 
Baby-Step Giant-Step, Pollard's Rho for DLP, Index Calculus, 
all fail to solve this newly proposed hard problem, for the 
following reasons: 

• Form 1: The function %' is not linear in %, nor is it a fixed-
power function, so: Pollard Rho cannot be used because it 
relies on the linearity of exponentiation; Baby-Step Giant-
Step cannot be used because this algorithm does not have a 
way to generate a pre-table for the function %'; the function 
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cannot be decomposed into its base elements as in Index 
Calculus. In addition, computing the inverse of the function 
%'  (�) �  is extremely difficult mathematically, with no 
obvious group structure to exploit. 

• Form 2: This is the intersection equation between two 
exponential functions, where on the left-hand side *' is the 
traditional discrete logarithm form, whereas on the right-

hand side %. is the polynomial form. In this equation, % is 
in both the exponent and the base, so it is not possible to 
isolate %  on only one side as in the traditional DLP 
problem. Thus, the known DLP algorithms cannot be 
applied. In addition, since both sides of this problem 
depend on %  in different and nonlinear ways, there is no 
way to convert to simple additive and multiplicative groups. 
That is, it has an unclear group structure, leading to the 
inability to apply the DLP problem in the cyclic group, 
because the DLP algorithms strongly depend on the group 
structure. 

In summary, both variants of the new hard problem over 
finite fields are highly nonlinear, lack any explicit group 
structure, and cannot be reduced to the classical DLP. 
Consequently, no existing DLP-solving algorithm applies 
effectively. This novel hardness property makes the proposed 
problem an ideal foundation for constructing digital signature 
schemes with strong security guarantees, including quantum-
resistant schemes. 

B. Quantum Resistance of the Proposed New Hard Problem 

We evaluate the quantum resistance of the proposed new 
hard problem based on its immunity to two prominent quantum 
algorithms: Shor's algorithm and Grover's algorithm. 

• Resistance to Shor's algorithm for Form 1 (& = %'  (�) �): 
Shor's algorithm can only solve problems where the 
unknown appears in an exponent with a fixed base, i.e., 
�' ≡ &. In Form 1, both the base and the exponent are %, 
making the function /(%) = %' lack any group structure or 
exploitable periodicity for the QFT, rendering Shor 
ineffective. 

• Resistance to Shor's algorithm for Form 2 ( *' ≡
%. (�) � ): This nonlinear "exponential-polynomial" 
equation cannot be reduced to the form �'. Since there is 
no quantum transformation that can extract a hidden period 
in such expressions, Shor's algorithm is not applicable to 
this hard problem either. 

• Resistance to Grover's Algorithm for Forms 1 and 2: 
Grover's algorithm can speed up brute-force search over the 
range % ∈ [1, � − 1] by reducing the complexity from �(�) 

to �23�4 . However, this still represents exponential 

complexity. Therefore, if � is chosen to be sufficiently large 
(e.g., ≥ 256  bits), the proposed hard problems remain 
secure against Grover's attack. For instance, when � ≈
2�6� , Grover's algorithm would require about 2���  steps, 
still infeasible for any practical quantum attack. 

In summary, the proposed new hard problem not only 
inherits the complexity of the DLP and ECDLP but also 
enhances it by hiding a critical parameter, rendering existing 

algorithms, both classical and quantum, inapplicable. With its 
resistance to Shor's and Grover's algorithms, as well as brute-
force attacks, this problem serves as a promising foundation for 
secure and practical post-quantum digital signature schemes. 
The next section presents how this problem is applied in the 
design of such a signature scheme. 

IV. PROPOSED POST-QUANTUM DIGITAL 

SIGNATURE SCHEME 

In this section, we employ the proposed hard problem over 
a prime finite field to construct a high-security digital signature 
scheme. The quantum resistance of the proposed scheme is also 
demonstrated. 

A. Post-Quantum Signature Scheme over a Prime Finite Field 

1) Key Generation and Parameter Setup 

Algorithm 1 describes the process executed by the signer, 
who is responsible for generating the digital signature on 
message 7: (i) generation of the key pair (private and public) 
(%�, %�), (&�, &� ); and (ii) generation of the other required 
domain parameters, �, �, with �|(� − 1). Domain parameters 
are selected according to standards such as ISO/IEC 14888-3, 
FIPS 186-4, or GOST R34.10-94. 

Algorithm 1: Key Generation and Parameter 

Setup 

Input: �9 , �	 
Output: �, �, %�, %�, &� , &� 
[1] Generate �, � such that �:�(�) = �	 , �:�(�) =

�9, and �|(� − 1) 
[2] Select *� such that 1 < *� < � 
[3] Compute %� ← (*�)

=>?
@  (�) �; if %� = 1, then 

go to [2] 

[4] Select *� such that 1 < *�  < � 
[5] Compute %� ← (*�)

=>?
@  (�) �; if %� = 1 then 

go to [4] 

[6] Compute &� ← (%�)'A  (�) �; if &� = 1 then 
go to [2] 

[7] Compute &� ← (%�)B'?  (�) �; if &� = 1 then 
go to [2] 

[8] Return �, �, %�, %�, &� , &� 
 

Here, �:�(. ) is the function that returns the bit length of an 
integer; �9 , �	 are the bit lengths of primes � and �; �, � are the 

domain parameters; and %�, %�, &�, &� are the private and public 
key components, respectively. 

2) Signature Generation Procedure on Message 7 

The signer uses Algorithm 2 to generate the signature (D, E) 
on the message 7. 

Algorithm 2: Signature Generation 

Input: �, �, %�, %�, 7 

Output: (D, E) 
[1] Generate F: 1 < F < � 
[2] Compute ℎ ← H(7) 
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[3] Compute  D ← I(%�)'AJK×('?)>L ×
(%�)('?)>(L>?)×MN (�) � 

[4] Compute � ← � × � 
[5] Compute E ← D × (%�)K(�) � 
[6] Return (D, E) 

Here, 7  is a signed message with 7 ∈ {0,1}R ; H(. ) is a 
hash function H: {0,1}∗ ↦ UM  with � < ℎ < � ; ℎ =  H(7)  is 
the representative value (hash value) of the message 7 to be 
signed; and F is a randomly chosen value in the range (1, �). 

3) Signature Verification Procedure on Message 7 

The recipient of the signature, the verifier, uses Algorithm 3 
to verify the validity of the signature on the message 7. The 
verification expression is as follows: 

(&�)(V WXY 9) × (E (�) �)Z(�) � =
                                 (&�)Z×M × (D)(V WXY 9)JZ(�) � (1) 

If 7 and the signature (D, E) satisfy (1) then the signature is 
considered valid, and the message is verified for origin and 
integrity. Otherwise, the signature is considered forged, and the 
message is rejected.  

Algorithm 3: Signature Verification 

Input: �, �, &�, &�, 7, (D, E) 
Output: True / False 

[1] Compute ℎ ← H(7) 
[2] Compute * ← (&�)(V WXY 9) × (E (�) �)Z(�) � 
[3] Compute , ← (&�)Z×M × (D)(s WXY 9)JZ(�) � 
[4] If * = , then return True; else return 

False 

Here, 7 and (D, E) are the message and its signature to be 
verified. If the result is True, then the integrity and origin of 7 
are asserted. Otherwise, if the result is False, then 7 is denied 
for origin and integrity. 

4) Proof of the Correctness of the Proposed Signature 

Scheme 

We need to prove that: If * = (&�)(V WXY 9) ×
(E (�) �)Z(�) �  and , = (&�)Z×M × (D)(s mod 9)JZ(�) � 
then * = ,. 

Indeed, if the signature and the message to be verified have 
not been tampered with, then: 

From: &� = (%�)'A  (�) �, E = D × (%�)K (�) �, and * =
(&�)V × (E)Z (�) �, we obtain: 

* = (&�)V × (E)Z (�) �  

    = (%�)'A×Z×('A)L × (D × (%�)K)Z (�) �  

    = (%�)Z×('A)L[? × (%�)K×Z × (D)Z (�) � (2) 

From: &� = (%�)B'?  (�) � ,   E = D × (%�)K (�) � , D =
I(%�)'A × (%�)('A)>L×('?×MJK)N  (�) � , and (&�)V×M ×
(E)Z (�) � = (&�)Z × (D)VJZ (�) � , we have: 

, = (&�)Z×M × (D)VJZ (�) � 

    = (&�)Z×M × (D)V × (D)Z (�) �  

    = (%�)B'?×Z×M × I(%�)'A × (%�)('A)>L×('?×MJK)N
V

×
(D)Z (�) �  

    = (%�)B'?×Z×M × (%�)'?×('A)>L×M×V × (%�)'A×V ×
(%�)K×('A)>L×V × (D)Z (�) �  

    = (%�)B'?×Z×M × (%�)'?×('A)>L×M×Z×('A)L ×
(%�)'A×Z×('A)L × (%�)K×('A)>L×Z×('A)L × (D)Z (�) �  

    = (%�)B'?×Z×M × (%�)'?×Z×M × (%�)Z×('A)L[? × (%�)K×Z ×
(D)Z (�) �  

    = (%�)Z×('A)L[? × (%�)K×Z × (D)Z (�) �  (3) 

From (2) and (3), we conclude that * = , . Thus, the 
correctness of the scheme is proved. 

B. Resistance to Classical Attacks of the Proposed Digital 

Signature Scheme 

In this section, we demonstrate the resilience of the 
proposed finite-field post-quantum digital signature scheme 
against two common classical attacks: secret-key compromise 
and signature forgery. 

1) Attack on the Secret Key 

An attack on the secret key typically targets the key-
generation algorithm (Algorithm 1) and the 
signature-generation algorithm (Algorithm 2). The adversary's 
goal is to recover the private keys %�, %� from the public keys 
&�, &�, or from a signature that has been generated on message 
7. 

The attacker cannot recover the secret key from the public 
key, because in Algorithm 1, Lines 2 and 4 select two random 
numbers \�, \� ∈ �	 ; Lines 3 and 5 ensure that the values 

%�, %� are not set to 1; and Lines 6 and 7 generate the public 
key using the nonlinear formulas &� = /(%�) (�) � and &� =
�(%�) (�) �, where /, � are nonlinear functions that cannot 
be reduced to a form solvable by discrete logarithms. 
Therefore, since no discrete logarithm operation applies, the 
attacker cannot derive the secret key from the public key. 

The attacker also cannot recover the secret key from a 
signature on a message F, because in Algorithm 2, Line 1, the 
value F is chosen randomly in the range (1, �) and Lines 3–5 
generate the signature (D, E) based on the newly proposed hard 
problem rather than using conventional multiplication. Since 
the signature formula relies on this hard problem, the attacker 
cannot solve the equations to obtain the secret key without 
solving this problem. 

2) Signature Forgery Attack 

A signature forgery attack occurs if an adversary can 
produce a valid signature on a message without knowledge of 
the private key. Under the proposed scheme, forging a 
signature requires satisfying the verification condition: 

(&�)(V WXY 9) × (E (�) �)Z(�) �
= (&�)Z×M × (D)(V WXY 9)JZ(�) � 
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This condition corresponds directly to the second form of 
the newly proposed hard problem. Therefore, an adversary 
would need to solve this hard problem to generate a valid 
signature. Since no algorithm other than brute-force is currently 
known to solve it, signature forgery is computationally 
infeasible under the proposed scheme. 

C. Quantum Resistance of the Proposed Digital Signature 

Scheme Against Shor and Grover 

As analyzed in Section III.B, the new hard problem 
underlying the proposed scheme is quantum-resistant. In 
practice, however, the security of a digital signature scheme 
also depends on how this problem is implemented in each step 
of the scheme. This section clarifies the resistance of the 
proposed finite-field signature scheme to Shor's and Grover's 
algorithms by demonstrating how each algorithmic component 
actively thwarts quantum attacks. 

The proposed digital signature scheme is built upon a newly 
introduced hard problem in which the generator is kept hidden 
and never revealed. This design provides strong quantum 
resistance, particularly against two well-known quantum 
algorithms, Shor's and Grover's: 

• Resistance to Shor's algorithm: To solve the DLP or 
ECDLP problems, Shor's algorithm requires the 
construction of a quantum oracle performing the 
transformation ∣ D⟩  ↦ ∣ �Z (�) �⟩  in the case of finite 
fields, or ∣ D⟩ ↦∣ D ⋅ #⟩ for elliptic curves. In the proposed 
scheme, the finite-field generator � is randomly generated 
and kept secret as part of the private key, with only & =
�'  (�)  �  publicly available. This prevents an attacker 
from constructing the oracle /(D) = �Z , since �  is 
unknown. Consequently, the scheme fully neutralizes the 
capabilities of Shor's algorithm, not only in theory but also 
at each step of the quantum procedure. 

• Resistance to Grover's algorithm: Grover's algorithm 
accelerates brute-force search by reducing the complexity 

from �(2�)  to �(2�/�) . The proposed scheme mitigates 
this threat by enforcing a minimum secret key length of 
� ≥  256 , keeping the attack cost at �(2���) , which 
remains infeasible for any practical quantum computer. 
Furthermore, in Algorithm 2, a valid signature is 
determined not solely by the pair (D, E) , but must 
simultaneously satisfy two independent verification 
equations involving two distinct keys and two hidden 
generators. This requires an attacker to solve two instances 
of the new hard problem concurrently, significantly 
expanding the search space and further diminishing the 
effectiveness of Grover's algorithm. 

The scheme's resistance to Shor and Grover arises not only 
from the underlying hard problem, but also from its algorithmic 
design: the public key hides the generator, the signing and 
verification processes are distributed across independent 
parameters, no quantum oracle can be constructed for Shor, and 
the complex search space reduces Grover's efficiency. As a 
result, the scheme offers strong quantum resistance while 
maintaining high performance and seamless integration with 

existing PKI infrastructures without requiring major 
architectural changes. 

V. DISCUSSION 

The proposal in this paper represents a clear advancement 
in both security and performance compared to existing post-
quantum schemes. However, to fully validate its practicality 
and security, further analysis across several related aspects is 
still required: 

• Comparison with other post-quantum signature schemes: 
Current post-quantum signature schemes, such as lattice-
based (CRYSTALS-Dilithium, Falcon), hash-based 
(SPHINCS+), and code-based (McEliece), each offer 
distinct advantages but also face notable limitations. The 
scheme proposed in this paper introduces a novel direction 
by relying on a new hard problem that remains secure 
against both Shor's and Grover's algorithms while 
preserving compatibility with traditional PKI 
infrastructures. Its key strengths include avoiding complex 
structures such as lattices or Merkle trees, maintaining 
reasonable key and signature sizes, and supporting ease of 
deployment, thus enabling a smoother transition to the post-
quantum era. 

• Comparison with ECC-based schemes: Although the two 
post-quantum signature schemes are built on different 
mathematical foundations, elliptic curves (ECC) and finite 
prime fields �	 , they share a common design principle: 

using a new hard problem with a hidden generator to thwart 
quantum attacks, particularly those based on Shor's 
algorithm. Both schemes offer strong quantum resistance, 
high computational efficiency, and compatibility with 
existing PKI infrastructures. The main distinction lies in the 
algebraic structure of the underlying group. The ECC-based 
scheme benefits from the compactness and efficiency of 
elliptic curve groups, making it well-suited for resource-
constrained environments. In contrast, the �	-based scheme 

relies on a simpler group structure, which eases 
implementation and auditing in conventional systems. 
Considering both validates the robustness of the hard 
problem across different platforms and broadens the scope 
of practical deployment in the post-quantum era. 

• Performance and scalability: The proposed scheme offers 
two key advantages in terms of performance and scalability. 
First, it achieves high speed by avoiding heavy matrix 
operations, as in lattice-based schemes, and Merkle tree 
structures, as in hash-based ones. Instead, all computations 
rely solely on modular multiplication and exponentiation, 
which can be efficiently optimized on both general-purpose 
CPUs and embedded hardware. Second, it enables seamless 
integration because the public key structure resembles that 
of RSA/ECC, allowing plug-and-play compatibility with 
existing PKI infrastructures (e.g., X.509, TLS, PGP, 
blockchain) without requiring architectural changes. In 
addition, the compact signature size supports applications in 
smart contracts, blockchain transactions, IoT devices, and 
smart cards. Nonetheless, some limitations remain: the 
scheme has not yet been benchmarked against other PQC 
algorithms, and further evaluation on FPGA/ASIC 
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platforms is required to fully assess and optimize its 
performance. 

• Resistance to attacks: The proposed scheme is resilient not 
only against Shor and Grover but also against all known 
classical attacks, due to two core mechanisms. First, it 
replaces the traditional DLP with a new hard problem in 
which the generator is hidden, preventing both quantum 
(e.g., Shor) and classical algorithms from exploiting group 
structure. Second, brute-force attacks require up to 2�� 
attempts (with � ≥  256), making them computationally 
infeasible. In essence, hiding the generator is the key factor 
that elevates the problem's hardness and fortifies the 
scheme against all known attacks. Moreover, the scheme is 
inherently immune to lattice-specific attacks such as fault 
analysis on CRYSTALS-Dilithium. However, further study 
is needed on side-channel vulnerabilities, particularly 
timing and power analysis attacks when implemented on 
hardware. Countermeasures such as masking (hiding secret 
values) and blinding (randomizing inputs) should be 
considered to prevent leakage of sensitive information. 

• Limitations and future directions: While the proposed 
scheme offers strong resistance against Shor and Grover 
attacks and retains compatibility with existing PKI systems, 
several aspects remain to be addressed. It lacks 
comprehensive experimental evaluation across diverse 
hardware and software platforms, and its resilience against 
side-channel attacks has not yet been verified. Moreover, 
unlike schemes such as CRYSTALS-Dilithium and Falcon, 
it has not undergone standardization. Future work will 
focus on algorithm optimization, real-world deployment in 
PKI, blockchain, and IoT platforms, as well as extending 
the design to support group and collective signatures [15]. 
With proper optimization and independent evaluation, this 
scheme has the potential to become a robust and versatile 
post-quantum digital signature solution. 

VI. CONCLUSION 

This paper introduced a new hard problem defined over a 
prime finite field and, based on it, proposed a post-quantum 
digital signature scheme resistant to both Shor's and Grover's 
algorithms. The scheme employs two secret keys and two 
public keys in the signature generation and verification process, 
which not only strengthens resistance against key recovery and 
forgery attacks but also maintains high performance and 
compatibility with existing Public Key Infrastructure (PKI) 
systems. 

The analysis shows that Shor's algorithm cannot be applied 
to the proposed scheme, since the problem lacks the discrete 
logarithm structure that Shor's method requires. Grover's 
algorithm only shortens the brute-force attack time without 
breaking the scheme when the chosen parameter is large 
enough. The proposed scheme is also secure against classical 
attacks. By using a new hard problem instead of the traditional 
discrete logarithm, no classical algorithm can solve this 
problem in a feasible time. Even with the brute-force attack 
technique, the attacker will have to try 2��  cases to find the 
secret key, which is almost impossible if � ≥ 256. 

In summary, we have successfully proposed a new hard 
problem in a finite field, which ensures the necessary security 
conditions to be used as a foundation to build a digital 
signature scheme. Therefore, the digital signature scheme built 
from this hard problem is not only resistant to classical attacks 
but also resistant to quantum attacks. This is considered a 
second major contribution of this study. Our study has also 
opened a new approach to finding quantum-resistant solutions 
for digital signature schemes without using quantum 
algorithms. 

The next steps are to optimize the computational speed, test 
the scheme on blockchain and Internet of Things (IoT) 
platforms, and evaluate side-channel resistance. The results 
pave the way for a digital signature system that is both 
quantum-resistant and efficient, suitable for current and future 
information security infrastructures. 
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