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Abstract. Coastal aquaculture in Thai Binh province, Vietnam, is economically vital, yet its environmental 

sustainability hinges on effective water quality monitoring. Chlorophyll-a (Chl-a) is a critical indicator of aquatic 

ecosystem health, making its accurate assessment essential for managing these dynamic environments. This 

study developed an optimized model for estimating Chl-a concentrations in coastal aquaculture areas, leveraging 

in situ Chl-a data, field spectral measurements, and Sentinel-2 MultiSpectral Instrument (MSI) imagery. Various 

evaluation metrics, including the coefficient of determination (R2), root mean square error (RMSE), and bias, 

were utilized to assess the models’ performance. Relationships between in situ Chl-a and various spectral indices 

were established, and an optimized Multiple Linear Regression (MLR) model was derived. This model was 

subsequently applied to Sentinel-2 imagery to generate spatial Chl-a and Trophic State Index (TSI) distribution 

maps. The optimized Chl-a model demonstrated high performance (R2 > 0.94, low RMSE and bias), confirming 

Sentinel-2’s significant potential as a free, high-spatial-resolution tool for Chl-a research. The resulting Chl-a and 

TSI maps provide critical insights into the spatial heterogeneity and trophic states of coastal aquaculture zones, 

facilitating the identification of areas susceptible to eutrophication. These findings enhance the understanding of 

aquatic environmental dynamics and support sustainable aquaculture practices. 
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Introduction 

Eutrophication is recognized as the most significant ecological threat to the health of 

aquatic ecosystems globally, serving as a primary driver of water quality degradation 

(Chislock et al., 2013; Kakade et al., 2021; Khan et al., 2014; Vinh et al., 2022). This 

phenomenon arises from increased nutrient inputs, which foster excessive algal and 

macroalgal growth (Prepas and Charette, 2003). Although phytoplankton blooms are natural 

components of aquatic ecosystems (Carstensen et al., 2015), their excessive proliferation can 

severely reduce water clarity and deplete dissolved oxygen levels (Prepas and Charette, 

2003). These blooms impair light penetration and nutrient access for submerged aquatic 

vegetation, often leading to hypoxia and the subsequent death of aquatic fauna (Mishra et al., 

2022). This cascade, in turn, results in widespread degradation across the aquatic ecosystem. 

Furthermore, these blooms are frequently dominated by cyanobacteria, which can produce 

toxins (Sivonen, 1996). Therefore, to effectively address these issues, it is crucial to regularly 

monitor the eutrophication and algal blooms over space and time. 
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Chlorophyll a (Chl-a), the main photosynthetic pigment in phytoplankton, serves as an 

effective parameter for monitoring the trophic status of aquatic systems. In addition, Chl-a 

is the main indicator of phytoplankton abundance and biomass (Moses et al., 2009; 

Woźniak et al., 2014; Zhang et al., 2014) and can be commonly used to assess the water 

clarity, water quality and eutrophication level of a water body (Salem et al., 2017). Recent 

trends reveal that elevated eutrophication levels in aquatic environments have been 

attributed to a combination of factors, including climate change (J. Wang et al., 2015) and 

excessive human-induced aquaculture activities (Du et al., 2024; Duan et al., 2009; Guo et 

al., 2017; Lao et al., 2023a, b; Qin et al., 2022). Anthropogenic activities accelerate both 

the rate and spatial extent of nitrogen and phosphorus loading into aquatic environments. 

This increased nutrient loading consequently leads to the proliferation of algae in inland 

water bodies, which is directly reflected in an increase in chlorophyll-a (Chl-a) 

concentration (Smith, 2003; Wang et al., 2018). Given these dynamics, continuous 

monitoring of Chl-a concentration and comprehensive studies on water eutrophication are 

indispensable for understanding and managing current ecological conditions. 

Traditional water quality monitoring based on in situ point sampling and laboratory 

techniques have been used for decades and provide accurate, localized measurements of 

chlorophyll-a at specific times and locations (Jang et al., 2024; Ogashawara et al., 2021). 

However, conventional Chl-a assessment strategies are inherently labor-intensive, costly, 

time-consuming, and lack the synoptic capability to capture algal bloom conditions across 

broad spatial and temporal scales (Bertone et al., 2024; Duan et al., 2010; Li et al., 2024; 

Ogashawara et al., 2021). Consequently, there has been an increasing demand for robust 

and effective approaches to quantify chlorophyll-a concentration across various aquatic 

systems. To address this monitoring requirement, satellite-based techniques have been 

implemented and demonstrated as a crucial tool for aquatic environment monitoring, 

including chlorophyll-a (Chl-a) surveillance (Akbarnejad Nesheli et al., 2024). Remote 

sensing techniques offer several advantages for monitoring chlorophyll-a (Chl-a) 

concentration. Specifically, satellite-derived Chl-a provides substantial spatial coverage, 

surpassing the limitations of in situ measurements and enabling data acquisition from 

inaccessible aquatic environments (Ogashawara et al., 2021; Salls et al., 2024). 

Furthermore, remote sensing facilitates the reconstruction of historical trends through 

past satellite imagery and offers rapid assessment of ecological water quality status 

compared to laboratory-based techniques (Ha et al., 2017; Ogashawara et al., 2021). 

Moderate resolution sensors, including the Medium Resolution Imaging Spectrometer 

(MERIS) and Sentinel-3 OLCI (300 m), along with the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (250-1000 m), have been extensively utilized for inland 

Chl-a estimation. These sensors are characterized by their frequent data acquisition 

capabilities (1-3 days) and the inclusion of critical red and near-infrared spectral bands, 

making them particularly well-suited for Chl-a detection in complex waters and at 

elevated Chl-a concentrations (Salls et al., 2024). While effective in large inland lakes 

(>1000 m wide), the limited spatial resolution of these sensors restricts their utility in 

smaller lakes (≤1000 m wide) due to potential contamination from stray light (Hestir et 

al., 2015; Salls et al., 2024). To overcome these spatial limitations, efforts have focused 

on finer-scale sensors originally designed for terrestrial applications, such as the Landsat 

series (30 m) (Chen et al., 2024; Duan et al., 2007; Kuhn et al., 2019; Vinh et al., 2022). 

However, these finer-scale sensors often lack the specific spectral bands required to 

quantify the Chl-a red edge peak (Salls et al., 2024). A promising advancement in remote 

sensing for water quality monitoring is offered by the Sentinel-2A and 2B (S2) 
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MultiSpectral Instrument (MSI) sensors. Launched in 2015 and 2017, these sensors 

provide a spatial resolution of 10-60 m and a combined rapid revisit frequency of 5 days. 

Significantly, among their 13 spectral bands covering the blue to shortwave infrared 

(SWIR) spectrum, three bands are dedicated to the red-edge region. Additionally, 

Sentinel-2 features improved 12-bit radiometric digitization, which is particularly 

beneficial for applications in low-radiance aquatic environments. These attributes make 

S2 particularly valuable for monitoring water quality in small and shallow water bodies, 

such as ponds and urban lakes (Jang et al., 2024; Li et al., 2024; Ogashawara et al., 2021; 

Quang Vinh et al., 2024; Salls et al., 2024; Tóth et al., 2021). 

Remote sensing methods for determining Chlorophyll-a (Chl-a) concentration can be 

broadly categorized into three main groups: physical-based, empirical, and machine 

learning (ML) algorithms. Physical-based algorithms leverage bio-optical models to 

simulate spectral radiance based on specific water constituents; however, despite their 

high sensitivity, they are computationally demanding. While offering promising accuracy 

and robustness, machine learning inherently carries the risk of overfitting during model 

development (Cao et al., 2020; Chen et al., 2024; Li et al., 2021; Tran and Liou, 2022, 

2024). Meanwhile, empirical algorithms utilize statistical techniques, including 

regression, to correlate Chl-a levels with spectral reflectance data from the sensors’ 

narrow bands or various band ratios. Despite their generally lower sensitivity when 

compared to bio-optical models, the straightforward development and ease of application 

associated with empirical methods frequently make them a more viable option for 

practical deployment (Akbarnejad Nesheli et al., 2024; Matthews, 2011). Given the 

constraint of a relatively small dataset from field measurements (41 samples), this 

research primarily employed empirical methods over other recognized methods for 

determining Chlorophyll-a (Chl-a) concentration, prioritizing practicality over the 

computational demands of physical-based algorithms or the overfitting risks of machine 

learning. This decision was driven by a practical balance between model performance, 

data constraints, and complexity. 

Focusing on empirical methods for estimating Chl-a from remote images, the specific 

techniques are band ratios/combinations, multi-band indices, and Multiple Linear 

Regression (MLR) Johansen et al. (2022) observed that a significant proportion of 

empirically based remote sensing algorithms could be distilled into a limited number of 

general formulas. Methods including the Normalized Difference Chlorophyll Index (NDCI), 

two-band algorithms, three-band algorithms, Chlorophyll Index (CI), and Maximum 

Chlorophyll Index (MCI) are particularly notable. For decades, these algorithms have been 

instrumental in deriving Chl-a concentrations from a wide array of satellite imagers 

(Johansen et al., 2024). Simultaneously, multiple linear regression (MLR) offers distinct 

advantages due to its inherent simplicity and interpretability (Tran and Liou, 2024). This 

model characteristic facilitates an intuitive understanding of inter-variable relationships, 

thereby providing clear insight into how independent variables exert influence on the 

dependent variable (Jang et al., 2024; Kim et al., 2020; Prieto et al., 2017). Furthermore, the 

incorporation of diverse band ratio combinations has been shown in previous investigations 

to significantly enhance the performance capability of Chl-a estimation models in complex 

aquatic environments (Kim et al., 2016; Matus-Hernández et al., 2018). 

The Coastal Region of Thai Binh Province, Vietnam, which is the focus of this study, 

encompasses numerous small ponds primarily used for aquaculture. As aquaculture is one 

of the most prominent and rapidly developing economic sectors and a significant 

aquaculture hub in Thai Binh province, investigating eutrophication is critical and 
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providing early warnings is helpful in preventing fish mortality due to oxygen depletion. 

Consequently, the Sentinel-2 satellite data is well-suited for this purpose, offering 

appropriate spatial, temporal, and spectral resolutions. The primary objective of this 

research to develop an optimized model for Chl-a estimation in the Coastal Region of 

Thai Binh Province, Vietnam. To achieve this, the research focused on establishing 

correlations between in situ Chl-a measurements and a variety of spectral band ratios and 

multi-band indices. Subsequently, multiple linear regression (MLR) was employed to 

effectively combine these parameters and derive an optimal Chl-a estimation model. This 

optimized model was then applied to Sentinel-2 MSI imagery, captured concurrently with 

the in situ survey, to generate spatial Chl-a and Trophic State Index (TSI) distribution 

maps for the study region. 

Data and methods 

Study area 

Comprising the Tien Hai and Thai Thuy districts, the study region is located in the 

eastern part of Thai Binh province, Vietnam, characterized by a long coastline bordering 

the East Sea (Fig. 1). This region holds a strategic geographical position, offering 

significant potential for marine economic development, while also providing favorable 

conditions for agriculture and, notably, aquaculture. With a combined total area of 

approximately 499 km², this research region is home to around 470,000 people 

(https://danso.info/dan-so-thai-binh/). The relatively high population density reflects the 

concentration of economic and social activities here. The study region is characterized by 

a tropical monsoon climate, heavily influenced by its coastal proximity. The average 

annual temperature is about 23.4∘C, creating warm conditions conducive to various types 

of production. Annual rainfall is quite high, ranging from 1600 to 1700 mm, primarily 

concentrated in the summer months (Tran et al., 2017). An average of 1600 to 1700 

sunshine hours per year provides ample energy for crops and other economic activities 

(Tran et al., 2017). Winters here are typically colder and drier, lasting from November of 

the previous year to April of the following year. Notably, the study area also boasts 

significant mangrove forest coverage, playing a crucial role in coastal dike protection, 

erosion control, and climate regulation for the entire region. 

As a prominent and rapidly developing economic sector in the research area, 

aquaculture renders it a key aquaculture hub in Thai Binh province. The total area 

dedicated to aquaculture is extensive, covering thousands of hectares, including diverse 

types such as freshwater, brackish water, and clam farming. The region particularly 

focuses on promoting high-tech shrimp farming, implementing advanced models like 

circular pond systems to boost productivity while minimizing disease risks. Proactive 

management in the production and supply of local seedstock is also a crucial factor, 

ensuring the quality of fry and reducing production costs. Thanks to its favorable natural 

conditions and investment in development, the aquaculture sector has significantly 

contributed to the region’s overall agricultural output, providing stable incomes and 

improving the livelihoods of local residents. Given our research area’s prevalence of 

small ponds used for fish and shrimp farming, eutrophication studies are crucial. These 

studies facilitate early warning systems, thereby preventing fish mortality due to oxygen 

depletion. Consequently, Sentinel-2 satellite data is well-suited for this research, offering 

appropriate spatial, temporal, and spectral resolutions. 
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Figure 1. Location of the study area and field survey sampling points 
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Field spectral measurements and water sampling data 

Forty-two in situ samples were obtained from ponds and lakes within the study area 

over a three-day period (Sep 30 – Oct 2, 2024) (Fig. 1). However, an anomaly was 

identified following the evaluation of sample TB22’s spectral reflectance curve. 

Consequently, to ensure the highest level of accuracy, data from this sample (TB22) will 

be excluded from all subsequent calculations. 

 

In situ hyperspectral data from the spectroradiometer 

At each measurement point, field spectra were collected with a handheld 

spectroradiometer (PSR-2500), operating within a spectral range from 350 nm to 

2500 nm, at a 1 nm spectral resolution (Manufacturer: Spectral Evolution, USA). 

Calibration and Spectral Range: Prior to each measurement, white light balancing was 

performed to ensure accuracy and to serve as a radiometric calibration step for the 

spectroradiometer. Besides, at each field site, the water reflectance spectrum was 

measured three times and averaged to reduce variability. Although the PSR-2500 

spectroradiometer is capable of measuring spectra from 350 nm to 2500 nm, at a 1 nm 

spectral resolution, only the 400–900 nm range was used in this study to align with 

Sentinel-2’s spectral bands, effectively filtering out unusable data. 

Spectral Resampling: The recorded spectral data were then transferred to a computer 

and processed using specialized software to analyze the reflectance spectra of different 

water bodies within the study area. A crucial step was the spectral resampling (simulation) 

of Sentinel-2 reflectances from field spectra. Specifically, spectroradiometer-measured 

reflectances (in situ hyperspectral data) were spectrally averaged based on the central 

waveband locations and wavelength ranges of the Sentinel-2 bands (e.g., Band 2, 3, 4, 5, 

6, 7, 8, and 8a) to simulate the surface reflectances (Rrs) that the Sentinel-2 satellite sensor 

would record. This process transforms the high-resolution field data into Synthetic 

Sentinel-2 surface reflectances that are directly comparable to the satellite imagery. 

Exclusion Criteria for Spectral Points: rigorous exclusion criteria were applied to 

maintain data quality. Field-measured spectral points were visually and statistically screened 

for quality assurance. Any data point exhibiting extreme spectral abnormalities (e.g., sudden 

spikes or drops inconsistent with known water properties) or displaying substantial 

discrepancies compared to the majority of observations was excluded from the dataset. This 

step ensured that only representative and high-quality in situ data were utilized. 

 

Laboratory analyses for determination of chlorophyll-a concentrations 

At each sampling site, water samples were collected in clean bottles for laboratory 

analysis. In this study, chlorophyll-a (Chl-a) was the primary chemical parameter selected 

for measurement and evaluation. Chlorophyll-a (Chl-a) in water samples was calculated 

using the standard methodology described by Eaton et al. (1995). An initial step involved 

the immediate filtration of water samples post-collection, utilizing a filtration unit. The 

volume filtered ranged from 0.1 L to 2 L, depending on the algal concentration. Prior to 

completing the filtration process, 2 mL of 1% MgCO₃ solution was added to preserve the 

sample. The filter was then transferred to a tissue grinder, where 2–3 mL of 90% acetone 

solution was added. This solution was prepared by mixing acetone with saturated MgCO₃ 

solution (prepared by dissolving 1 g of fine MgCO₃ powder in 100 mL of distilled water) 

at a 9:1 ratio. The sample was ground for 1 min at 500 rpm. The homogenized sample 

was then transferred into a centrifuge tube, rinsed with acetone solution, and the volume 
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was adjusted to 10 mL with acetone. The sample was stored in the dark at 4°C for at least 

2 h. Subsequently, centrifugation was performed for 20 min at 3000 rpm, after which only 

the clear supernatant was retained and any remaining residues were discarded. 

Absorbance measurements were then conducted at wavelengths of 664, 665, and 750 nm, 

both before and after the acidification process. For acidification, 3 mL of the sample was 

transferred to a cuvette, and absorbance was measured. Next, 0.1 mL of 0.1 M HCl was 

introduced, gently mixed, and after 90 s, the absorbance was measured again. Finally, the 

chlorophyll-a concentration was calculated using the following formula: 

 

 
31

2

26.7 (664 665 )
/

b a V
Chlorophyll a mg m

V L

 − 
− =


 (Eq.1) 

 

where: 664b: Absorbance measured at 664 nm (corrected by subtracting the absorbance 

at 750 nm) before acidification; 665a: Absorbance measured at 665 nm (corrected by 

subtracting the absorbance at 750 nm) after acidification; V1: Volume of the extract; V2: 

Volume of the filtered sample; and L: Path length of the cuvette. 

 

Satellite data and image processing 

To ensure the highest possible accuracy in estimating Chlorophyll a, field sampling 

should be conducted precisely at the time the satellite passes over and captures imagery of 

the study area. However, in practice, due to limitations in personnel and equipment, the 

timing of field measurements often does not coincide with the satellite overpass. 

Furthermore, even when sampling is conducted at the same time as the satellite overpass, 

the resulting imagery may be unusable due to cloud cover or haze. In our study, field 

sampling was carried out over a three-day period (September 30, October 1, and October 

2, 2024), during which a total of 41 samples were collected. However, upon reviewing 

satellite imagery acquired around the time of field survey (sampling), we found that the 

available images were significantly affected by cloud cover (Fig. 2). Fortunately, the 

Sentinel-2 image acquired on October 6, 2024, was of sufficiently high quality. Therefore, 

this image was selected for further analysis of mapping the distribution of chlorophyll-a 

concentration over the study area. The Sentinel-2 imagery acquired on October 6, 2024, 

was employed in this study. This decision was based on the underlying assumption 

regarding the overall concentration and spatial pattern of chlorophyll-a remained relatively 

stable over a period of several days, despite the image not being acquired at the exact time 

of field sampling. While acknowledging that this assumption may not hold true across the 

entire region under investigation because of dynamic water circulation, employing this 

imagery is considered acceptable for the specific objectives of this research. 

More specifically, in this work a single scene of Sentinel-2 imagery (Level-1C) was 

acquired over the study area at approximately 10:20 local time on 06 October 2024, 

during a period when lake water composition in the region was relatively stable. The 

image was cloud-free and of high quality. In the present study, Sentinel-2 Level-1C (L1C) 

imagery was obtained from Google Earth Engine. This platform provides top-of-

atmosphere (TOA) reflectance data that has undergone orthorectification, georeferencing, 

and radiometric calibration. The data is projected in UTM with the WGS84 datum, and 

is available at spatial resolutions of 10, 20, and 60 m (Table 1). The Sentinel-2 imagery 

underwent resampling to a 10 m spatial resolution via the nearest neighbor method to 

preserve radiometric integrity. 
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Figure 2. Satellite imagery acquired around the time of field survey 

 

 
Table 1. Description of Sentinel-2 multispectral instrument (MSI) 

Band Wavelength range (nm) Central wavelength (nm) Spatial resolution (m) Description 

B1 433–453 443 60 Aerosol 

B2 458–523 490 10 Blue 

B3 543–578 560 10 Green 

B4 650–680 665 10 Red 

B5 698–713 705 20 Red Edge 1 

B6 734–748 740 20 Red Edge 2 

B7 773–793 783 20 Red Edge 3 

B8 785–900 842 10 NIR 

B8a 855–875 865 20 Red Edge 4 

B9 930–950 940 60 Water vapor 

B10 1365–1385 1375 60 Cirrus 

B11 1565–1655 1610 20 SWIR1 

B12 2100–2280 2190 20 SWIR2 

 

 

Sentinel-2 data can be processed using a variety of atmospheric correction algorithms, 

notably Sen2cor and ACOLITE. Nonetheless, the Sen2cor atmospheric correction 

process was not designed for water bodies (Toming et al., 2016) and has been 

demonstrated to be inappropriate for estimating reflectances within the Near-Infrared 

(NIR) region. While ACOLITE, an atmospheric correction method specifically 

developed for water bodies (Vanhellemont and Ruddick, 2016), offered improved NIR 

reflectance estimations, its performance in the visible region was not consistently stable 

or accurate (Martins et al., 2017). Therefore, the Empirical Line Method (ELM) was 

chosen due to its established precision and successful application in previous studies, 

particularly for water bodies (Ha et al., 2017; Smith and Milton, 1999). The ELM assumes 

that the atmospheric conditions (aerosols, water vapor, etc.) are spatially constant across 

the entire study area. This allows a single set of linear regression coefficients, derived 

from the in situ sites, to be applied uniformly to the entire image. The ELM functions by 

removing atmospheric effects through the establishment of a statistical relationship 

between satellite data and ground measurements. Specifically, a linear regression is 

created for each individual Sentinel-2 band. This regression is established using two key 
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inputs: the Top-Of-Atmosphere (TOA) reflectance (taken directly from the satellite image 

pixel) and the co-located field-measured reflectance (the actual spectral data recorded on 

the ground). In this research, these linear functions were developed using the in situ 

reflectance points, and their corresponding Sentinel-2 TOA pixel values (acquired on 

October 6, 2024). Finally, the resulting linear regression function is applied to convert the 

TOA reflectance of the entire Sentinel-2 image into accurate surface reflectance, 

effectively removing the influence of the atmosphere. The primary constraints of the 

ELM stem from its direct reliance on the quality of the reference measurements. 

Specifically, the accuracy of the ELM is entirely dependent on the quality and 

representativeness of the in situ field-measured reflectance data. A key practical 

limitation arising from this dependency is the necessary exclusion of spectral points that 

show significant discrepancies from the majority of observations. This rigorous selection 

process is crucial, as failure to identify and manually remove poor quality or outlier field 

data could severely compromise the final atmospheric correction results. 

 

Algorithms for estimation of chlorophyll a 

This investigation sought to construct an optimized model for quantifying chlorophyll-

a (Chl-a) concentrations within the coastal region of Thai Binh Province, Vietnam. The 

methodology involved establishing a robust correlation between in situ Chl-a 

measurements and an array of remote sensing parameters, specifically various spectral 

band ratios and multi-band indices (Table 2). Following this, multiple linear regression 

(MLR) analysis was employed to synergistically integrate these independent variables, 

thereby yielding a refined Chl-a estimation model. This meticulously optimized model 

was subsequently applied to concurrent Sentinel-2 MSI satellite imagery to produce a 

comprehensive spatial distribution map of Chl-a across the designated study region. 

 

Pearson correlation analysis 

The statistical method is widely recognized as the preferred approach for establishing 

a correlation between various band combinations and in situ Chlorophyll-a concentration 

(Ha et al., 2017; Vinh et al., 2022). In the present study, the Pearson correlation analysis 

was conducted between in situ Chlorophyll measurements and the possible bands/band 

combinations (including single-band model, two-band ratios, and other band 

combinations/indices) derived from the synthetic Sentinel-2 surface reflectances. A great 

number of indices and band combinations have been developed for the determination of 

Chl-a. However, by reviewing previous studies, we selected those indices and band 

combinations that are frequently employed and compatible with the spectral channels of 

Sentinel 2 (Table 2). This analysis aimed to thoroughly examine the relationship and 

identify the suitable band ratio or combination for accurate Chlorophyll estimation. 

 

Multivariate regression analyses 

Based on the results of the Pearson correlation analysis, we selected a subset of 

variables with the highest correlation coefficient (r) from each category (single-band 

model, two-band ratio, and band combinations/indices). These selected variables were 

then used as input variables in the subsequent Multiple Linear Regression (MLR) to 

develop different models in estimating Chlorophyll-a and find an optimal model, which 

subsequently applied to a Sentinel-2 imagery to create a spatial distribution map of Chl-

a across the study region. 
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Table 2. Different common spectral indices for estimating Chl-a concentrations based on 

Sentinel 2-bands 

Band combination Algorithm name Equation Reference 

T
w

o
-b

an
d
 r

at
io

 

Green-Blue Ratio Green-Blue Rrs(560)/Rrs(490)  Ha et al. (2017)  

Green-Red Ratio Green-Red Rrs(560)/Rrs(665) Ha et al. (2017) 

Blue-Green Ratio Blue-Green Rrs(490)/Rrs(560) Moses et al. (2009) 

VNIR1-Red Ratio VNIR1-Red Rrs(705)/Rrs(665) 

Duan et al. (2012); 

Gilerson et al. (2010); 

Gurlin et al. (2011)  

VNIR2-Red Ratio VNIR2-Red Rrs(740)/Rrs(665) Gitelson et al. (2008) 

VNIR2-VNIR1 Ratio VNIR2-VNIR1 Rrs(740)/Rrs(705) Li et al. (2021) 

NIRn-Red Ratio NIRn-Red Rrs(865)/Rrs(665) 
Duan et al. (2007); Tóth 

et al. (2021) 

VNIR1-Green Ratio VNIR1-Green Rrs(705)/Rrs(560) Cairo et al. (2019) 

VNIR2-Green Ratio VNIR2-Green Rrs(740)/Rrs(560) Cairo et al. (2019) 

B
an

d
 c

o
m

b
in

at
io

n
s/

in
d

ic
es

 

Normalized difference 

chlorophyll index 
NDCI 

(Rrs(705) − 

Rrs(665))/(Rrs(705) + 

Rrs(665)) 

Mishra and Mishra 

(2012)  

Florescence Line 

Height 
FLH Rrs(705) – Rrs(665) Zhao et al. (2022) 

Advanced Remote 

Sensing Sediment 

Parameter 

Advanced_RSSP 
(Rrs(705) + 

Rrs(665))/(Rrs(705)/Rrs(665)) 
Pan et al. (2025) 

Water chlorophyll-a 

index 
Advanced_WCI 

(Rrs(665) – Rrs(705))/(2 * 

Rrs(705)) 
Pan et al. (2025) 

Chlorophyll Index ChlI 

Rrs(560) – (Rrs(443) + (560 – 

443)/(665 – 443) * (Rrs(665) 

– Rrs(443))) 

Hu et al. (2012); Smith 

et al. (2018) 

Maximum Chlorophyll 

Index 
MCI 

(Rrs(705) – Rrs(665)) – ((705 

- 665)/(740 – 665) * 

(Rrs(740) – Rrs(665))) 

Gower et al. (2005) 

Cyanobacteria Index CI 

-((Rrs(665) – Rrs(560)] – 

((665 – 560)/(705 – 560) * 

(Rrs(705) – Rrs(560)))) 

Akbarnejad Nesheli et 

al. (2024); Wynne et al. 

(2008) 

Maximum Peak Height MPH 

(Rrs(705) – Rrs(665)) – ((705 

– 665)/(865 – 665) * 

(Rrs(865) – Rrs(665))) 

Akbarnejad Nesheli et 

al. (2024); Matthews et 

al. (2012) 

Surface Algal Bloom 

Index 
SABI 

(Rrs(865) – 

Rrs(665))/(Rrs(490) 

+ Rrs(560)) 

Akbarnejad Nesheli et 

al. (2024); Alawadi 

(2010) 

 

 

Multiple Linear Regression (MLR) stands as a widely employed statistical 

methodology for examining the intricate connections between a single dependent variable 

and a collection of two or more independent variables. This particular analytical approach 

fundamentally operates under the premise that the relationships among the various 

predictor variables are both linear and additive (Jang et al., 2024). Essentially, enables 

the construction of a mathematical framework or an approximating equation capable of 

characterizing a real-world phenomenon. Notwithstanding their fundamental 

straightforwardness, MLR models have garnered widespread adoption and consistently 



Hoan et al.: Optimized chlorophyll-a estimation and trophic state mapping in coastal aquaculture zones: a Sentinel-2 and in situ 

spectral approach in Thai Binh, Vietnam 
- 11551 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(6):11541-11569. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2306_1154111569 

© 2025, ALÖKI Kft., Budapest, Hungary 

delivered favorable outcomes across diverse research endeavors (Jang et al., 2024; Prieto 

et al., 2017; Quang Vinh et al., 2024; Sousa et al., 2007). The association linking the 

dependent variable (Y) and the predictor variables (X1, X2, …, Xn) is generally expressed 

by the following equation (Jang et al., 2024; Prieto et al., 2017): 

 

 0 1 1 2 2 ... k kY a a X a X a X= + + + +  (Eq.2) 

 

where a0 denotes the constant term, while a1, a2,. . ., ak represent the regression 

coefficients. These coefficients, derived via the least-squares method, quantify the 

magnitude and direction of each explanatory variable’s impact on the target variable, Y 

(Chlorophyll-a concentration). The independent variables (Xk) encompass various 

factors, including simulated Sentinel-2-based reflectance, two-band ratios, and other band 

combinations or indices. 

In the present study, a total of 41 in situ samples (Chlorophyll-a and independent 

variables from simulated Sentinel-2 reflectance measurements) were randomly divided 

into two parts: the training dataset (65%) (N = 27) for model calibration and the test 

dataset (35%) (N = 14) for model validation. The calibration dataset exhibited a more 

extensive chlorophyll range than its validation counterpart, which ensured comprehensive 

coverage and enhanced the applicability of the chlorophyll estimation model. 

 

Performance assessment 

Statistical analyses were conducted using various evaluation metrics such as 

coefficient of determination (R2), root mean square error (RMSE), and bias (systematic 

error) to assess the performance of developed models. The optimal statistical model for 

chlorophyll estimation was subsequently selected based on these metrics. R2 serves as a 

key indicator of a model’s goodness of fit, representing the ratio of variance in the target 

variable that can be predicted from the explanatory variables. Its value, ranging from 0 to 

1, reflects the proximity of the regression line to the actual data points; a higher R2 value 

suggests a more accurate model fit. Besides, the RMSE serves as an indicator of the 

typical magnitude of the prediction deviations, with reduced RMSE values signifying 

enhanced model performance. When the primary objective of a model is prediction, 

RMSE is considered a crucial criterion for assessing its accuracy. Bias quantifies the 

systematic discrepancy observed between the estimated parameter and its actual 

measurement. A zero bias indicates an unbiased estimator. Generally, values approaching 

zero signify superior model performance. R2, RMSE and Bias were calculated by the 

following formula (Akbarnejad Nesheli et al., 2024): 
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where yi is the ith measured chlorophyll-a value, ˆ
iy  is the ith predicted chlorophyll-a 

value, y  is the average value of observed values, and n is the number of samples. In the 

present work, the training and testing process was performed employing the Linear 

Regression algorithm from the Scikit-learn package with Python programing language. 

Among the chlorophyll estimation models that were developed, the most appropriate 

model was chosen for application to a Sentinel-2 image acquired on October 6, 2024, 

with the aim of enhancing the understanding of the spatial variability of chlorophyll 

across the study area. 

 

Estimation of trophic state index (TSI) 

Various mathematical methodologies are employed for the assessment of lake 

eutrophication. Among these, the Trophic State Index (TSI), as conceptualized by Carlson 

(1977), is widely recognized as the most acceptable method for evaluating lake 

eutrophication (Duan et al., 2007; Xing et al., 2005). The TSI derives continuous values, 

typically scaled from 0 to 100, for lakes, primarily utilizing parameters such as Secchi 

disk transparency, chlorophyll-a (Chl-a) concentration, or total phosphorus content. 

Conceptually, the TSI quantifies the “greenness” of a lake, reflecting the concentration 

of algal biomass within its water column. However, Carlson’s original TSI has been 

criticized for neglecting the influence of factors other than phytoplankton, such as water 

color, dissolved matter, and suspended matter, on Secchi disk transparency (Duan et al., 

2007; Zhang et al., 2003). The aforementioned limitation was subsequently resolved with 

the introduction of the modified Carlson’s TSIM (Aizaki et al., 1981). It is noted that 

methods for assessing lake eutrophication types are adaptable to diverse geographical 

locations, environmental conditions, and human activities. 

This work utilized Shu’s modified model, an adaptation of the Trophic State Index 

Method (TSIM), to compute the trophic state index and assess the eutrophication. The 

calculation followed by Shu’s method (Duan et al., 2007) as follows: 

 

 
ln( )

( ) 10 2.46
ln(2.5)

M

chla
TSI chla

 
=  + 

 
 (Eq.6) 

 

where chla means Chl-a content (mg/m3). Each segment of the 0-100 scale indicated a 

different trophic state: oligotrophic (0–20), lower mesotrophic (20–30), mesotrophic (30–

40), upper-mesotrophic (40–50), eutrophic (50–70), hypereutrophic (70–80), and 

extremely hypereutrophic (80–100). 

Results and discussion 

Chlorophyll status and in situ reflectance properties 

Chlorophyll-a, a key phytoplankton pigment, is universally present across all algal groups 

inhabiting inland aquatic environments. The distribution of Chlorophyll-a concentrations, 

derived from 41 field measurements, is presented as a violin plot in Figure 3. This plot 

illustrates the range of observed values, with a minimum concentration of 1 mg/m³ and a 

maximum of 197.0 mg/m³. Descriptive statistics further indicate a mean Chla concentration 

of 27.63 mg/m³ and a median of 12.0 mg/m³. The computed standard deviation of 

39.84 mg/m³ underscores the significant spread inherent in the Chla measurement data. 
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Figure 3. Violin plot of field-measured Chl-a concentrations in the coastal area of Thai Binh 

Province 

 

 

Figure 4 presents the in situ reflectance spectra of water bodies located in the coastal 

area of Thai Binh province, corresponding to 41 samples exhibiting varying chlorophyll-

a concentrations. In the blue spectral region, the acquired field-measured reflectance 

spectrum consistently exhibits low values at wavelengths under 520 nm. This observed 

decrease in reflectance is principally a consequence of the synergistic absorption by 

various water constituents, including algal pigments (e.g., chlorophyll-a) and colored 

dissolved organic matter (CDOM) (Gitelson et al., 1993). Within the spectral range of 

approximately 450-460 nm, an absorption feature is observed, which is attributable to 

phytoplankton pigments (Duan et al., 2007). A notable increase in reflectance was 

observed within the green spectral region, culminating in a maximum value around 

570 nm. This spectral peak is likely a consequence of reduced absorption by 

phytoplankton pigments at this wavelength, where the reflectance signal was 

predominantly controlled by non-algal particles (NAP) and CDOM (Gurlin et al., 2011). 

Two distinct reflectance minima, evident at approximately 638 nm and 675 nm in the red 

and near-infrared (NIR) spectral regions, align with the primary absorption peaks of 

phytoplankton pigments (Gitelson and Kondratyev, 1991). The reduced reflectance 

around 638 nm is attributed to absorption by cianopycocyanine, while the minimum 

around 675 nm is associated with the strong absorption of chlorophyll-a (Duan et al., 

2007; Gurlin et al., 2011). Within the 690–720 nm wavelength range, a prominent 

reflectance peak is observed. This peak is attributed to a localized minimum in the 

cumulative absorption of light by both phytoplankton pigments and water (Duan et al., 

2007; Gitelson, 1992; Gurlin et al., 2011). 

 

Performance of the algorithms to estimate the chlorophyll 

Single-band model for chlorophyll estimation 

The graph illustrates a fluctuating pattern in the correlation coefficient (r) between 

chlorophyll concentrations and remote-sensing reflectance (Rrs(λ)) across the observed 
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spectrum, with r values varying from -0.018 to 0.417 (N = 41) assessment (Fig. 5). It 

begins with a very weak or negative correlation in the Aerosol band (B1, -0.018), then 

increases in the Blue/Green range (B2, 0.085; B3, 0.178). Subsequently, there is a sharp 

drop in correlation in the red range (B4, -0.007). Following this dip, the correlation 

coefficient rises significantly into a strong positive correlation in the red-edge range, 

starting with Red Edge 1 band (B5, 0.306), reaching its maximum in Red Edge 2 (B6, 

0.417), and remaining high through Red Edge 3 (B7, 0.406), NIR (B8, 0.393), and Red 

Edge 4 (B8a, 0.383). This overall pattern clearly indicates that the variable being 

correlated has a substantially stronger positive relationship with the data captured in the 

near-infrared spectrum compared to the visible light spectrum. Additionally, the findings 

underscore the limitations of a single-band approach in achieving accurate Chlorophyll 

assessment (Fig. 5). 

 

 

Figure 4. In situ reflectance spectra over the coastal region of Thai Binh province 

 

 

Two-band ratio model for chlorophyll estimation 

Further analyses were performed utilizing nine different band ratios, which are widely 

recognized for their efficacy in estimating chlorophyll-a concentration (Chl-a), including, 

but not limited to, Green-Blue (Rrs(560)/Rrs(490)) (Ha et al., 2017), Green-Red 

(Rrs(560)/Rrs(665)) (Ha et al., 2017), Blue-Green (Rrs(490)/Rrs(560)) (Moses et al., 

2009), VNIR1-Red (Rrs(705)/Rrs(665)) (Duan et al., 2012; Gilerson et al., 2010; Gitelson 

et al., 2008; Gurlin et al., 2011), VNIR2-Red (Rrs(740)/Rrs(665)) (Gitelson et al., 2008), 

VNIR2-VNIR1 (Rrs(740)/Rrs(705)) (Li et al., 2021), NIRn-Red (Rrs(865)/Rrs(665)) 

(Duan et al., 2007; Tóth et al., 2021), VNIR1-Green (Rrs(705)/Rrs(560)) (Cairo et al., 

2019), and VNIR2-Green (Rrs(740)/Rrs(560)) (Cairo et al., 2019). Figure 6 presents 

scatter plots of Chl-a against various band ratios. As illustrated in Figure 6, the analysis 

demonstrates the highest correlation between chlorophyll-a concentration (Chl-a) and the 

VNIR1-Red (Rrs(705)/Rrs(665)) band ratio (Gurlin et al., 2011), yielding a remarkable 
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correlation coefficient of r = 0.945 (p < 0.001). This specific ratio incorporates the Red 

Edge 1 (VNIR1, B5) and red (B4) spectral bands. Similarly, VNIR2-Red 

(Rrs(740)/Rrs(665)) (Gitelson et al., 2008) also exhibits a strong correlation (r = 0.923, 

p < 0.001). These findings underscore the critical role of the red and red-edge spectral 

regions in Chl-a estimation, aligning with the known spectral properties of chlorophyll. 

While other ratios also show statistically significant correlations, their strength is notably 

lower. The data collectively suggests that ratios incorporating red and NIR bands are an 

effective way for Chl-a retrieval, leveraging the unique spectral response of chlorophyll. 

Nevertheless, it is crucial to acknowledge that Chl-a values within the study area are 

subject to the influence of various interacting factors. Therefore, sole reliance on this 

single band ratio may not provide sufficient accuracy for the construction of a robust Chl-

a estimation model. To enhance the precision of Chl-a estimation, it is imperative to 

account for the impact of these additional influencing factors, which can be elucidated 

through the comprehensive analysis of diverse band ratios. 

 

 

Figure 5. Correlation between chlorophyll-a and single band spectral 

 

 

Band combinations or indices for chlorophyll estimation 

In the present research, we also explored the suitability of different band combinations 

or indices commonly employed for estimating Chla (Gitelson et al., 2011; Gower et al., 

2005; Mishra and Mishra, 2012; Quang Vinh et al., 2024; Yang et al., 2010) (Table 2). 

Figure 7 presents a comprehensive analysis of the correlation between field-measured 

Chlorophyll-a (Chla) concentrations and a diverse set of three-band remote sensing 

models or spectral indices. Each scatter plot, labeled (a-i), depicts this relationship for a 

specific model or index, accompanied by its Pearson correlation coefficient (r) and 

corresponding p-value (p), offering insights into the strength and statistical significance 

of these relationships. The scatter plots visually illustrate the data distribution and the fit 



Hoan et al.: Optimized chlorophyll-a estimation and trophic state mapping in coastal aquaculture zones: a Sentinel-2 and in situ 

spectral approach in Thai Binh, Vietnam 
- 11556 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(6):11541-11569. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2306_1154111569 

© 2025, ALÖKI Kft., Budapest, Hungary 

of each model, allowing for a direct assessment of each method’s potential accuracy in 

estimating Chlorophyll-a concentrations. 

 

 

Figure 6. Correlation between chlorophyll-a and band ratios models (N = 41): (a) Green-Blue; 

(b) Green-Red; (c) Blue-Green; (d) VNIR1-Red; (e) VNIR2-Red; (f) VNIR2-VNIR1; (g) NIRn-

Red; (h) VNIR1-Green; and (i) VNIR2-Green 

 

 

Overall, several models exhibit robust correlations with Chla concentrations. Notably, 

the Normalized Difference Chlorophyll Index (NDCI) (a) model yields the highest 

positive correlation coefficient (r = 0.91, p < 0.001), demonstrating a strong linear 

relationship where increasing index values correspond to a marked increase in Chla 

concentration. Similarly, the Florescence Line Height (FLH) (b) with r = 0.827, p < 0.001 

and Cyanobacteria Index (CI) (f) with r = 0.809, p < 0.001 also demonstrate significant 

positive correlations, reinforcing their potential for Chla estimation. Conversely, 

Advanced_WCI (d) exhibits a strong negative correlation (r = - 0.867, p < 0.001), 

implying that Chla concentration increases as this index’s value decreases, showcasing 

an inverse yet highly significant relationship. However, not all models perform with equal 
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strength. Advanced_RSSP (c) displays a weak and statistically insignificant correlation 

(r = - 0.126, p = 0.4307), suggesting it is not a reliable predictor for Chla concentration 

within this dataset. Meanwhile, models such as Maximum Chlorophyll Index (MCI) (e) 

(r = 0.532, p < 0.001), Maximum Peak Height (MPH) (g) (r = 0.743, p < 0.001), Surface 

Algal Bloom Index (SABI) (h) (r = 0.736, p < 0.001), and Chlorophyll Index (Chl-I) (i) 

(r = 0.564, p < 0.001) all demonstrate statistically significant correlations, though some 

are less robust than the leading indicators. In summary, Figure 7 reveals a wide spectrum 

of correlations among the methods, ranging from strong positive and negative 

relationships to weak and non-significant ones. The methods NDCI, FLH, CI and 

Advanced_WCI consistently demonstrate robust and statistically significant correlations, 

suggesting strong predictive or associative power. The remaining methods exhibit weaker 

yet still significant correlations, with the exception of Advanced_RSSP, which does not 

show a statistically meaningful relationship (r = - 0.126, p = 0.4307). 

 

 

Figure 7. Correlation between Chl-a and band combinations or indices (N = 41): (a) NDCI (b) 

FLH; (c) Advanced_RSSP; (d) Advanced_WCI; (e) MCI; (f) CI; (g) MPH; (h) SABI; and (i) 

Chl-I 
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Multivariate regression analyses 

The interplay between Chlorophyll-a (Chl-a) concentrations and various spectral band 

ratios and multi-band indices was explored through the application of multivariate 

regression analyses. Based on the results of the Pearson correlation analysis, we selected 

a subset of variables with the highest correlation coefficient (r) from each category 

(single-band model, two-band ratio, and band combinations/indices). These selected 

variables were then used as input variables in the subsequent Multiple Linear Regression 

(MLR) to develop different models (Table 3) in estimating Chlorophyll-a and find an 

optimal model, which subsequently applied to a Sentinel-2 imagery to create a spatial 

distribution map of Chl-a across the study area. 

Table 3 systematically outlines the distinct sets of independent variables, also referred 

to as features or predictors, employed in three separate Multiple Linear Regression 

(MLR) models developed for the purpose of estimating Chlorophyll-a concentrations. 

Specifically, Model 1 is characterized by the selection of VNIR1, VNIR2, VNIR3, and 

NIR as its predictive variables. In contrast, Model 2 employs a distinct combination of 

predictors, namely VNIR1-Red, VNIR2-Red, and NIRn-Red. Finally, Model 3 is 

constructed utilizing VNIR1, VNIR2, NDCI, and VNIR1-Red as its input variables. The 

differentiation in predictor sets among these models signifies an investigative approach 

to assess the individual and combined contributions of various spectral bands and indices 

towards accurately estimating Chlorophyll-a concentrations through MLR techniques. 

Table 4 and Figure 8 provide a comprehensive overview of the performance of three 

distinct MLR models (Model 1, Model 2, and Model 3) with diverse input variables in 

estimating Chlorophyll-a concentrations. The table presents key statistical metrics, 

including the R2, r, RMSE, and Bias, for both the training and validation phases of each 

model. These metrics are crucial for assessing model fit, predictive accuracy, and 

generalization capability. Moreover, the observed Chl-a concentrations within both 

datasets encompassed a broad range, from low to high values, thereby enhancing the 

model’s applicability across diverse conditions. 

 
Table 3. Chlorophyll-a estimation MLR models with diverse input variables 

Model name Features/predictors 

Model 1 VNIR1, VNIR2, VNIR3, and NIR  

Model 2 VNIR1-Red, VNIR2-Red, and NIRn-Red  

Model 3 VNIR1, VNIR2, NDCI, and VNIR1-Red 

 

 
Table 4. Different MLR models in estimating Chl-a level (RMSE and bias are in mg/m3) 

Model 
Training phase (N = 27) Testing phase (N = 14) 

R2 r RMSE Bias R2 r RMSE Bias 

Model 1 0.792 0.89 19.385  < 0.001 0.773 0.879 22.731 9.241 

Model 2 0.896 0.946 13.745  < 0.001 0.937 0.968 10.664 5.508 

Model 3 0.950 0.975 9.534  < 0.001 0.944 0.972 9.366 3.028 

 

 

The left column of Figure 9(a, c, e) illustrates the performance of the models during 

the training phase (N = 27), with corresponding statistics presented within each subplot. 



Hoan et al.: Optimized chlorophyll-a estimation and trophic state mapping in coastal aquaculture zones: a Sentinel-2 and in situ 

spectral approach in Thai Binh, Vietnam 
- 11559 - 

APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 23(6):11541-11569. 

http://www.aloki.hu ● ISSN 1589 1623 (Print) ● ISSN 1785 0037 (Online) 
DOI: http://dx.doi.org/10.15666/aeer/2306_1154111569 

© 2025, ALÖKI Kft., Budapest, Hungary 

During the training phase, visually, all three MLR models demonstrated a strong fit to the 

training data, with data points clustering relatively closely around the 1:1 line (dashed 

black line) and the regression line (solid magenta line). Model 1 (Fig. 8a) achieved an R2 

of 0.792 and an r of 0.89, with an RMSE of 19.385 mg/m3. Model 2 (Fig. 8c) showed a 

noticeable improvement, yielding an R2 of 0.896 and an r of 0.946, alongside a reduced 

RMSE of 13.745 mg/m3. Notably, Model 3 (Fig. 8e) exhibited the most robust 

performance in the training phase, with the highest R2 of 0.950 and r of 0.975, coupled 

with the lowest RMSE of 9.534 mg/m3. A Bias of 0 was observed for all models in this 

phase, which is expected as the models are optimized on the training data. While the close 

proximity of data points to the 1:1 line and high R2 values generally indicated that all 

models were well-calibrated to their respective training datasets, Model 3, with its 

regression equation of y = 0.950x + 1.417, specifically exhibited the tightest fit and 

highest explanatory power. 

 

 

Figure 8. Relationships between observed and estimated Chl-a concentrations across different 

models during training and testing phases: (a, b) training and testing phases for Model 1; (c, d) 

training and testing phases for Model 2; and (e, f) training and testing phases for Model 3, with 

the 1:1 line (dashed black line) and the regression line (solid magenta line) (CI 95%: 

confidence Interval, PI 95%: prediction interval) 
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The right column of Figure 8(b, d, f) illustrate the models’ capacity to predict unseen 

data during the testing phase (N = 14). The testing phase is critical for assessing the 

models’ generalization to previously unobserved data. In this phase, Model 1’s 

performance (Fig. 8b) slightly declined, showing an R2 of 0.773, an r of 0.879, and an 

increased RMSE of 22.731 mg/m3, along with a Bias of 9.241 mg/m3. The regression line 

of Model 1 (y = 1.11x + 6.336) indicates a tendency for underestimation at lower 

concentrations and overestimation at higher concentrations, with wider scatter. Model 2 

(Fig. 8d), however, demonstrated exceptional generalization, with an R2 of 0.937 and an 

r of 0.968, both slightly higher than its training performance, and a significantly lower 

RMSE of 10.664 mg/m3, although it exhibited a Bias of 5.508 mg/m3. Visually, the 

regression line for Model 2 (y = 1.029x + 4.751) closely aligns with the 1:1 line, and the 

data points show good consistency, although a slight positive bias can be observed. 

Crucially, Model 3 (Fig. 8f) consistently maintained its strong performance, achieving 

the highest R2 of 0.944 and r of 0.972, along with the lowest RMSE of 9.366 mg/m3 and 

the lowest Bias of 3.028 mg/m3 among all models. Its regression line (y = 1.05x + 1.707) 

is the closest to the ideal 1:1 line among all models, and the data points exhibit the tightest 

cluster around this line, indicating superior accuracy and precision. The visual 

distribution of points in Figure 8f confirms the minimal bias and high predictive accuracy 

quantified by the statistical metrics. 

As for Confidence Interval (CI 95%) and the Prediction Interval (PI 95%), Model 1’s 

performance (Fig. 8b) has a dramatically wider PI 95% compared to Model 2 (Fig. 8d) 

and Model 3 (Fig. 8f). This signifies that a single prediction from model (b) is highly 

unreliable, and the expected error range is very large at 95% confidence. Model 3 (Fig. 8f) 

successfully minimizes the residual error (RMSE 9.366 mg/m3), resulting in the 

narrowest PI 95% among the three. This indicates that the model structure in Figure 8f is 

the most effective at capturing the relationship within the small N = 14 dataset, making 

its individual predictions the most precise. The PI gap clearly dictates which model is 

viable for deployment. Only models Model 2 (Fig. 8d) and Model 3 (Fig. 8f) offer 

sufficiently narrow PI to be considered for reliable decision-making. The CI 95% (blue 

shaded area) represents the uncertainty in the estimation of the true mean regression line. 

Despite the similar sample size, Model 3 (Fig. 8f) has the highest R2 and the lowest 

scatter, leading to a slightly narrower CI near the center of the data compared to Model 1 

(Fig. 8b). This shows that a better-fitting model structure can slightly reduce epistemic 

uncertainty, even without additional data. The wide CI at the tails signals a high risk of 

structural error (bias) if any of these models are used for extrapolation (i.e., predicting 

Chl-a values far beyond 150 mg/m3). 

A comprehensive comparison across both training and testing phases (Table 4 and 

Fig. 8) reveals that Model 3 consistently outperforms Model 1 and Model 2 across nearly 

all evaluation metrics. While Model 2 shows impressive generalization in terms of R2 and 

r, Model 3 consistently delivers the highest predictive accuracy (lowest RMSE) and the 

least systematic error (lowest Bias) on unseen data. Furthermore, the visual coherence of 

data points around the 1:1 line in Figure 8f for Model 3, coupled with its minimized bias, 

underscores its reliability and strong practical applicability for Chlorophyll-a estimation. 

Therefore, based on its superior and more stable performance in both fitting and 

generalization capabilities, Model 3 is identified as the optimal Multiple Linear 

Regression model for estimating Chlorophyll-a concentrations among the evaluated 

options. Its robust performance across all key metrics highlights its reliability and 

suitability for practical applications. Model 3 is expressed as follows: 
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 Chl-a = −3.27 * VNIR1 + 5.02 * VNIR2 − 741.04 * NDCI + 458.9 * VNIR1-Red − 434.48 (mg/m3) (Eq.6) 

 

where VNIR1 and VNIR2 represent the remote sensing reflectance, Rrs(λ), derived from 

Sentinel-2 (S2) imagery at band 5 (705 nm) and band 6 (740 nm), respectively. NDCI 

refers to the Normalized Difference Chlorophyll Index, while VNIR1-Red signifies the 

ratio of Rrs(705) to Rrs(665). 

When compared to existing literature, the performance of our Model 3 stands out as 

highly competitive, and in many aspects, superior. For instance, a notable MLR study 

dedicated to Chlorophyll-a estimation in Quan Son Reservoir, utilizing Sentinel-2B 

imagery, reported an R2 of 0.95 during the training phase but a lower value of 0.87 during 

validation (Thao et al., 2024), thereby indicating potential overfitting issues in their model. 

Our Model 3’s impressive testing R2 of 0.944 not only aligns with the training performance 

of this aforementioned benchmark study but significantly surpasses its reported validation 

performance, thereby underscoring the strong generalizability of our model. Similarly, 

research focusing on Chlorophyll-a estimation in turbid Yellow Sea waters, also employing 

MLR, reported a correlation coefficient (r) of 0.94 (Baek et al., 2019). Notably, the testing 

r of 0.972 achieved by our Model 3 demonstrates an even more robust correlation, 

indicating a superior predictive capability. Beyond these strong correlation metrics, Model 

3 also demonstrated exceptional performance in terms of error assessment. It achieved the 

minimum RMSE values: 9.534 mg/m3 for the training phase and 9.366 mg/m3 for the 

independent testing phase. Furthermore, the associated bias in the testing phase was notably 

low at 3.028 mg/m3. While direct numerical comparisons of RMSE can often be 

challenging due to potential inconsistencies in units and concentration ranges across diverse 

studies, our RMSE values are indicative of high accuracy. For comparative context, certain 

studies employing advanced machine learning algorithms for Chlorophyll-a retrieval, such 

as an LGBM model by Kim et al. (2022), reported higher RMSE values (e.g., 15.15 mg/m3). 

Consequently, the robust RMSE demonstrated by Model 3 further reinforces its precision 

and reliability in estimating Chlorophyll-a concentrations. 

 

Spatial distribution of the chlorophyll-a and TSI 

Figure 9a presents the spatial pattern of Chl-a concentrations across the study area. 

Chl-a serves as a crucial indicator of phytoplankton biomass and primary productivity, 

providing insights into the ecological status of aquatic environments. The concentration 

values, ranging from 0 to 250 mg/m3, are visually represented by a progressive color 

gradient, with deep purple indicating the lowest concentrations and bright red signifying 

the highest. Analysis of the map reveals a heterogeneous distribution of Chl-a. Low Chl-

a concentrations are observed in limited, often narrower, riverine segments and less 

impacted peripheral areas. Conversely, significant portions of the water bodies, 

particularly the broader river sections and potentially larger interconnected water 

systems, exhibit elevated Chl-a concentrations. Specifically, areas depicted in yellow, 

orange, and red, corresponding to concentrations exceeding 60 mg/m3, indicate regions 

of high to very high phytoplankton biomass. These elevated Chl-a levels are 

predominantly observed in the central and southern parts of the mapped region, 

suggesting localized or widespread algal proliferation. Such hotspots underscore areas 

experiencing heightened primary productivity, which is often indicative of nutrient 

enrichment and potential water quality degradation. 

The spatial pattern of the TSI within the study region is illustrated in Figure 9b, 

providing a comprehensive assessment of eutrophication levels. The TSI, classified into 
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seven distinct categories ranging from oligotrophic (0–20) to extremely hypereutrophic 

(80–100), offers a standardized metric for evaluating the trophic status. The color scale 

on the map corresponds to these categories, progressing from dark blue (oligotrophic) to 

dark red (extremely hypereutrophic). Quantitative analysis of the spatial coverage 

indicates that the “eutrophic” category (50–70) dominates the study area, encompassing 

56.69% of the water body surface. This widespread prevalence of eutrophic conditions 

highlights a significant challenge in managing nutrient inputs. “Upper mesotrophic” areas 

(40–50) account for 14.71%, while “hypereutrophic” conditions (70–80) are observed in 

10.52% of the area, indicating severe nutrient over-enrichment in substantial localized 

regions. The less impacted categories, “mesotrophic” (30–40), “lower mesotrophic” (20–

30), and “oligotrophic” (0–20), represent 9.49%, 4.74%, and 2.73% of the area, 

respectively, primarily concentrated in certain upstream or less disturbed segments. 

“Extremely hypereutrophic” conditions (80–100), though representing a smaller 

proportion (1.12%), signify critical areas of severe ecological imbalance. The aggregated 

distribution of TSI values, particularly the dominance of eutrophic and hypereutrophic 

conditions, strongly correlates with regions exhibiting elevated Chl-a concentrations (as 

shown in Fig. 9a), collectively pointing to a pervasive issue of anthropogenic nutrient 

loading impacting the aquatic ecosystems within the study domain. 

 

 

Figure 9. Spatial distribution of (a) Chl-a and (b) TSI values in the study area 

 

 

The provided histograms (Fig. 10) illustrate the distributions of Chlorophyll-a (Chl-a) 

and Trophic State Index (TSI) values within the study area. Chl-a concentrations 

(Fig. 10a) exhibit a highly right-skewed distribution, peaking at low values but extending 

significantly towards high concentrations (Max: 249.96 mg/m3, Mean: 28.76 mg/m3, 

Median: 18.46 mg/m3, Std: 33.48 mg/m3). This pronounced skewness suggests that while 

much of the area maintains low primary productivity, localized zones experience 
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considerable algal growth, indicative of potential eutrophication. Conversely, TSI values 

(Fig. 10b) present a more symmetrical, though still slightly right-skewed, distribution, 

with a prominent mode around 60 (Max: 84.86, Mean: 53.99, Median: 56.5, Std: 14.63). 

The close proximity of the mean and median, along with a lower standard deviation 

compared to Chl-a, signifies a more concentrated spread of trophic states. The prevalence 

of TSI values in the eutrophic range suggests that a substantial portion of the study area 

is characterized by elevated nutrient enrichment, reinforcing the implications drawn from 

the Chl-a distribution regarding the overall ecological health of the system. 

 

  

Figure 10. Histogram plots of (a) Chl-a and (b) TSI values in the study area 

 

 

Limitation 

Beyond the promising results achieved, this study also has several limitations that 

should be noted. Firstly, the field sampling dates (September 30 – October 2, 2024) do 

not perfectly align with the satellite imagery acquisition date (October 6, 2024), resulting 

in a temporal mismatch of 4–6 days. Therefore, this temporal gap means the estimated 

Chlorophyll a concentrations may not perfectly reflect the actual conditions at the time 

the satellite image was captured. Water quality parameters, especially Chlorophyll a 

concentration, are dynamic and can change due to wind, currents, tidal cycles, or 

biological processes within a few days. In this work, we proceeded based on the 

assumption that the overall concentration and spatial pattern of Chlorophyll a remained 

relatively stable across the study area during this short period. While this assumption is 

reasonable for a large-scale mapping objective, the mismatch introduces potential 

uncertainty or error into the empirical model, which could slightly reduce the overall 

accuracy of the chlorophyll a estimates compared to using a perfectly aligned image. 

Secondly, although the optimized MLR model demonstrated high predictive 

performance, achieving an R2 of 0.950 and an RMSE of 9.534 mg/m3 in the training phase, 

and an R2 of 0.944 and an RMSE of 9.366 mg/m3 in the testing phase, a notable limitation 

of this work is the constrained sample size of ground truth measurements utilized for both 

training (N = 27) and testing (N = 14). Moving forward, we plan to collect more samples 
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in the upcoming project to increase our data size. At that time, we can adopt a more robust 

evaluation method, such as the cross-validation approach. Furthermore, the MLR model 

assumes a linear and additive relationship between explanatory variables. This 

assumption can be problematic given that Chl-a concentrations exhibit non-linear and 

unstable characteristics, influenced by numerous anthropogenic and hydro-

meteorological factors. This mismatch can lead to poor or unreliable predictive 

performance when applied to complex real-world data. Additionally, MLR is less 

effective in handling complex data patterns and non-linear relationships. More 

sophisticated machine learning algorithms, such as Random Forest, Support Vector 

Machine, Neural Networks, and Deep Learning, are generally considered superior to 

traditional linear regression in addressing complex data patterns and non-linear 

relationships. Moreover, MLR is sensitive to variations across different regions or 

environmental conditions. Specifically, MLR models assume that training and testing 

data originate from the same distribution. However, data from diverse environmental 

conditions can impact the performance of empirical models and reduce accuracy when 

applied to other study areas. Finally, the performance of the MLR model is also dependent 

on atmospheric correction methods. If these methods are not robust enough to handle the 

complexity of in-water optical constituents, it could lead to uncertainties in reflectance 

data, consequently affecting the accuracy of Chl-a estimations. 

Conclusion 

This study successfully developed and optimized a Multiple Linear Regression (MLR) 

model for estimating and mapping Chlorophyll-a (Chl-a) concentrations and the Trophic 

State Index (TSI) in coastal aquaculture areas of Thai Binh province, Vietnam. 

Leveraging in situ Chl-a data, field spectral measurements, and Sentinel-2 satellite 

imagery, our methodology involved a comprehensive Pearson correlation analysis to 

identify optimal band ratios and combinations from synthetic Sentinel-2 surface 

reflectances. This rigorous selection process ensured that only variables with the highest 

correlation coefficients were utilized as inputs for the subsequent MLR model 

development. 

The optimized MLR model demonstrated high predictive performance, achieving an 

R2 of 0.950 and a root mean square error (RMSE) of 9.534 mg/m3 in the training phase, 

and an R2 of 0.944 and an RMSE of 9.366 mg/m3 in the testing phase. These robust 

results underscore the significant potential of Sentinel-2 data as a freely accessible, 

high-spatial-resolution resource for Chl-a research and monitoring. The application of 

the optimized model to a cloud-minimal Sentinel-2 image (acquired on October 06, 

2024) enabled the effective generation of spatial distribution maps for Chl-a and TSI 

across the study region. 

The resulting Chl-a and TSI maps provide crucial insights into the spatial 

heterogeneity and trophic states of coastal aquaculture zones, facilitating the 

identification of areas susceptible to eutrophication and supporting proactive strategies 

for mitigating the risks associated with harmful algal blooms. This research 

significantly enhances our understanding of aquatic environmental dynamics and 

contributes to the promotion of sustainable aquaculture practices. While the proposed 

method demonstrates high applicability within the study region, future research should 

focus on validating its broader applicability to water bodies with diverse optical 

properties and geographical conditions. 
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