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Abstract. Coastal aquaculture in Thai Binh province, Vietnam, is economically vital, yet its environmental
sustainability hinges on effective water quality monitoring. Chlorophyll-a (Chl-a) is a critical indicator of aquatic
ecosystem health, making its accurate assessment essential for managing these dynamic environments. This
study developed an optimized model for estimating Chl-a concentrations in coastal aquaculture areas, leveraging
in situ Chl-a data, field spectral measurements, and Sentinel-2 MultiSpectral Instrument (MSI) imagery. Various
evaluation metrics, including the coefficient of determination (R?), root mean square error (RMSE), and bias,
were utilized to assess the models’ performance. Relationships between in situ Chl-a and various spectral indices
were established, and an optimized Multiple Linear Regression (MLR) model was derived. This model was
subsequently applied to Sentinel-2 imagery to generate spatial Chl-a and Trophic State Index (TSI) distribution
maps. The optimized Chl-a model demonstrated high performance (R? > 0.94, low RMSE and bias), confirming
Sentinel-2’s significant potential as a free, high-spatial-resolution tool for Chl-a research. The resulting Chl-a and
TSI maps provide critical insights into the spatial heterogeneity and trophic states of coastal aquaculture zones,
facilitating the identification of areas susceptible to eutrophication. These findings enhance the understanding of
aquatic environmental dynamics and support sustainable aquaculture practices.
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Introduction

Eutrophication is recognized as the most significant ecological threat to the health of
aquatic ecosystems globally, serving as a primary driver of water quality degradation
(Chislock et al., 2013; Kakade et al., 2021; Khan et al., 2014; Vinh et al., 2022). This
phenomenon arises from increased nutrient inputs, which foster excessive algal and
macroalgal growth (Prepas and Charette, 2003). Although phytoplankton blooms are natural
components of aquatic ecosystems (Carstensen et al., 2015), their excessive proliferation can
severely reduce water clarity and deplete dissolved oxygen levels (Prepas and Charette,
2003). These blooms impair light penetration and nutrient access for submerged aquatic
vegetation, often leading to hypoxia and the subsequent death of aquatic fauna (Mishra et al.,
2022). This cascade, in turn, results in widespread degradation across the aquatic ecosystem.
Furthermore, these blooms are frequently dominated by cyanobacteria, which can produce
toxins (Sivonen, 1996). Therefore, to effectively address these issues, it is crucial to regularly
monitor the eutrophication and algal blooms over space and time.
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Chlorophyll a (Chl-a), the main photosynthetic pigment in phytoplankton, serves as an
effective parameter for monitoring the trophic status of aquatic systems. In addition, Chl-a
is the main indicator of phytoplankton abundance and biomass (Moses et al., 2009;
Wozniak et al., 2014; Zhang et al., 2014) and can be commonly used to assess the water
clarity, water quality and eutrophication level of a water body (Salem et al., 2017). Recent
trends reveal that elevated eutrophication levels in aquatic environments have been
attributed to a combination of factors, including climate change (J. Wang et al., 2015) and
excessive human-induced aquaculture activities (Du et al., 2024; Duan et al., 2009; Guo et
al., 2017; Lao et al., 2023a, b; Qin et al., 2022). Anthropogenic activities accelerate both
the rate and spatial extent of nitrogen and phosphorus loading into aquatic environments.
This increased nutrient loading consequently leads to the proliferation of algae in inland
water bodies, which is directly reflected in an increase in chlorophyll-a (Chl-a)
concentration (Smith, 2003; Wang et al., 2018). Given these dynamics, continuous
monitoring of Chl-a concentration and comprehensive studies on water eutrophication are
indispensable for understanding and managing current ecological conditions.

Traditional water quality monitoring based on in situ point sampling and laboratory
techniques have been used for decades and provide accurate, localized measurements of
chlorophyll-a at specific times and locations (Jang et al., 2024; Ogashawara et al., 2021).
However, conventional Chl-a assessment strategies are inherently labor-intensive, costly,
time-consuming, and lack the synoptic capability to capture algal bloom conditions across
broad spatial and temporal scales (Bertone et al., 2024; Duan et al., 2010; Li et al., 2024;
Ogashawara et al., 2021). Consequently, there has been an increasing demand for robust
and effective approaches to quantify chlorophyll-a concentration across various aquatic
systems. To address this monitoring requirement, satellite-based techniques have been
implemented and demonstrated as a crucial tool for aquatic environment monitoring,
including chlorophyll-a (Chl-a) surveillance (Akbarnejad Nesheli et al., 2024). Remote
sensing techniques offer several advantages for monitoring chlorophyll-a (Chl-a)
concentration. Specifically, satellite-derived Chl-a provides substantial spatial coverage,
surpassing the limitations of in situ measurements and enabling data acquisition from
inaccessible aquatic environments (Ogashawara et al., 2021; Salls et al., 2024).
Furthermore, remote sensing facilitates the reconstruction of historical trends through
past satellite imagery and offers rapid assessment of ecological water quality status
compared to laboratory-based techniques (Ha et al., 2017; Ogashawara et al., 2021).

Moderate resolution sensors, including the Medium Resolution Imaging Spectrometer
(MERIS) and Sentinel-3 OLCI (300 m), along with the Moderate Resolution Imaging
Spectroradiometer (MODIS) (250-1000 m), have been extensively utilized for inland
Chl-a estimation. These sensors are characterized by their frequent data acquisition
capabilities (1-3 days) and the inclusion of critical red and near-infrared spectral bands,
making them particularly well-suited for Chl-a detection in complex waters and at
elevated Chl-a concentrations (Salls et al., 2024). While effective in large inland lakes
(>1000 m wide), the limited spatial resolution of these sensors restricts their utility in
smaller lakes (<1000 m wide) due to potential contamination from stray light (Hestir et
al., 2015; Salls et al., 2024). To overcome these spatial limitations, efforts have focused
on finer-scale sensors originally designed for terrestrial applications, such as the Landsat
series (30 m) (Chen et al., 2024; Duan et al., 2007; Kuhn et al., 2019; Vinh et al., 2022).
However, these finer-scale sensors often lack the specific spectral bands required to
quantify the Chl-a red edge peak (Salls et al., 2024). A promising advancement in remote
sensing for water quality monitoring is offered by the Sentinel-2A and 2B (S2)
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MultiSpectral Instrument (MSI) sensors. Launched in 2015 and 2017, these sensors
provide a spatial resolution of 10-60 m and a combined rapid revisit frequency of 5 days.
Significantly, among their 13 spectral bands covering the blue to shortwave infrared
(SWIR) spectrum, three bands are dedicated to the red-edge region. Additionally,
Sentinel-2 features improved 12-bit radiometric digitization, which is particularly
beneficial for applications in low-radiance aquatic environments. These attributes make
S2 particularly valuable for monitoring water quality in small and shallow water bodies,
such as ponds and urban lakes (Jang et al., 2024; Li et al., 2024; Ogashawara et al., 2021;
Quang Vinh et al., 2024; Salls et al., 2024; Toth et al., 2021).

Remote sensing methods for determining Chlorophyll-a (Chl-a) concentration can be
broadly categorized into three main groups: physical-based, empirical, and machine
learning (ML) algorithms. Physical-based algorithms leverage bio-optical models to
simulate spectral radiance based on specific water constituents; however, despite their
high sensitivity, they are computationally demanding. While offering promising accuracy
and robustness, machine learning inherently carries the risk of overfitting during model
development (Cao et al., 2020; Chen et al., 2024; Li et al., 2021; Tran and Liou, 2022,
2024). Meanwhile, empirical algorithms utilize statistical techniques, including
regression, to correlate Chl-a levels with spectral reflectance data from the sensors’
narrow bands or various band ratios. Despite their generally lower sensitivity when
compared to bio-optical models, the straightforward development and ease of application
associated with empirical methods frequently make them a more viable option for
practical deployment (Akbarnejad Nesheli et al., 2024; Matthews, 2011). Given the
constraint of a relatively small dataset from field measurements (41 samples), this
research primarily employed empirical methods over other recognized methods for
determining Chlorophyll-a (Chl-a) concentration, prioritizing practicality over the
computational demands of physical-based algorithms or the overfitting risks of machine
learning. This decision was driven by a practical balance between model performance,
data constraints, and complexity.

Focusing on empirical methods for estimating Chl-a from remote images, the specific
techniques are band ratios/combinations, multi-band indices, and Multiple Linear
Regression (MLR) Johansen et al. (2022) observed that a significant proportion of
empirically based remote sensing algorithms could be distilled into a limited number of
general formulas. Methods including the Normalized Difference Chlorophyll Index (NDCI),
two-band algorithms, three-band algorithms, Chlorophyll Index (CI), and Maximum
Chlorophyll Index (MCI) are particularly notable. For decades, these algorithms have been
instrumental in deriving Chl-a concentrations from a wide array of satellite imagers
(Johansen et al., 2024). Simultaneously, multiple linear regression (MLR) offers distinct
advantages due to its inherent simplicity and interpretability (Tran and Liou, 2024). This
model characteristic facilitates an intuitive understanding of inter-variable relationships,
thereby providing clear insight into how independent variables exert influence on the
dependent variable (Jang et al., 2024; Kim et al., 2020; Prieto et al., 2017). Furthermore, the
incorporation of diverse band ratio combinations has been shown in previous investigations
to significantly enhance the performance capability of Chl-a estimation models in complex
aquatic environments (Kim et al., 2016; Matus-Hernandez et al., 2018).

The Coastal Region of Thai Binh Province, Vietnam, which is the focus of this study,
encompasses numerous small ponds primarily used for aquaculture. As aquaculture is one
of the most prominent and rapidly developing economic sectors and a significant
aquaculture hub in Thai Binh province, investigating eutrophication is critical and
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providing early warnings is helpful in preventing fish mortality due to oxygen depletion.
Consequently, the Sentinel-2 satellite data is well-suited for this purpose, offering
appropriate spatial, temporal, and spectral resolutions. The primary objective of this
research to develop an optimized model for Chl-a estimation in the Coastal Region of
Thai Binh Province, Vietnam. To achieve this, the research focused on establishing
correlations between in situ Chl-a measurements and a variety of spectral band ratios and
multi-band indices. Subsequently, multiple linear regression (MLR) was employed to
effectively combine these parameters and derive an optimal Chl-a estimation model. This
optimized model was then applied to Sentinel-2 MSI imagery, captured concurrently with
the in situ survey, to generate spatial Chl-a and Trophic State Index (TSI) distribution
maps for the study region.

Data and methods
Study area

Comprising the Tien Hai and Thai Thuy districts, the study region is located in the
eastern part of Thai Binh province, Vietnam, characterized by a long coastline bordering
the East Sea (Fig. /). This region holds a strategic geographical position, offering
significant potential for marine economic development, while also providing favorable
conditions for agriculture and, notably, aquaculture. With a combined total area of
approximately 499 km?, this research region is home to around 470,000 people
(https://danso.info/dan-so-thai-binh/). The relatively high population density reflects the
concentration of economic and social activities here. The study region is characterized by
a tropical monsoon climate, heavily influenced by its coastal proximity. The average
annual temperature is about 23.40C, creating warm conditions conducive to various types
of production. Annual rainfall is quite high, ranging from 1600 to 1700 mm, primarily
concentrated in the summer months (Tran et al., 2017). An average of 1600 to 1700
sunshine hours per year provides ample energy for crops and other economic activities
(Tran et al., 2017). Winters here are typically colder and drier, lasting from November of
the previous year to April of the following year. Notably, the study area also boasts
significant mangrove forest coverage, playing a crucial role in coastal dike protection,
erosion control, and climate regulation for the entire region.

As a prominent and rapidly developing economic sector in the research area,
aquaculture renders it a key aquaculture hub in Thai Binh province. The total area
dedicated to aquaculture is extensive, covering thousands of hectares, including diverse
types such as freshwater, brackish water, and clam farming. The region particularly
focuses on promoting high-tech shrimp farming, implementing advanced models like
circular pond systems to boost productivity while minimizing disease risks. Proactive
management in the production and supply of local seedstock is also a crucial factor,
ensuring the quality of fry and reducing production costs. Thanks to its favorable natural
conditions and investment in development, the aquaculture sector has significantly
contributed to the region’s overall agricultural output, providing stable incomes and
improving the livelihoods of local residents. Given our research area’s prevalence of
small ponds used for fish and shrimp farming, eutrophication studies are crucial. These
studies facilitate early warning systems, thereby preventing fish mortality due to oxygen
depletion. Consequently, Sentinel-2 satellite data is well-suited for this research, offering
appropriate spatial, temporal, and spectral resolutions.
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Figure 1. Location of the study area and field survey sampling points
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Field spectral measurements and water sampling data

Forty-two in situ samples were obtained from ponds and lakes within the study area
over a three-day period (Sep 30 — Oct 2, 2024) (Fig. ). However, an anomaly was
identified following the evaluation of sample TB22’s spectral reflectance curve.
Consequently, to ensure the highest level of accuracy, data from this sample (TB22) will
be excluded from all subsequent calculations.

In situ hyperspectral data from the spectroradiometer

At each measurement point, field spectra were collected with a handheld
spectroradiometer (PSR-2500), operating within a spectral range from 350 nm to
2500 nm, at a 1 nm spectral resolution (Manufacturer: Spectral Evolution, USA).

Calibration and Spectral Range: Prior to each measurement, white light balancing was
performed to ensure accuracy and to serve as a radiometric calibration step for the
spectroradiometer. Besides, at each field site, the water reflectance spectrum was
measured three times and averaged to reduce variability. Although the PSR-2500
spectroradiometer is capable of measuring spectra from 350 nm to 2500 nm, at a 1 nm
spectral resolution, only the 400-900 nm range was used in this study to align with
Sentinel-2’s spectral bands, effectively filtering out unusable data.

Spectral Resampling: The recorded spectral data were then transferred to a computer
and processed using specialized software to analyze the reflectance spectra of different
water bodies within the study area. A crucial step was the spectral resampling (simulation)
of Sentinel-2 reflectances from field spectra. Specifically, spectroradiometer-measured
reflectances (in situ hyperspectral data) were spectrally averaged based on the central
waveband locations and wavelength ranges of the Sentinel-2 bands (e.g., Band 2, 3, 4, 5,
6, 7, 8, and 8a) to simulate the surface reflectances (Rys) that the Sentinel-2 satellite sensor
would record. This process transforms the high-resolution field data into Synthetic
Sentinel-2 surface reflectances that are directly comparable to the satellite imagery.

Exclusion Criteria for Spectral Points: rigorous exclusion criteria were applied to
maintain data quality. Field-measured spectral points were visually and statistically screened
for quality assurance. Any data point exhibiting extreme spectral abnormalities (e.g., sudden
spikes or drops inconsistent with known water properties) or displaying substantial
discrepancies compared to the majority of observations was excluded from the dataset. This
step ensured that only representative and high-quality in situ data were utilized.

Laboratory analyses for determination of chlorophyll-a concentrations

At each sampling site, water samples were collected in clean bottles for laboratory
analysis. In this study, chlorophyll-a (Chl-a) was the primary chemical parameter selected
for measurement and evaluation. Chlorophyll-a (Chl-a) in water samples was calculated
using the standard methodology described by Eaton et al. (1995). An initial step involved
the immediate filtration of water samples post-collection, utilizing a filtration unit. The
volume filtered ranged from 0.1 L to 2 L, depending on the algal concentration. Prior to
completing the filtration process, 2 mL of 1% MgCO:s solution was added to preserve the
sample. The filter was then transferred to a tissue grinder, where 2—-3 mL of 90% acetone
solution was added. This solution was prepared by mixing acetone with saturated MgCOs
solution (prepared by dissolving 1 g of fine MgCOs powder in 100 mL of distilled water)
at a 9:1 ratio. The sample was ground for 1 min at 500 rpm. The homogenized sample
was then transferred into a centrifuge tube, rinsed with acetone solution, and the volume
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was adjusted to 10 mL with acetone. The sample was stored in the dark at 4°C for at least
2 h. Subsequently, centrifugation was performed for 20 min at 3000 rpm, after which only
the clear supernatant was retained and any remaining residues were discarded.
Absorbance measurements were then conducted at wavelengths of 664, 665, and 750 nm,
both before and after the acidification process. For acidification, 3 mL of the sample was
transferred to a cuvette, and absorbance was measured. Next, 0.1 mL of 0.1 M HCI was
introduced, gently mixed, and after 90 s, the absorbance was measured again. Finally, the
chlorophyll-a concentration was calculated using the following formula:

26.7x(664b—-665a)xV,
V,xL

3

mg/m (Eq.1)

Chlorophyll —a =

where: 664b: Absorbance measured at 664 nm (corrected by subtracting the absorbance
at 750 nm) before acidification; 665a: Absorbance measured at 665 nm (corrected by
subtracting the absorbance at 750 nm) after acidification; Vi: Volume of the extract; V2:
Volume of the filtered sample; and L: Path length of the cuvette.

Satellite data and image processing

To ensure the highest possible accuracy in estimating Chlorophyll a, field sampling
should be conducted precisely at the time the satellite passes over and captures imagery of
the study area. However, in practice, due to limitations in personnel and equipment, the
timing of field measurements often does not coincide with the satellite overpass.
Furthermore, even when sampling is conducted at the same time as the satellite overpass,
the resulting imagery may be unusable due to cloud cover or haze. In our study, field
sampling was carried out over a three-day period (September 30, October 1, and October
2, 2024), during which a total of 41 samples were collected. However, upon reviewing
satellite imagery acquired around the time of field survey (sampling), we found that the
available images were significantly affected by cloud cover (Fig. 2). Fortunately, the
Sentinel-2 image acquired on October 6, 2024, was of sufficiently high quality. Therefore,
this image was selected for further analysis of mapping the distribution of chlorophyll-a
concentration over the study area. The Sentinel-2 imagery acquired on October 6, 2024,
was employed in this study. This decision was based on the underlying assumption
regarding the overall concentration and spatial pattern of chlorophyll-a remained relatively
stable over a period of several days, despite the image not being acquired at the exact time
of field sampling. While acknowledging that this assumption may not hold true across the
entire region under investigation because of dynamic water circulation, employing this
imagery is considered acceptable for the specific objectives of this research.

More specifically, in this work a single scene of Sentinel-2 imagery (Level-1C) was
acquired over the study area at approximately 10:20 local time on 06 October 2024,
during a period when lake water composition in the region was relatively stable. The
image was cloud-free and of high quality. In the present study, Sentinel-2 Level-1C (L1C)
imagery was obtained from Google Earth Engine. This platform provides top-of-
atmosphere (TOA) reflectance data that has undergone orthorectification, georeferencing,
and radiometric calibration. The data is projected in UTM with the WGS84 datum, and
is available at spatial resolutions of 10, 20, and 60 m (7able 1). The Sentinel-2 imagery
underwent resampling to a 10 m spatial resolution via the nearest neighbor method to
preserve radiometric integrity.
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Figure 2. Satellite imagery acquired around the time of field survey

Table 1. Description of Sentinel-2 multispectral instrument (MSI)

Band | Wavelength range (nm) |Central wavelength (nm)|Spatial resolution (m)| Description
B1 433-453 443 60 Aerosol
B2 458-523 490 10 Blue
B3 543-578 560 10 Green
B4 650-680 665 10 Red
BS5 698-713 705 20 Red Edge 1
B6 734748 740 20 Red Edge 2
B7 773-793 783 20 Red Edge 3
BS 785-900 842 10 NIR
B8a 855-875 865 20 Red Edge 4
B9 930-950 940 60 Water vapor
B10 1365-1385 1375 60 Cirrus
B11 1565-1655 1610 20 SWIRI1
B12 2100-2280 2190 20 SWIR2

Sentinel-2 data can be processed using a variety of atmospheric correction algorithms,
notably Sen2cor and ACOLITE. Nonetheless, the Sen2cor atmospheric correction
process was not designed for water bodies (Toming et al., 2016) and has been
demonstrated to be inappropriate for estimating reflectances within the Near-Infrared
(NIR) region. While ACOLITE, an atmospheric correction method specifically
developed for water bodies (Vanhellemont and Ruddick, 2016), offered improved NIR
reflectance estimations, its performance in the visible region was not consistently stable
or accurate (Martins et al., 2017). Therefore, the Empirical Line Method (ELM) was
chosen due to its established precision and successful application in previous studies,
particularly for water bodies (Ha et al., 2017; Smith and Milton, 1999). The ELM assumes
that the atmospheric conditions (aerosols, water vapor, etc.) are spatially constant across
the entire study area. This allows a single set of linear regression coefficients, derived
from the in situ sites, to be applied uniformly to the entire image. The ELM functions by
removing atmospheric effects through the establishment of a statistical relationship
between satellite data and ground measurements. Specifically, a linear regression is
created for each individual Sentinel-2 band. This regression is established using two key
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inputs: the Top-Of-Atmosphere (TOA) reflectance (taken directly from the satellite image
pixel) and the co-located field-measured reflectance (the actual spectral data recorded on
the ground). In this research, these linear functions were developed using the in situ
reflectance points, and their corresponding Sentinel-2 TOA pixel values (acquired on
October 6, 2024). Finally, the resulting linear regression function is applied to convert the
TOA reflectance of the entire Sentinel-2 image into accurate surface reflectance,
effectively removing the influence of the atmosphere. The primary constraints of the
ELM stem from its direct reliance on the quality of the reference measurements.
Specifically, the accuracy of the ELM is entirely dependent on the quality and
representativeness of the in situ field-measured reflectance data. A key practical
limitation arising from this dependency is the necessary exclusion of spectral points that
show significant discrepancies from the majority of observations. This rigorous selection
process is crucial, as failure to identify and manually remove poor quality or outlier field
data could severely compromise the final atmospheric correction results.

Algorithms for estimation of chlorophyll a

This investigation sought to construct an optimized model for quantifying chlorophyll-
a (Chl-a) concentrations within the coastal region of Thai Binh Province, Vietnam. The
methodology involved establishing a robust correlation between in situ Chl-a
measurements and an array of remote sensing parameters, specifically various spectral
band ratios and multi-band indices (7able 2). Following this, multiple linear regression
(MLR) analysis was employed to synergistically integrate these independent variables,
thereby yielding a refined Chl-a estimation model. This meticulously optimized model
was subsequently applied to concurrent Sentinel-2 MSI satellite imagery to produce a
comprehensive spatial distribution map of Chl-a across the designated study region.

Pearson correlation analysis

The statistical method is widely recognized as the preferred approach for establishing
a correlation between various band combinations and in situ Chlorophyll-a concentration
(Ha et al., 2017; Vinh et al., 2022). In the present study, the Pearson correlation analysis
was conducted between in situ Chlorophyll measurements and the possible bands/band
combinations (including single-band model, two-band ratios, and other band
combinations/indices) derived from the synthetic Sentinel-2 surface reflectances. A great
number of indices and band combinations have been developed for the determination of
Chl-a. However, by reviewing previous studies, we selected those indices and band
combinations that are frequently employed and compatible with the spectral channels of
Sentinel 2 (Table 2). This analysis aimed to thoroughly examine the relationship and
identify the suitable band ratio or combination for accurate Chlorophyll estimation.

Multivariate regression analyses

Based on the results of the Pearson correlation analysis, we selected a subset of
variables with the highest correlation coefficient (r) from each category (single-band
model, two-band ratio, and band combinations/indices). These selected variables were
then used as input variables in the subsequent Multiple Linear Regression (MLR) to
develop different models in estimating Chlorophyll-a and find an optimal model, which
subsequently applied to a Sentinel-2 imagery to create a spatial distribution map of Chl-
a across the study region.
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Table 2. Different common spectral indices for estimating Chl-a concentrations based on
Sentinel 2-bands

Band combination Algorithm name Equation Reference
Green-Blue Ratio Green-Blue Rs(560)/R.5(490) Ha et al. (2017)
Green-Red Ratio Green-Red R:s(560)/R.5(665) Ha et al. (2017)
Blue-Green Ratio Blue-Green R:5(490)/R.5(560) Moses et al. (2009)

o Duan et al. (2012);
"é VNIR1-Red Ratio VNIR1-Red R:s(705)/R.5(665) Gilerson et al. (2010);
= Gurlin et al. (2011)
f-f VNIR2-Red Ratio VNIR2-Red R:s(740)/R.5(665) Gitelson et al. (2008)
E VNIR2-VNIR1 Ratio | VNIR2-VNIR1 Rys(740)/R.s(705) Lietal. (2021)
. Duan et al. (2007); Téth
NIRn-Red Ratio NIRn-Red R:s(865)/R.5(665) etal. (2021)
VNIR1-Green Ratio VNIR1-Green R:s(705)/R.5(560) Cairo et al. (2019)
VNIR2-Green Ratio VNIR2-Green R:s(740)/R.5(560) Cairo et al. (2019)
. . (Ris(705) — . .
ittt IR T R 1 R ey
R:5(665))
Florescence Line
Height FLH Rys(705) — Rys(665) Zhao et al. (2022)
Advanced Remote (R(705) +

Sensing Sediment | Advanced RSSP Pan et al. (2025)

R.(665))/(Res(705)/Ro(665))

Parameter
» i _ *
8 Water thorop hyll-a Advanced WCI (Rrs(665) — Ris(705))/(2 Pan et al. (2025)
= index R:s(705))
Z Ris(560) — (Rrs(443) + (560 — o
S| Chlorophyll Index Chll 443)/(665 — 443) * (Riy(665) | T ete‘iléle(ozlozl)é)smlth
E — Ris(443))) :
e
= . (Rrs(705) — Rs(665)) — ((705
8 Ma“m“r;r‘lge})‘(lomphy” MCI - 665)/(740 — 665) * Gower et al. (2005)
g (Rrs(740) _ Rrs(665)))
/M -((Rrs(665) — R5(560)] — Akbarnejad Nesheli et
Cyanobacteria Index CI ((665 — 560)/(705 — 560) * | al. (2024); Wynne et al.
(Ris(705) — Ris(560)))) (2008)
(Res(705) — Ris(665)) — ((705 | Akbarnejad Nesheli et
Maximum Peak Height MPH — 665)/(865 — 665) * al. (2024); Matthews et
(Ris(865) — Ris(665))) al. (2012)
(Res(865) — Akbarnejad Nesheli et
S“rfacelﬁégef Bloom SABI Rrs(665))/(Res(490) al. (2024); Alawadi
+ R5(560)) (2010)

Multiple Linear Regression (MLR) stands as a widely employed statistical
methodology for examining the intricate connections between a single dependent variable
and a collection of two or more independent variables. This particular analytical approach
fundamentally operates under the premise that the relationships among the various
predictor variables are both linear and additive (Jang et al., 2024). Essentially, enables
the construction of a mathematical framework or an approximating equation capable of
characterizing a real-world phenomenon. Notwithstanding their fundamental
straightforwardness, MLR models have garnered widespread adoption and consistently
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delivered favorable outcomes across diverse research endeavors (Jang et al., 2024; Prieto
et al., 2017; Quang Vinh et al., 2024; Sousa et al., 2007). The association linking the
dependent variable (Y) and the predictor variables (X1, Xa, ..., Xn) is generally expressed
by the following equation (Jang et al., 2024; Prieto et al., 2017):

Y=a,+aX +ta,X,+.+a.X, (Eq.2)

where ao denotes the constant term, while ai, a»,. . ., ax represent the regression
coefficients. These coefficients, derived via the least-squares method, quantify the
magnitude and direction of each explanatory variable’s impact on the target variable, Y
(Chlorophyll-a concentration). The independent variables (Xk) encompass various
factors, including simulated Sentinel-2-based reflectance, two-band ratios, and other band
combinations or indices.

In the present study, a total of 41 in situ samples (Chlorophyll-a and independent
variables from simulated Sentinel-2 reflectance measurements) were randomly divided
into two parts: the training dataset (65%) (N =27) for model calibration and the test
dataset (35%) (N = 14) for model validation. The calibration dataset exhibited a more
extensive chlorophyll range than its validation counterpart, which ensured comprehensive
coverage and enhanced the applicability of the chlorophyll estimation model.

Performance assessment

Statistical analyses were conducted using various evaluation metrics such as
coefficient of determination (R?), root mean square error (RMSE), and bias (systematic
error) to assess the performance of developed models. The optimal statistical model for
chlorophyll estimation was subsequently selected based on these metrics. R? serves as a
key indicator of a model’s goodness of fit, representing the ratio of variance in the target
variable that can be predicted from the explanatory variables. Its value, ranging from 0 to
1, reflects the proximity of the regression line to the actual data points; a higher R? value
suggests a more accurate model fit. Besides, the RMSE serves as an indicator of the
typical magnitude of the prediction deviations, with reduced RMSE values signifying
enhanced model performance. When the primary objective of a model is prediction,
RMSE is considered a crucial criterion for assessing its accuracy. Bias quantifies the
systematic discrepancy observed between the estimated parameter and its actual
measurement. A zero bias indicates an unbiased estimator. Generally, values approaching
zero signify superior model performance. R?, RMSE and Bias were calculated by the
following formula (Akbarnejad Nesheli et al., 2024):

R :1——271 v 2 )2 (Eq.3)
Zi=1 (yi _yi)
I .
RMSE = J; 2 =) (Eq.4)
R el .
Bias=—) . (= 3) (Eq.5)
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where y; is the i measured chlorophyll-a value, ¥, 1s the i predicted chlorophyll-a
value, y is the average value of observed values, and 7 is the number of samples. In the

present work, the training and testing process was performed employing the Linear
Regression algorithm from the Scikit-learn package with Python programing language.
Among the chlorophyll estimation models that were developed, the most appropriate
model was chosen for application to a Sentinel-2 image acquired on October 6, 2024,
with the aim of enhancing the understanding of the spatial variability of chlorophyll
across the study area.

Estimation of trophic state index (TSI)

Various mathematical methodologies are employed for the assessment of lake
eutrophication. Among these, the Trophic State Index (TSI), as conceptualized by Carlson
(1977), is widely recognized as the most acceptable method for evaluating lake
eutrophication (Duan et al., 2007; Xing et al., 2005). The TSI derives continuous values,
typically scaled from 0 to 100, for lakes, primarily utilizing parameters such as Secchi
disk transparency, chlorophyll-a (Chl-a) concentration, or total phosphorus content.
Conceptually, the TSI quantifies the “greenness” of a lake, reflecting the concentration
of algal biomass within its water column. However, Carlson’s original TSI has been
criticized for neglecting the influence of factors other than phytoplankton, such as water
color, dissolved matter, and suspended matter, on Secchi disk transparency (Duan et al.,
2007; Zhang et al., 2003). The aforementioned limitation was subsequently resolved with
the introduction of the modified Carlson’s TSIm (Aizaki et al., 1981). It is noted that
methods for assessing lake eutrophication types are adaptable to diverse geographical
locations, environmental conditions, and human activities.

This work utilized Shu’s modified model, an adaptation of the Trophic State Index
Method (TSIm), to compute the trophic state index and assess the eutrophication. The
calculation followed by Shu’s method (Duan et al., 2007) as follows:

_10x In(chla)
TSI,,(chla) =10 (2'46+—ln(2.5) j (Eq.6)

where chla means Chl-a content (mg/m?). Each segment of the 0-100 scale indicated a
different trophic state: oligotrophic (0-20), lower mesotrophic (20-30), mesotrophic (30—
40), upper-mesotrophic (40-50), eutrophic (50-70), hypereutrophic (70-80), and
extremely hypereutrophic (80-100).

Results and discussion
Chlorophyll status and in situ reflectance properties

Chlorophyll-a, a key phytoplankton pigment, is universally present across all algal groups
inhabiting inland aquatic environments. The distribution of Chlorophyll-a concentrations,
derived from 41 field measurements, is presented as a violin plot in Figure 3. This plot
illustrates the range of observed values, with a minimum concentration of 1 mg/m? and a
maximum of 197.0 mg/m?. Descriptive statistics further indicate a mean Chla concentration
of 27.63 mg/m* and a median of 12.0 mg/m?. The computed standard deviation of
39.84 mg/m? underscores the significant spread inherent in the Chla measurement data.
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Figure 3. Violin plot of field-measured Chl-a concentrations in the coastal area of Thai Binh
Province

Figure 4 presents the in situ reflectance spectra of water bodies located in the coastal
area of Thai Binh province, corresponding to 41 samples exhibiting varying chlorophyll-
a concentrations. In the blue spectral region, the acquired field-measured reflectance
spectrum consistently exhibits low values at wavelengths under 520 nm. This observed
decrease in reflectance is principally a consequence of the synergistic absorption by
various water constituents, including algal pigments (e.g., chlorophyll-a) and colored
dissolved organic matter (CDOM) (Gitelson et al., 1993). Within the spectral range of
approximately 450-460 nm, an absorption feature is observed, which is attributable to
phytoplankton pigments (Duan et al., 2007). A notable increase in reflectance was
observed within the green spectral region, culminating in a maximum value around
570 nm. This spectral peak 1s likely a consequence of reduced absorption by
phytoplankton pigments at this wavelength, where the reflectance signal was
predominantly controlled by non-algal particles (NAP) and CDOM (Gurlin et al., 2011).
Two distinct reflectance minima, evident at approximately 638 nm and 675 nm in the red
and near-infrared (NIR) spectral regions, align with the primary absorption peaks of
phytoplankton pigments (Gitelson and Kondratyev, 1991). The reduced reflectance
around 638 nm is attributed to absorption by cianopycocyanine, while the minimum
around 675 nm is associated with the strong absorption of chlorophyll-a (Duan et al.,
2007; Gurlin et al., 2011). Within the 690-720 nm wavelength range, a prominent
reflectance peak is observed. This peak is attributed to a localized minimum in the
cumulative absorption of light by both phytoplankton pigments and water (Duan et al.,
2007; Gitelson, 1992; Gurlin et al., 2011).

Performance of the algorithms to estimate the chlorophyll
Single-band model for chlorophyll estimation

The graph illustrates a fluctuating pattern in the correlation coefficient (r) between
chlorophyll concentrations and remote-sensing reflectance (Rrs(A)) across the observed
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spectrum, with r values varying from -0.018 to 0.417 (N =41) assessment (Fig. 5). It
begins with a very weak or negative correlation in the Aerosol band (B1, -0.018), then
increases in the Blue/Green range (B2, 0.085; B3, 0.178). Subsequently, there is a sharp
drop in correlation in the red range (B4, -0.007). Following this dip, the correlation
coefficient rises significantly into a strong positive correlation in the red-edge range,
starting with Red Edge 1 band (BS5, 0.306), reaching its maximum in Red Edge 2 (B6,
0.417), and remaining high through Red Edge 3 (B7, 0.406), NIR (B8, 0.393), and Red
Edge 4 (B8a, 0.383). This overall pattern clearly indicates that the variable being
correlated has a substantially stronger positive relationship with the data captured in the
near-infrared spectrum compared to the visible light spectrum. Additionally, the findings
underscore the limitations of a single-band approach in achieving accurate Chlorophyll
assessment (Fig. 5).

60

B1 B2 B3 B4 B5 B6 B7 B8 B8a

50 4

Iy

Reflectance (%)
w
&

Wave Length (nm)

Figure 4. In situ reflectance spectra over the coastal region of Thai Binh province

Two-band ratio model for chlorophyll estimation

Further analyses were performed utilizing nine different band ratios, which are widely
recognized for their efficacy in estimating chlorophyll-a concentration (Chl-a), including,
but not limited to, Green-Blue (Rrs(560)/Rrs(490)) (Ha et al., 2017), Green-Red
(Rrs(560)/Rrs(665)) (Ha et al., 2017), Blue-Green (Rrs(490)/Rrs(560)) (Moses et al.,
2009), VNIR1-Red (Rrs(705)/Rrs(665)) (Duan et al., 2012; Gilerson et al., 2010; Gitelson
et al., 2008; Gurlin et al., 2011), VNIR2-Red (Rrs(740)/Rrs(665)) (Gitelson et al., 2008),
VNIR2-VNIR1 (Rrs(740)/Rrs(705)) (Li et al., 2021), NIRn-Red (Rrs(865)/Rrs(665))
(Duan et al., 2007; Toth et al., 2021), VNIR1-Green (Rrs(705)/Rrs(560)) (Cairo et al.,
2019), and VNIR2-Green (Rrs(740)/Rrs(560)) (Cairo et al., 2019). Figure 6 presents
scatter plots of Chl-a against various band ratios. As illustrated in Figure 6, the analysis
demonstrates the highest correlation between chlorophyll-a concentration (Chl-a) and the
VNIR1-Red (Rrs(705)/Rrs(665)) band ratio (Gurlin et al., 2011), yielding a remarkable
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correlation coefficient of r =0.945 (p <0.001). This specific ratio incorporates the Red
Edge 1 (VNIRI, B5) and red (B4) spectral bands. Similarly, VNIR2-Red
(Rrs(740)/Rrs(665)) (Gitelson et al., 2008) also exhibits a strong correlation (r = 0.923,
p <0.001). These findings underscore the critical role of the red and red-edge spectral
regions in Chl-a estimation, aligning with the known spectral properties of chlorophyll.
While other ratios also show statistically significant correlations, their strength is notably
lower. The data collectively suggests that ratios incorporating red and NIR bands are an
effective way for Chl-a retrieval, leveraging the unique spectral response of chlorophyll.
Nevertheless, it is crucial to acknowledge that Chl-a values within the study area are
subject to the influence of various interacting factors. Therefore, sole reliance on this
single band ratio may not provide sufficient accuracy for the construction of a robust Chl-
a estimation model. To enhance the precision of Chl-a estimation, it is imperative to
account for the impact of these additional influencing factors, which can be elucidated
through the comprehensive analysis of diverse band ratios.

0.5 - Bl B2 B3 B4 B5 B6 B7 B8 B8a

0.417

0.4 1

o
w

Correlation coefficient (r)
o
N

o©
-

0.0 1

400 500 600 700 800 900
Wavelength (nm)

Figure 5. Correlation between chlorophyll-a and single band spectral

Band combinations or indices for chlorophyll estimation

In the present research, we also explored the suitability of different band combinations
or indices commonly employed for estimating Chla (Gitelson et al., 2011; Gower et al.,
2005; Mishra and Mishra, 2012; Quang Vinh et al., 2024; Yang et al., 2010) (7able 2).
Figure 7 presents a comprehensive analysis of the correlation between field-measured
Chlorophyll-a (Chla) concentrations and a diverse set of three-band remote sensing
models or spectral indices. Each scatter plot, labeled (a-1), depicts this relationship for a
specific model or index, accompanied by its Pearson correlation coefficient (r) and
corresponding p-value (p), offering insights into the strength and statistical significance
of these relationships. The scatter plots visually illustrate the data distribution and the fit
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of each model, allowing for a direct assessment of each method’s potential accuracy in
estimating Chlorophyll-a concentrations.
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Figure 6. Correlation between chlorophyll-a and band ratios models (N = 41): (a) Green-Blue;
(b) Green-Red; (c) Blue-Green; (d) VNIRI-Red; (e) VNIR2-Red; (f) VNIR2-VNIRI; (g) NIRn-
Red; (h) VNIRI-Green, and (i) VNIR2-Green

Overall, several models exhibit robust correlations with Chla concentrations. Notably,
the Normalized Difference Chlorophyll Index (NDCI) (a) model yields the highest
positive correlation coefficient (r=0.91, p <0.001), demonstrating a strong linear
relationship where increasing index values correspond to a marked increase in Chla
concentration. Similarly, the Florescence Line Height (FLH) (b) withr = 0.827, p < 0.001
and Cyanobacteria Index (CI) (f) with r=0.809, p < 0.001 also demonstrate significant
positive correlations, reinforcing their potential for Chla estimation. Conversely,
Advanced WCI (d) exhibits a strong negative correlation (r=- 0.867, p <0.001),
implying that Chla concentration increases as this index’s value decreases, showcasing
an inverse yet highly significant relationship. However, not all models perform with equal
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strength. Advanced RSSP (c) displays a weak and statistically insignificant correlation
(r=-0.126, p=0.4307), suggesting it is not a reliable predictor for Chla concentration
within this dataset. Meanwhile, models such as Maximum Chlorophyll Index (MCI) (e)
(r=0.532, p <0.001), Maximum Peak Height (MPH) (g) (r = 0.743, p <0.001), Surface
Algal Bloom Index (SABI) (h) (r =0.736, p <0.001), and Chlorophyll Index (Chl-I) (i)
(r=0.564, p <0.001) all demonstrate statistically significant correlations, though some
are less robust than the leading indicators. In summary, Figure 7 reveals a wide spectrum
of correlations among the methods, ranging from strong positive and negative
relationships to weak and non-significant ones. The methods NDCI, FLH, CI and
Advanced WCI consistently demonstrate robust and statistically significant correlations,
suggesting strong predictive or associative power. The remaining methods exhibit weaker
yet still significant correlations, with the exception of Advanced RSSP, which does not
show a statistically meaningful relationship (r =- 0.126, p = 0.4307).
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Figure 7. Correlation between Chl-a and band combinations or indices (N = 41): (a) NDCI (b)
FLH; (c) Advanced RSSP; (d) Advanced WCI; (e) MCI; (f) CI; (g) MPH, (h) SABI; and (i)
Chl-1
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Multivariate regression analyses

The interplay between Chlorophyll-a (Chl-a) concentrations and various spectral band
ratios and multi-band indices was explored through the application of multivariate
regression analyses. Based on the results of the Pearson correlation analysis, we selected
a subset of variables with the highest correlation coefficient (r) from each category
(single-band model, two-band ratio, and band combinations/indices). These selected
variables were then used as input variables in the subsequent Multiple Linear Regression
(MLR) to develop different models (7able 3) in estimating Chlorophyll-a and find an
optimal model, which subsequently applied to a Sentinel-2 imagery to create a spatial
distribution map of Chl-a across the study area.

Table 3 systematically outlines the distinct sets of independent variables, also referred
to as features or predictors, employed in three separate Multiple Linear Regression
(MLR) models developed for the purpose of estimating Chlorophyll-a concentrations.
Specifically, Model 1 is characterized by the selection of VNIR1, VNIR2, VNIR3, and
NIR as its predictive variables. In contrast, Model 2 employs a distinct combination of
predictors, namely VNIRI1-Red, VNIR2-Red, and NIRn-Red. Finally, Model 3 is
constructed utilizing VNIR1, VNIR2, NDCI, and VNIR1-Red as its input variables. The
differentiation in predictor sets among these models signifies an investigative approach
to assess the individual and combined contributions of various spectral bands and indices
towards accurately estimating Chlorophyll-a concentrations through MLR techniques.

Table 4 and Figure 8 provide a comprehensive overview of the performance of three
distinct MLR models (Model 1, Model 2, and Model 3) with diverse input variables in
estimating Chlorophyll-a concentrations. The table presents key statistical metrics,
including the R?, r, RMSE, and Bias, for both the training and validation phases of each
model. These metrics are crucial for assessing model fit, predictive accuracy, and
generalization capability. Moreover, the observed Chl-a concentrations within both
datasets encompassed a broad range, from low to high values, thereby enhancing the
model’s applicability across diverse conditions.

Table 3. Chlorophyll-a estimation MLR models with diverse input variables

Model name Features/predictors
Model 1 VNIRI, VNIR2, VNIR3, and NIR
Model 2 VNIR1-Red, VNIR2-Red, and NIRn-Red
Model 3 VNIRI, VNIR2, NDCI, and VNIR1-Red

Table 4. Different MLR models in estimating Chl-a level (RMSE and bias are in mg/m’)

Training phase (N = 27) Testing phase (N = 14)
R? r RMSE Bias R? r RMSE Bias
Model 1 0.792 0.89 19.385 <0.001 0.773 0.879 22.731 9.241
Model 2 0.896 0.946 13.745 <0.001 0.937 0.968 10.664 5.508
Model 3 0.950 0.975 9.534 <0.001 0.944 0.972 9.366 3.028

Model

The left column of Figure 9(a, c, e) illustrates the performance of the models during
the training phase (N = 27), with corresponding statistics presented within each subplot.
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During the training phase, visually, all three MLR models demonstrated a strong fit to the
training data, with data points clustering relatively closely around the 1:1 line (dashed
black line) and the regression line (solid magenta line). Model 1 (Fig. 8a) achieved an R?
0f 0.792 and an r of 0.89, with an RMSE of 19.385 mg/m?>. Model 2 (Fig. 8c) showed a
noticeable improvement, yielding an R? of 0.896 and an r of 0.946, alongside a reduced
RMSE of 13.745 mg/m>. Notably, Model 3 (Fig. 8¢) exhibited the most robust
performance in the training phase, with the highest R? of 0.950 and r of 0.975, coupled
with the lowest RMSE of 9.534 mg/m>. A Bias of 0 was observed for all models in this
phase, which is expected as the models are optimized on the training data. While the close
proximity of data points to the 1:1 line and high R? values generally indicated that all
models were well-calibrated to their respective training datasets, Model 3, with its
regression equation of y=0.950x + 1.417, specifically exhibited the tightest fit and
highest explanatory power.
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Figure 8. Relationships between observed and estimated Chi-a concentrations across different
models during training and testing phases: (a, b) training and testing phases for Model 1, (c, d)
training and testing phases for Model 2; and (e, f) training and testing phases for Model 3, with
the 1:1 line (dashed black line) and the regression line (solid magenta line) (CI 95%:
confidence Interval, Pl 95%: prediction interval)
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The right column of Figure 8(b, d, f) illustrate the models’ capacity to predict unseen
data during the testing phase (N = 14). The testing phase is critical for assessing the
models’ generalization to previously unobserved data. In this phase, Model 1’s
performance (Fig. 8b) slightly declined, showing an R? of 0.773, an r of 0.879, and an
increased RMSE of 22.731 mg/m?, along with a Bias of 9.241 mg/m®. The regression line
of Model 1 (y=1.11x+ 6.336) indicates a tendency for underestimation at lower
concentrations and overestimation at higher concentrations, with wider scatter. Model 2
(Fig. 8d), however, demonstrated exceptional generalization, with an R? of 0.937 and an
r of 0.968, both slightly higher than its training performance, and a significantly lower
RMSE of 10.664 mg/m?, although it exhibited a Bias of 5.508 mg/m>. Visually, the
regression line for Model 2 (y = 1.029x + 4.751) closely aligns with the 1:1 line, and the
data points show good consistency, although a slight positive bias can be observed.
Crucially, Model 3 (Fig. 8f) consistently maintained its strong performance, achieving
the highest R? of 0.944 and r of 0.972, along with the lowest RMSE of 9.366 mg/m?* and
the lowest Bias of 3.028 mg/m? among all models. Its regression line (y = 1.05x + 1.707)
is the closest to the ideal 1:1 line among all models, and the data points exhibit the tightest
cluster around this line, indicating superior accuracy and precision. The visual
distribution of points in Figure 8f confirms the minimal bias and high predictive accuracy
quantified by the statistical metrics.

As for Confidence Interval (CI 95%) and the Prediction Interval (PI 95%), Model 1°s
performance (Fig. 8b) has a dramatically wider PI 95% compared to Model 2 (Fig. 8d)
and Model 3 (Fig. 8f). This signifies that a single prediction from model (b) is highly
unreliable, and the expected error range is very large at 95% confidence. Model 3 (Fig. 8f)
successfully minimizes the residual error (RMSE 9.366 mg/m?), resulting in the
narrowest PI 95% among the three. This indicates that the model structure in Figure 8f'is
the most effective at capturing the relationship within the small N = 14 dataset, making
its individual predictions the most precise. The PI gap clearly dictates which model is
viable for deployment. Only models Model 2 (Fig. 8d) and Model 3 (Fig. 8f) offer
sufficiently narrow PI to be considered for reliable decision-making. The CI 95% (blue
shaded area) represents the uncertainty in the estimation of the true mean regression line.
Despite the similar sample size, Model 3 (Fig. 8f) has the highest R? and the lowest
scatter, leading to a slightly narrower CI near the center of the data compared to Model 1
(Fig. 8b). This shows that a better-fitting model structure can slightly reduce epistemic
uncertainty, even without additional data. The wide CI at the tails signals a high risk of
structural error (bias) if any of these models are used for extrapolation (i.e., predicting
Chl-a values far beyond 150 mg/m?).

A comprehensive comparison across both training and testing phases (7able 4 and
Fig. 8) reveals that Model 3 consistently outperforms Model 1 and Model 2 across nearly
all evaluation metrics. While Model 2 shows impressive generalization in terms of R? and
r, Model 3 consistently delivers the highest predictive accuracy (lowest RMSE) and the
least systematic error (lowest Bias) on unseen data. Furthermore, the visual coherence of
data points around the 1:1 line in Figure 8f for Model 3, coupled with its minimized bias,
underscores its reliability and strong practical applicability for Chlorophyll-a estimation.
Therefore, based on its superior and more stable performance in both fitting and
generalization capabilities, Model 3 is identified as the optimal Multiple Linear
Regression model for estimating Chlorophyll-a concentrations among the evaluated
options. Its robust performance across all key metrics highlights its reliability and
suitability for practical applications. Model 3 is expressed as follows:
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Chl-a=-3.27 * VNIRI + 5.02 * VNIR2 — 741.04 * NDCI + 458.9 * VNIR1-Red — 434.48 (mg/m’) (Eq.6)

where VNIR1 and VNIR2 represent the remote sensing reflectance, Rrs()), derived from
Sentinel-2 (S2) imagery at band 5 (705 nm) and band 6 (740 nm), respectively. NDCI
refers to the Normalized Difference Chlorophyll Index, while VNIR1-Red signifies the
ratio of Rrs(705) to Rrs(665).

When compared to existing literature, the performance of our Model 3 stands out as
highly competitive, and in many aspects, superior. For instance, a notable MLR study
dedicated to Chlorophyll-a estimation in Quan Son Reservoir, utilizing Sentinel-2B
imagery, reported an R? of 0.95 during the training phase but a lower value of 0.87 during
validation (Thao et al., 2024), thereby indicating potential overfitting issues in their model.
Our Model 3’s impressive testing R? of 0.944 not only aligns with the training performance
of this aforementioned benchmark study but significantly surpasses its reported validation
performance, thereby underscoring the strong generalizability of our model. Similarly,
research focusing on Chlorophyll-a estimation in turbid Yellow Sea waters, also employing
MLR, reported a correlation coefficient (r) of 0.94 (Baek et al., 2019). Notably, the testing
r of 0.972 achieved by our Model 3 demonstrates an even more robust correlation,
indicating a superior predictive capability. Beyond these strong correlation metrics, Model
3 also demonstrated exceptional performance in terms of error assessment. It achieved the
minimum RMSE values: 9.534 mg/m® for the training phase and 9.366 mg/m*® for the
independent testing phase. Furthermore, the associated bias in the testing phase was notably
low at 3.028 mg/m®. While direct numerical comparisons of RMSE can often be
challenging due to potential inconsistencies in units and concentration ranges across diverse
studies, our RMSE values are indicative of high accuracy. For comparative context, certain
studies employing advanced machine learning algorithms for Chlorophyll-a retrieval, such
as an LGBM model by Kim et al. (2022), reported higher RMSE values (e.g., 15.15 mg/m?).
Consequently, the robust RMSE demonstrated by Model 3 further reinforces its precision
and reliability in estimating Chlorophyll-a concentrations.

Spatial distribution of the chlorophyll-a and TSI

Figure 9a presents the spatial pattern of Chl-a concentrations across the study area.
Chl-a serves as a crucial indicator of phytoplankton biomass and primary productivity,
providing insights into the ecological status of aquatic environments. The concentration
values, ranging from 0 to 250 mg/m?>, are visually represented by a progressive color
gradient, with deep purple indicating the lowest concentrations and bright red signifying
the highest. Analysis of the map reveals a heterogeneous distribution of Chl-a. Low Chl-
a concentrations are observed in limited, often narrower, riverine segments and less
impacted peripheral areas. Conversely, significant portions of the water bodies,
particularly the broader river sections and potentially larger interconnected water
systems, exhibit elevated Chl-a concentrations. Specifically, areas depicted in yellow,
orange, and red, corresponding to concentrations exceeding 60 mg/m?, indicate regions
of high to very high phytoplankton biomass. These elevated Chl-a levels are
predominantly observed in the central and southern parts of the mapped region,
suggesting localized or widespread algal proliferation. Such hotspots underscore areas
experiencing heightened primary productivity, which is often indicative of nutrient
enrichment and potential water quality degradation.

The spatial pattern of the TSI within the study region is illustrated in Figure 9b,
providing a comprehensive assessment of eutrophication levels. The TSI, classified into
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seven distinct categories ranging from oligotrophic (0-20) to extremely hypereutrophic
(80—100), offers a standardized metric for evaluating the trophic status. The color scale
on the map corresponds to these categories, progressing from dark blue (oligotrophic) to
dark red (extremely hypereutrophic). Quantitative analysis of the spatial coverage
indicates that the “eutrophic” category (50—70) dominates the study area, encompassing
56.69% of the water body surface. This widespread prevalence of eutrophic conditions
highlights a significant challenge in managing nutrient inputs. “Upper mesotrophic” areas
(40-50) account for 14.71%, while “hypereutrophic” conditions (70—80) are observed in
10.52% of the area, indicating severe nutrient over-enrichment in substantial localized
regions. The less impacted categories, “mesotrophic” (30—40), “lower mesotrophic” (20—
30), and “oligotrophic” (0-20), represent 9.49%, 4.74%, and 2.73% of the area,
respectively, primarily concentrated in certain upstream or less disturbed segments.
“Extremely hypereutrophic” conditions (80-100), though representing a smaller
proportion (1.12%), signify critical areas of severe ecological imbalance. The aggregated
distribution of TSI values, particularly the dominance of eutrophic and hypereutrophic
conditions, strongly correlates with regions exhibiting elevated Chl-a concentrations (as
shown in Fig. 9a), collectively pointing to a pervasive issue of anthropogenic nutrient
loading impacting the aquatic ecosystems within the study domain.
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Figure 9. Spatial distribution of (a) Chl-a and (b) TSI values in the study area

The provided histograms (Fig. 10) illustrate the distributions of Chlorophyll-a (Chl-a)
and Trophic State Index (TSI) values within the study area. Chl-a concentrations
(Fig. 10a) exhibit a highly right-skewed distribution, peaking at low values but extending
significantly towards high concentrations (Max: 249.96 mg/m?®, Mean: 28.76 mg/m?,
Median: 18.46 mg/m?, Std: 33.48 mg/m?). This pronounced skewness suggests that while
much of the area maintains low primary productivity, localized zones experience
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considerable algal growth, indicative of potential eutrophication. Conversely, TSI values
(Fig. 10b) present a more symmetrical, though still slightly right-skewed, distribution,
with a prominent mode around 60 (Max: 84.86, Mean: 53.99, Median: 56.5, Std: 14.63).
The close proximity of the mean and median, along with a lower standard deviation
compared to Chl-a, signifies a more concentrated spread of trophic states. The prevalence
of TSI values in the eutrophic range suggests that a substantial portion of the study area
is characterized by elevated nutrient enrichment, reinforcing the implications drawn from
the Chl-a distribution regarding the overall ecological health of the system.
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Figure 10. Histogram plots of (a) Chl-a and (b) TSI values in the study area

Limitation

Beyond the promising results achieved, this study also has several limitations that
should be noted. Firstly, the field sampling dates (September 30 — October 2, 2024) do
not perfectly align with the satellite imagery acquisition date (October 6, 2024), resulting
in a temporal mismatch of 4-6 days. Therefore, this temporal gap means the estimated
Chlorophyll a concentrations may not perfectly reflect the actual conditions at the time
the satellite image was captured. Water quality parameters, especially Chlorophyll a
concentration, are dynamic and can change due to wind, currents, tidal cycles, or
biological processes within a few days. In this work, we proceeded based on the
assumption that the overall concentration and spatial pattern of Chlorophyll a remained
relatively stable across the study area during this short period. While this assumption is
reasonable for a large-scale mapping objective, the mismatch introduces potential
uncertainty or error into the empirical model, which could slightly reduce the overall
accuracy of the chlorophyll a estimates compared to using a perfectly aligned image.
Secondly, although the optimized MLR model demonstrated high predictive
performance, achieving an R? 0f 0.950 and an RMSE of 9.534 mg/m? in the training phase,
and an R? of 0.944 and an RMSE of 9.366 mg/m® in the testing phase, a notable limitation
of this work is the constrained sample size of ground truth measurements utilized for both
training (N = 27) and testing (N = 14). Moving forward, we plan to collect more samples
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in the upcoming project to increase our data size. At that time, we can adopt a more robust
evaluation method, such as the cross-validation approach. Furthermore, the MLR model
assumes a linear and additive relationship between explanatory variables. This
assumption can be problematic given that Chl-a concentrations exhibit non-linear and
unstable characteristics, influenced by numerous anthropogenic and hydro-
meteorological factors. This mismatch can lead to poor or unreliable predictive
performance when applied to complex real-world data. Additionally, MLR is less
effective in handling complex data patterns and non-linear relationships. More
sophisticated machine learning algorithms, such as Random Forest, Support Vector
Machine, Neural Networks, and Deep Learning, are generally considered superior to
traditional linear regression in addressing complex data patterns and non-linear
relationships. Moreover, MLR is sensitive to variations across different regions or
environmental conditions. Specifically, MLR models assume that training and testing
data originate from the same distribution. However, data from diverse environmental
conditions can impact the performance of empirical models and reduce accuracy when
applied to other study areas. Finally, the performance of the MLR model is also dependent
on atmospheric correction methods. If these methods are not robust enough to handle the
complexity of in-water optical constituents, it could lead to uncertainties in reflectance
data, consequently affecting the accuracy of Chl-a estimations.

Conclusion

This study successfully developed and optimized a Multiple Linear Regression (MLR)
model for estimating and mapping Chlorophyll-a (Chl-a) concentrations and the Trophic
State Index (TSI) in coastal aquaculture areas of Thai Binh province, Vietnam.
Leveraging in situ Chl-a data, field spectral measurements, and Sentinel-2 satellite
imagery, our methodology involved a comprehensive Pearson correlation analysis to
identify optimal band ratios and combinations from synthetic Sentinel-2 surface
reflectances. This rigorous selection process ensured that only variables with the highest
correlation coefficients were utilized as inputs for the subsequent MLR model
development.

The optimized MLR model demonstrated high predictive performance, achieving an
R?0f 0.950 and a root mean square error (RMSE) of 9.534 mg/m? in the training phase,
and an R? of 0.944 and an RMSE of 9.366 mg/m? in the testing phase. These robust
results underscore the significant potential of Sentinel-2 data as a freely accessible,
high-spatial-resolution resource for Chl-a research and monitoring. The application of
the optimized model to a cloud-minimal Sentinel-2 image (acquired on October 06,
2024) enabled the effective generation of spatial distribution maps for Chl-a and TSI
across the study region.

The resulting Chl-a and TSI maps provide crucial insights into the spatial
heterogeneity and trophic states of coastal aquaculture zones, facilitating the
identification of areas susceptible to eutrophication and supporting proactive strategies
for mitigating the risks associated with harmful algal blooms. This research
significantly enhances our understanding of aquatic environmental dynamics and
contributes to the promotion of sustainable aquaculture practices. While the proposed
method demonstrates high applicability within the study region, future research should
focus on validating its broader applicability to water bodies with diverse optical
properties and geographical conditions.
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