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OPTIMIZING VOLATILITY FORECASTING AND RISK
MANAGEMENT OF JINKOSOLAR UNDER TARIFF POLICY
TENSIONS USING GARCH-XGBOOST

TRAN BATHUAN

Abstract: This study forecasts the stock price volatility of JinkoSolar (JKS), a leading renewable energy company, under U.S.-China
trade tensions using a hybrid GARCH(2,5)-XGBoost model. Principal Component Analysis (PCA) is applied to reduce dimensionality
and enhance model learning. Several algorithms - Lasso, Linear Regression, Elastic Net, Decision Tree, GBM, XGBoost, and traditional
GARCH - are compared. Results show that the GARCH(2,5)-XGBoost model achieves the best performance, while traditional GARCH
performs poorly, highlighting the limits of linear models in nonlinear markets. Although trading performance is modest, the

hybrid model effectively adapts to market signals and short-term volatility. Key technical indicators such as MA_21, EMA_21, CCl,
RSI, and VWAP significantly affect forecasts. The study recommends exploring LightGBM and GARCH-LightGBM hybrids to further
improve adaptability and forecasting accuracy, with practical value for risk analysis and portfolio optimization in emerging markets

like Viet Nam.
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Introduction

The global shift toward carbon emission reduction and
sustainable development has positioned the renewable
energy supply chain at the center of investment strategies
and international policy agendas. Among the leading
solar energy manufacturers, JinkoSolar (JKS) plays a
pivotal role by integrating across multiple segments of
the supply chain-from polysilicon procurement to solar
panel distribution. However, the stock performance of
companies like JKS remains highly volatile due to global
tariff tensions, geopolitical instability, and fluctuations
in input costs-posing significant challenges for investors
and risk management strategies.

In this context, accurate volatility forecasting is
essential not only for asset valuation but also for
constructing effective hedging strategies in the clean
energy market. Traditional models such as GARCH have
long been recognized for modeling conditional variance in
financial time series. Nonetheless, these models often fall
short when confronted with nonlinear, multidimensional
influences or macroeconomic shocks-factors increasingly
prevalent in the global renewable energy sector. To
address these limitations, this study proposes a hybrid
GARCH-XGBoost model, combining the statistical rigor
of GARCH with the powerful predictive capabilities
of gradient boosting algorithms. By applying this
framework to JinkoSolar’s stock data, the research aims
to improve forecasting accuracy and support more
robust risk mitigation strategies amid escalating trade
disputes and supply chain disruptions. Ultimately, the

findings are expected to contribute to more adaptive and
sustainable investment strategies within the renewable
energy supply chain.

This study has three main objectives: (1) Analyze the
volatility characteristics of JinkoSolar (JKS) stock within
the renewable energy supply chain under the influence
of global tariff tensions. (2) Develop a GARCH-XGBoost
model to optimize JKS stock volatility forecasting by
integrating conditional variance modeling with nonlinear
machine learning. (3) Apply the forecasting outcomes to
financial risk management to enhance investment decision-
making in highly volatile renewable energy markets.

Literature review

Related work

In recent years, geopolitical disruptions and global
green industrial policies have significantly impacted
supply chains, international trade, and financial markets.
Three recent studies underscore the close relationship
between green industrial policy, renewable energy
competition, and escalating U.S.-China trade tensions.
Specifically, Li and Du (2025) reveal that although
China’s green industrial policies promote renewables,
they prioritize economic growth over environmental
commitments, triggering conflicts with global trade rules.
This has fueled trade protectionism and encouraged
many countries to implement domestic green policies
to rebalance their supply chains. Zeng and Zhang (2025)
demonstrate that trade policy uncertainty forces U.S. firms
to consider reshoring, yet cost and contractual constraints
remain major barriers. Meanwhile, Xia et al. (2019) use a
global input-output model to show that U.S.-China trade
conflicts cause long-term damage to energy demand and
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growth for both economies, while weakening the global
energy market. Hughes and Meckling (2017) highlight
that both the U.S. and China view renewable energy as
a strategic sector in addressing climate change. However,
since 2011, both countries have been locked in solar panel
trade disputes, with the U.S. imposing anti-dumping
duties under pressure from domestic manufacturers
and Congress.

This trend is now spreading to Southeast Asia,
with Viet Nam emerging as a new hotspot. Guarascio
(2025) warns that over USD 13 billion in wind and solar
investment in Viet Nam is at risk due to retroactive feed-
in-tariff (FiT) revisions, raising concerns about legal
frameworks and investor confidence. Khue (2025) and
VnEconomy (2025) note that the U.S. has imposed up to
542.64% in anti-dumping and countervailing duties on
solar panels imported from Viet Nam, significantly higher
than other countries, because the U.S. does not recognize
Viet Nam as a market economy. Kao (2025) and Ho (2025)
report record-high tariffs of 3,521% on solar products
from Viet Nam, Cambodia, Thailand, and Malaysia, due
to suspected Chinese transshipment. These actions have
intensified U.S.-Southeast Asia trade tensions, pushed
up clean energy costs in the U.S., and disrupted regional
supply chains.

In this context, modern forecasting models-
particularly hybrid approaches combining econometrics
and machine learning-are gaining importance. Le et al.
(2021) introduced two privacy-preserving variants of
FedXGBoost for secure, distributed training. Celestin
et al. (2025) show that GARCH and its extensions
(EGARCH, TGARCH), when combined with machine
learning, significantly enhance the accuracy of high-
frequency market volatility predictions. Wang et al.
(2024) integrated ARIMA-GARCH-XGBoost to refine
residuals and improve stock price forecasting. Cui and
Zhao (2023) found that GARCH excels at capturing
short-term volatility, while XGBoost is more flexible for
direct forecasting. Rz et al. (2020) and Januardi (2025)
validated the effectiveness of GJR-GARCH-XGBoost
and ETS-ARIMA-XGBoost in exchange rate forecasting
and risk hedging. Yan and Li (2024) show that XGBoost,
CatBoost, and LightGBM, when applied to volatility-
based quantitative strategies, can generate stable annual
returns of 5%-10%. Finally, Chen (2024) concludes that
GARCH remains central in financial forecasting under
high volatility, especially when integrated with AI and
machine learning to enhance accuracy and real-world
applicability.

This study addresses a significant research gap
by applying the GARCH-XGBoost hybrid to forecast
stock volatility in the renewable energy supply chain
area that has not been sufficiently explored, especially
under increasing geopolitical, trade, and technological
uncertainties. Novelty: The novelty of this study lies in
integrating 34 technical financial indicators with Principal
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Component Analysis (PCA) and SHAP values to identify
key features influencing JKS stock volatility. Furthermore,
it employs a Genetic Algorithm (GA) to optimize GARCH
parameters and Bayesian Optimization (BO) to fine-tune
XGBoost hyperparameters-demonstrating a unique
hybrid approach combining econometrics and machine
learning. Contribution: The main contribution of this
research is the development of a robust quantitative
risk management framework tailored for clean energy
investors. This is particularly relevant as Viet Nam and
Southeast Asia emerge as new global solar manufacturing
hubs facing intensified retaliatory tariffs from the
United States.

Research methodology

Volatility

Stock volatility or Historical Volatility (HV) is based
on the logarithmic returns (Log Returns) of the stock.
First, the Log Returns are calculated using the formula:
n= 1“( 1‘: (1) where is the adjusted closing price on day

t. Then, the standard deviation of the Log
within a 21-day

_7 (2) in which,
log returns within a 21-day
window: 7= N, Z % (3). And N=21 is the window length
(21 days), is the standard deviation of Log returns at day
t, representing the price volatility over the last 21 days.
The volatility is then
follows: HV =0, x~252 (4).

GARCH-XGBoost model

Returns window  is:

(Volatility,) &, = is the average

annualized as

XGBoost (Extreme Gradient Boosting) is a powerful
machine learning algorithm within the ensemble
learning family, developed from the gradient boosting
framework. The model is notable for its ability to
handle large-scale datasets, mitigate overfitting through
regularization techniques (L1 and L2), and support
parallel training, thereby optimizing computational
efficiency. XGBoost operates as a boosting algorithm of
decision trees, where each subsequent tree is trained to
correct the residual errors of the previous one. Given the
training dataset D= {( X, ¥, )} (5), The predictive model
is n=2/0fi<F (6). The ob]ectlve function is optimized
L) zz[v } j+zo £) @) va ST A (8). At each
step, the loss is appr0x1mated L~ Z fx) ShA (X)}rQ(f )
9) where & =0../(¥,¥,) (10) and 4 =2 .J(w) (11).
According to Chén & Guestrin (2016), XGBoost also
integrates sparsity-aware algorithms, weighted quantile
sketch, and enhanced memory access mechanisms,
enabling the model to scale efficiently to billions of data
samples. Owing to its outstanding performance, XGBoost
has been widely applied in nonlinear financial forecasting.

The Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) model is widely used to
capture time-varying variance, also known as volatility



FIGURE 2: HISTORICAL VOLATILITY OF JKS STOCK
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While GARCH (2,5) estimates time-varying
variance and reflects the structural dynamics

of financial volatility, XGBoost utilizes this
variance output along with extended technical
features to accurately forecast future stock
prices. This integration is particularly useful in
financial forecasting contexts characterized by
high volatility and complex nonlinear behavior,
enhancing predictive performance and market
responsiveness.

Genetic Algorithm (GA) and Bayesian
Optimization (BO)
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clustering, which is a common feature in financial
time series such as asset return volatility. The general
mathematical formulation of the GARCH (p, q) model
is as follows Y= ,u+€ (12),¢, =z, -0, (13)z = N(0,1)(14),
o, —w+za, €‘,+Zﬂ 7, (15). Where, o7 is the value of the
financial time series at time t, u is the unconditional
mean of the series, &,is the shock or residual at time t,
o} is the conditional variance at time t, @ is a constant
ensuring positive variance, are the ARCH coefficients
capturing the impact of past shocks Etz_i , a,are the
GARCH coefficients representing the persistence of
past conditional variances o, Z,

t
process, typically assumed to follow a standard normal

is a white noise

distribution.

Mechanism of operation: the input data is first
demeaned to obtain residuals. Based on previous shocks
and past conditional variances, the current conditional
variance is calculated. This allows volatility to be
modeled dynamically, rather than assuming a constant
variance over time. Specifically, in this study, the
GARCH(2,5) model is employed to capture and forecast
time-varying volatility (conditional variance) in financial
time series. In GARCH(2,5), the conditional variance at
time depends on the five past squared residuals (ARCH
terms) and the two previous conditional
variances (GARCH terms) (ht_].). This allows
the model to reflect the market’s “memory”

Genetic Algorithm (GA) is an evolutionary
optimization technique that simulates the
process of natural selection. It is effective in
exploring large and non-linear parameter spaces
to identify optimal model structures. In this study, GA
is applied to determine the appropriate GARCH (p,
q) configuration for accurately modeling conditional
variance. Meanwhile, Bayesian Optimization (BO) is a
global optimization technique that leverages a surrogate
function to efficiently search for optimal hyperparameters,
particularly when the loss function is non-differentiable or
computationally expensive. BO is employed to fine-tune
the XGBoost model, enhancing the overall performance
of the GARCH-XGBoost hybrid in volatility forecasting.

Data

The dataset used in this study comprises the stock
prices of JinkoSolar Holding Co., Ltd. (JKS), retrieved
from Yahoo Finance. The analysis focuses on the ‘Adj
Close” column to compute log-returns and construct the
volatility time series. To enhance interpretability and
predictive capability, the dataset is enriched with 33
technical indicators, including;:

(i) Trend and momentum indicators: MA_21, EMA_21,
MACD, Momentum, Trend_Slope, Trix, TSF, ROC.

(ii) Volatility and distribution metrics: Volatility_
GARCH_Scaled, ATR, BB_upper, BB_lower, BB_width,

FIGURE 1: THE ADJUSTED CLOSING PRICE HISTORY OF JKS STOCK

of past shocks. The GARCH (2,5) equation is
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formulated # = w+2a, t.+2ﬂjht _; (16), where
the conditional variance at time t, &,
function of past errors at time ¢—i with @,a,, §,
all coefficients being positive and satisfying ®
stationarity conditions. GARCH (2,5) enables
the model to capture both short-term shocks
and long-term volatility trends in stock price
movements.
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Skewness, Kurtosis. Volume and money flow indicators
Volume, VWAP, OBV, MFI, CMF. Popular oscillators RSI,
%K, %D, CCI, Williams_%R, Ultimate_Oscillator, ADX.

(iii) Seasonality features: Day_of_Week, Month_of_
Year, Fourier_Week, Fourier_Month, Seasonal_Residual.

(iv) Price range composite: Donchian_Width. The data
were cleaned, missing values imputed, outliers removed
and normalized using MinMaxScaler before analysis with
the hybrid GARCH-XGBoost model. The integration of
technical and statistical features enables the model to
capture both short-term dynamics (price shocks) and
long-term patterns (cycles and seasonality) in stock
volatility behavior.

General evaluation of the model

GARCH optimized by GA and XGBoost optimized by
BO, evaluated using MAE, MSE, RMSE, MAPE, R?, and
STD, ensure accurate analysis. MAE and MSE measure
deviations, RMSE emphasizes large errors, MAPE
normalizes the error, R? evaluates the explanatory power,
and STD reflects the stability of the forecast.

vef o [Ea)
MSE:;Z[J’,-—%) RMSE =5/
n

S0

R:=1-2
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i=1
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Evaluating trading strategies using the Sharpe Ratio,
Sortino Ratio, and Maximum Drawdown provides a
comprehensive assessment of performance and risk.
The Sharpe Ratio measures return relative to overall
risk, the Sortino Ratio focuses specifically on downside
risk, and Maximum Drawdown quantifies the largest
observed loss from a peak. Together, these metrics offer a
practical and well-rounded view of both profitability and
risk exposure.

Ppeak - Pt.mug/z

R -R, R -R
21 SortinoRatio=—-—~
o o,

Sharpe Ratio= Max Drawdown=

peak

Empirical research
Data visualization

Since its listing in 2010 at an adjusted price of
approximately $9.75, JinkoSolar (JKS) stock has
experienced several periods of significant volatility.
Following an initial sharp decline, JKS recorded a
remarkable growth phase between 2021 and 2023,
reaching nearly $80. However, by 2025, the stock price
had plummeted to around $18.5, reflecting a pronounced
downward trend that may be attributed to escalating
U.S.-China trade tensions and intensifying retaliatory
tariff policies.
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TABLE 1: THE ARCHITECTURE OF THE OPTIMAL
GARCH-XGBOOST

Hyperparameters  Values Hyperparameters Values
Best GARCH (p, q) (2,5) min_child_weight 1.8819
colsample_bytree  0.7589 n_estimators 132
gamma 0.0 reg_alpha 0.1227
learning_rate 0.2129 reg_lambda 0.7497
max_depth 12 subsample 0.8661

Source: Author’s analysis

The most recent Historical Volatility (HV) data for
JinkoSolar (JKS) stock indicates that price fluctuations
remain elevated, with HV values ranging from 0.26 to
0.33 over the past five trading days. This suggests that
the market is currently experiencing instability and
heightened sensitivity to information, potentially driven
by macroeconomic factors such as U.S.-China trade
tensions, retaliatory tariff policies, or uncertain prospects
in the renewable energy sector. Elevated volatility implies
greater risk, but also presents potential investment
opportunities if accurately forecasted.

In this analysis, Principal Component Analysis (PCA)
is employed to reduce the dimensionality of the dataset
by eliminating redundant information and minimizing
noise, while retaining a significant portion of the original
variance from the complex set of technical indicators. The
use of 34 principal components preserves approximately
30% of the total variance, enhancing the efficiency of
machine learning models by mitigating overfitting
and shortening training time. PCA also improves
the visualization of data structure and facilitates the
evaluation of each component’s contribution, thereby
supporting the selection of important features for
volatility forecasting models.

Construction of the optimized GARCH-XGBoost model

The hybrid GARCH(2,5)-XGBoost model integrates

FIGURE 3: ILLUSTRATING THE DATA DIMENSIONALITY
REDUCTION PROCESS USING PCA
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FIGURE 4: COMPARISON OF ACTUAL
AND FORECASTED VOLATILITY
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financial environment.
The coefficient of determination (R?)

Actual Volatility vs Predicted Volatilty

reached 0.7788, indicating that nearly 78%

of the variance in the dependent variable is
explained by the input features-demonstrating
the model’s strong goodness of fit. The standard
deviation of the predictions was 0.2017,
reflecting the model’s stability and consistency
in forecasting outcomes. The integration of
GARCH, known for modeling time-varying
conditional variance, with XGBoost, renowned
for its nonlinear learning capacity and ability

to handle complex technical features, results
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in a forecasting framework capable of deeply

Source: Author’s analysis

the time-varying conditional variance modeling capability
of GARCH with the powerful nonlinear learning ability
of XGBoost. Specifically, the GARCH(2,5) configuration
captures the influence of five past squared residuals
(ARCH terms) and two previous conditional variances
(GARCH terms), enabling the model to retain both short-
term shocks and long-term trends in market volatility.
The XGBoost hyperparameters are optimized as follows:
colsample_bytree = 0.7589 and subsample = 0.8661, which
reduce variance by randomly sampling columns and rows
during training, thereby helping to prevent overfitting.

Gamma is set to 0.0, allowing for flexible tree
branching, while a learning rate of 0.2129 ensures efficient
convergence during training. A max_depth of 12 enables
the model to capture deep nonlinear relationships, and a
min_child_weight of 1.8819 helps control tree complexity.
The model utilizes 132 estimators (n_estimators), with L1
and L2 regularization parameters set to 0.1227 and 0.7497,
respectively, to enhance generalization performance.
Overall, this configuration strikes a balance between
predictive accuracy and model stability.

Training and evaluation of the optimized
GARCH-XGBoost model

The GARCH-XGBoost model was trained

capturing financial data structures. This makes
it highly applicable for real-world use cases in
risk analysis and portfolio management.

Application of the optimized GARCH-XGBoost model
in forecasting

The optimized GARCH(2,5)-XGBoost model was
applied to forecast stock volatility over the next 21 trading
sessions. The model demonstrated its capability to generate
dynamic trading signals with 11 buy recommendations, 8
sell recommendations, and 1 hold signal. The alternating
pattern of these signals reflects the model’s ability to detect
short-term fluctuations and adjust strategies accordingly.
The predicted volatility values ranged from 0.73 to 0.93,
illustrating a clear divergence in trading signals and the
model’s responsiveness to evolving market conditions.
The continuous updating of forecast signals based on
changing inputs reinforces the hybrid model’s practical
utility in enhancing short-term investment decisions and
adapting to high-frequency shifts in financial markets.

The above results indicate that the GARCH-XGBoost
trading model exhibits low performance, with a Sharpe
Ratio of 0.095 and a Sortino Ratio of 0.138-both below
the threshold of 1-suggesting that returns are not

FIGURE 5: VOLATILITY FORECASTING AND TRADING STRATEGY FOR THE
NEXT 21 DAYS

21-Day Volatility Forecast & Trading Strategy

using the optimal hyperparameters (best_
params) on the PCA-transformed training
dataset (X_train_pca, y_train) to maximize
forecasting performance. The model achieved
optimal evaluation metrics, with a Mean
Absolute Error (MAE) of 0.0858, reflecting a
low average deviation between predicted and
actual values. The Mean Squared Error (MSE)
of 0.0135 and Root Mean Squared Error (RMSE)
of 0.1163 indicate strong control over squared
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level of forecasting accuracy in a highly volatile

Source: Author’s analysis
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commensurate with the associated risks. A
maximum drawdown of nearly -98% further
highlights the severity of potential losses,

FIGURE 6: ESTIMATING FEATURE IMPORTANCE

implying that the strategy lacks robustness on
and carries high risk exposure. MA_21 "'*""
Based on the ranked importance of input EMA_21 -*-
features in the GARCH(2,5)-XGBoost model, VWAP fo~S + .
several key insights can be drawn regarding ol o | 'l .
the model’s ability to forecast JKS stock
volatility under the influence of U.S.-China Rl # -
retaliatory tariff tensions. Technical indicators Month_of_Year w8
such as MA_21, EMA_21, VWAP, CCI, and MACD - o cmmpe . o
RSI emerge as dominant contributors. These BB_upper t
variables capture medium-term trends, o *‘b
price momentum, and investor sentiment- g
factors that are particularly sensitive to M e E
macroeconomic policy changes, especially Momentum - g
in politically and commercially unstable Trix e -
environments like the current one. %D
The variables Month_of_Year and Day_ )
. ; BB_width
of_Week reflect the impact of seasonality
and cyclical trading behaviors, which tend S
to become more pronounced when markets Day_of_Week
are influenced by geopolitical news and Williams_%R
sentiment. Other technical indicators, such K
as MACD, ROC, CMF, Momentum, and Trix, . o
capture shifts in momentum and capital flow Donchian_Width
factors that can fluctuate sharply in response ST ¢
to tariff expectations or counter-policy T TRy = . . Low
announcements. Descriptive indicators like SHAP value (impact on model output)

Skewness, Kurtosis, %K, %D, Williams %R,
and BB_width characterize distributional
asymmetries and volatility, enabling the
model to identify latent risks arising from
policy shocks, especially during periods of market
instability. The model demonstrates strong sensitivity to

Source: Author’s analysis based on model interpretation using SHAP

making it highly suitable for tracking and forecasting JKS
stock price volatility amid intensifying trade tensions
between the world’s two largest economies.

trend signals, momentum changes, and seasonal factors-

TABLE 2: COMPARISON OF THE PERFORMANCE OF GARCH-XGBOOST WITH
OTHER MODELS

Results and discussion

In this study, PCA was employed to reduce
dimensionality, eliminate noise, and improve

Model\Metrics MAE MSE RMSE MAPE R2 STD model training efficiency. The results demonstrate

that the hybrid GARCH(2,5)-XGBoost model

Garch 1.8428 34630 1.8609 313.13% -50.66  0.2590 signiﬁcantly outperforms other methods,

Lasso 02059 00680 02609 3348%  -0.0002 0.0 achieving M_AE, - 9'085?” RMSE_ =_0‘1163’ and

R? = 0.7788, indicating high predictive accuracy

LinearRegression 0.1730 00501 02238  27.77% 02636 01313  and strong explanatory power. The GARCH(2,5)

configuration effectively captures short-term

Elastic Net 0.1733  0.0501  0.2238 27.83% 02635  0.1297 shocks and long-term trends, while XGBoost

» successfully learns nonlinear relationships.

Decision Tree 0.1441  0.0384 0.1961 22.25% 04347  0.2084 Although the model’s trading performance

GBM 00040 00157 01253 1496% 07692 oisag  emains limited (Sharpe Ratio =0.095), it shows
flexibility in detecting market signals.

XGBoost 00930 00163 01278  1447% 07602 0.1972 Key technical indicators such as MA_21,

EMA_21, VWAP, CCI, and RSI play a vital role

Garch-XGBoost 0.0858 0.0135 0.1163 12.82% 0.7788 0.2017 and are particularly sensitive to fluctuations

driven by trade policies. These findings suggest

Source: Author’s analysis
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that the GARCH-XGBoost model is well-suited for risk
analysis and volatility forecasting in uncertain financial
environments. Performance comparison across models
reveals that the traditional GARCH model performs the
worst, with MAE =1.8428, RMSE = 1.8609, and R? =-50.66,
indicating poor forecasting ability. Linear regression
models such as Lasso, Linear Regression, and Elastic Net
yield moderate results, with MAE values ranging from
0.17 to 0.20 and R? between -0.0002 and 0.26. Decision
Tree models offer substantial improvement, reaching
MAE = 0.1441 and R? = 0.4347. Boosting models like GBM
and XGBoost demonstrate clear advantages, achieving
MAE below 0.094 and R? exceeding 0.76.

Notably, the integrated GARCH-XGBoost model
delivers the best performance with MAE = 0.0858, RMSE
=0.1163, and R? = 0.7788, highlighting the effectiveness of
combining financial volatility modeling with advanced
machine learning techniques. This suggests a promising
approach for enhancing forecasting quality in highly
uncertain financial environments. Future research should
therefore focus on the application of LightGBM and hybrid
GARCH-LightGBM models to further improve predictive
performance, accuracy, and adaptability to market volatility.

JinkoSolar has made significant investments in Viet
Nam, particularly in Quang Ninh, with two major FDI
projects totaling nearly USD 865 million. This strategy
aims to diversify its global supply chain, reduce reliance
on China, and enhance production stability. However,
the renewable energy sector in Viet Nam, despite strong
FDI inflows, is facing several critical challenges: the
outdated FiT pricing mechanism, complex administrative
procedures, overloaded transmission infrastructure, and
opaque payment policies. These factors have affected
over USD 13 billion in investment and are hindering the
country’s green development commitments. Nguyen
(2022) warned that sustaining Viet Nam’s rapid clean
energy expansion depends heavily on its ability to
attract international capital. Urgent reforms are needed,
including implementing a transparent bidding mechanism
to replace FiT, encouraging direct PPA agreements,
upgrading transmission infrastructure, offering tax and
land incentives, and enacting a Renewable Energy Law.
These reforms would help sustain FDI inflows, improve
market reliability, and reassure major investors like
JinkoSolar in expanding their operations in Viet Nam.

Conclusion

This study demonstrates the effectiveness of
integrating PCA with the GARCH(2,5)-XGBoost model for
forecasting stock volatility of JinkoSolar. PCA contributes
to dimensionality reduction, noise elimination, and
optimization of the training process. Comparative
analysis reveals that the traditional GARCH model
performs poorly (R? = -50.66), while linear regression
models yield average results. The Decision Tree model
shows notable improvements, whereas GBM and XGBoost
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exhibit superior performance. Notably, the GARCH-
XGBoost model achieves MAE = 0.0858, RMSE = 0.1163,
and R? = 0.7788, highlighting the strength of combining
volatility modeling and nonlinear machine learning in
volatile financial environments. Although its trading
performance remains limited, the model demonstrates
flexible responsiveness to market signals. Future research
is recommended to explore the application of LightGBM
and a hybrid GARCH-LightGBM model to enhance
predictive accuracy and adaptability. As JinkoSolar
expands its investment in Viet Nam, energy policy reform
and FDI attraction become critical. Optimizing financial
market forecasting will contribute to supporting long-
term green and sustainable development strategies.
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