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Abstract

Given a 0-dimensional scheme X in generic position in P" over a field K, we
prove some characterizations of the Gorenstein property of X in terms of its colength
and conductor.
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1 Introduction

Let K be an arbitrary infinite field, and let P be the projective n-space over K. We are
interested in studying of a O0-dimensional scheme X in P". In particular, we would like to
examine closely the Gorenstein singularities of the scheme X. The Gorenstein property
is very well-known and has been investigated in many decades (see e.g. [1], [3], [2], [6],

[5], [, [10]).
By Ix we denote the homogeneous vanishing ideal of X in the standard graded polyno-
mial ring P = K|z, ..., x,], where deg(zg) = - -+ = deg(z,) = 1. Then the homogeneous

coordinate ring of X is R = P/Ix. The ring R is a 1-dimensional Cohen-Macaulay ring.
Because K is infinite, after a change of coordinates, we may assume that xq is a non-
zerodivisor of R. Here the image of x; in R is also denoted by w; for i = 0,...,n. Note
that the localization R, of R at z¢ is also a graded ring. Set R = @,.((Rs,)i- The
natural map R — R,, embeds R as a subring of the graded ring R. The conductor of R
in R is the ideal §3 p = {f € Ry, | f-R € R}. Under this terminology and Definition ,
we prove the following characterization of the Gorenstein property of X.

Theorem 1.1 (Theorem . The sgheme X is Gorenstein if and only if it is locally
Gorenstein, S p = DizrgRi, and ((R/R) = U(R/ g, ), where 7 denotes length (or
dimension) as K -vector space.
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Based on this theorem, we may characterize the Gorenstein property of X when X is
in generic position, as follows.

Theorem 1.2 (Theorem . Suppose X is locally Gorenstein and in generic position.
Then the following conditions are equivalent.

(a) X is Gorenstein.
(b) Si/p = Bizry Ri, Txdx =2("7F).
(C) SE/R = @inXRi, CZX =2 or dX =n-+2.

Theorem 1.3 (Theorem . Suppose that X is locally Gorenstein with minimal con-
ductor, but not in generic position, and that there is a subset Y in generic position with
dy =dx — 1. Then X is Gorenstein if and only if

n+rx —1
—2)dx =2 — 2.
(rx Jdx ( n+1 )

In the case that X is a finite set of points in P", the two last theorems cover some of
main results given in [5].

2 Preliminary

Our subjects of study are O-dimensional schemes X in the projective n-space P" over
the field K. Let Supp(X) = {p1,...,ps} be the set of all closed points of X, and let
Ix = qiN---Ngqs be the irredundant primary decomposition of Ix, where q; be the
homogeneous primary ideal associated to the point p; for 7 = 1,...,s. The homogeneous
coordinate ring of X is given by R = P/(q;N---Nqs). Since K is infinite, there is a linear
form ¢ € P such that £ ¢ /q; for all j = 1,..., s (see [9, Proposition 6.3.20]). By changing
coordinates, we may assume that ¢ = zg. Set S := R/{(xo—1) = P/(Ix + (xo—1)).
Then the ring S is a K-vector space of finite dimension. The dimension dx := dimg(5)
is also called the degree of X.

The Hilbert function of X is a map HF x : Z — N given by HF x (i) = dimg(R;). We
have HF x (i) =0 if i < 0 and

and there exists a number rx, called the regularity index of X, such that HF y (rx—1) < dx
and HF x (i) = dx for all i > rx. The Hilbert function of X is symmetric if

HFx(i — 1)+ HF x(rx — i) = dx
for all i € Z.
Definition 2.1. We say that the scheme X is in generic position, if we have
HF x (i) = min{dx, (") }

for all 7 € Z.



When n =1 or dx = 1, it is easy to see that X is in generic position. In the following,
we omit these cases by assuming that n,dyxy > 2. Let

ax :=min{i € N| (Ix); # 0}
be the initial degree of Ix. Due on [4, Proposition 1.1], we have the following lemma.

Lemma 2.2. The scheme X 1is in generic position if and only if ax = rx. In this case
Ix can be generated by polynomials of degree ax and ax +1, and ax is the unique integer

such that
(n 1) <dx < (n )
n n

Next, let us introduce briefly to the Gorenstein property of X. For j =1,...; s, let q;
be the image of q; under the canonical map 7 : R — S = R/(x¢ —1). The ring S/q; is
a 0-dimensional local ring for all j = 1, ..., s. Moreover, the graded ring R := R/(xg) is
also a O-dimensional local ring and it is isomorphic to the associated graded ring gr(.S) of
S with respect to the maximal ideal (1, ..., 2, ).

Definition 2.3. (a) A 0-dimensional local ring (7',n) is called a Gorenstein local ring
if dimy/(0:n) = 1.

(b) X is called locally Gorenstein if S/q; is a Gorenstein local ring for j =1,..., s.
(c) X is called (arithmetically) Gorenstein if R is a Gorenstein local ring.

(d) X is called a complete intersection if Ix can be generated by n homogeneous poly-
nomials.

It is well-known (see e.g. [8]) that any complete intersection is Gorenstein and any
Gorenstein scheme is locally Gorenstein. Moreover, a Gorenstein scheme in P? is also a
complete intersection (see []).

Lemma 2.4. There does not exist a Gorenstein set X in P? such that:
(a) 17 < dx < 24;
(b) X is not in generic position;
(c) there is a subset Y C X in generic position with dy = dx — 1.

Proof. Suppose X is a Gorenstein scheme with properties (a)-(c). Then X is also a
complete intersection, and so [y is generated by two homogeneous polynomials of degrees
dy and dy with 1 < d; < dy. Then dx = dyds. Since dy = dx — 1 > 15 and Y is
in generic position, we have ay > 4. So, we have (Ix)s C (Iy)s = 0. The condition
17 < dx = didy < 24 implies that d; < 4, and consequently we get (Ix)s # 0, a
contradiction. O

Notice that K[zo] is a Noetherian normalization of the ring R.

Definition 2.5. The graded R-module
wr = Homgy (R, K[z0])(—1)

is called the canonical module of R (or of X).

3



The canonical module wg is finitely generated and its Hilbert function satisfies
HF,, (i) = dx — HF x(—1)

for all 2 € Z. The following characterization of the Gorenstein property of X can be found
in [6l Proposition 2.1.3].

Proposition 2.6. The scheme X is Gorenstein if and only if wg = R(rx — 1). In this
case HF x is symmetric.

Next, let R,, be the graded localization of R at z, and let R = @izo(Rl’o)i' Note

that R,,, R are graded rings and ¢+ : R — R,,, f — f/1, is an injection with Im(z) C R.
In particular, we can identify R with its image in R,,.

Definition 2.7. The conductor of R in R is the ideal
8:E/R:{feRxo ’fﬁgR}

The conductor §5 /R is a homogeneous ideal of both R and R. When q; is generated

by linear forms (i.e., p; is K-rational) for j = 1, ..., s, the ring R is exactly the integral
closure of R in its full quotient ring (see [B, Thm. 2]).

Proposition 2.8. (a) We have HF 3(i) = dx for all i > 0.

(b) We have HFgﬁ/R(i) < HFx (i) for alli € Z and HFSﬁ/R(i) =dx for alli>rx.
(¢) Siyp = Dizrx Ri if and only if Anng(wp) ry1 = 0.

Proof. (a) This follows from the fact that zy* R C éi, HF x (i) = dx for ¢ > rx and
x( is a nonzero-divisor of R, .
(b) Since §g/5 is a homogeneous ideal of R, the first part of (b) holds true. For the

second part of (b), it suffices to show that R., C §5/. Let f € R, and g € (R); be

nonzero elements With 1 > 0. We write g = h/xlg with h € Riyx With k > 0. Then
fh € Ryyiivr = 25 R, and so there is f' € R, such that fh = it f’. This implies
that fg = fh/ak =2l f € R, Hence f € Sﬁ/R’ as wanted.

(¢) This follows from [7, Thm. 5.4] and [§, Thm. 5.6]. O

Remark 2.9. If X satisfies (¢) of Proposition 2.8} then X attains the minimal conductor
and it is also known that X has the CB-property (see [§]).

3 Main Results

In this section we continue using the notation introduced in the previous section.

Definition 3.1. The number E(R/@E/R) is called the conductor colength of X, where “¢”
denotes length (or dimension) as K-vector space.

The lengths ((R/T /) and ((R/R) are finite, since R, = R, = (Sg/r)rx by Propo-
sition 2.8 In particular, we have the following relation between them.



Lemma 3.2. We have
UR/rp) = UR/Frr) — UR/R).
Proof. This follows from the exact sequence
0— R/Sp/p — é/SE/R — R/R — 0.
O
Furthermore, we have the following characterization of the Gorenstein property of X.
Theorem 3.3. X is Gorenstein if and only if the following conditions are satisfied:

(a) X is locally Gorenstein;
(b) Sr/r = Bizry Ri;

(c) U(R/R) = U(R/F5p).

Proof. Suppose that X is Gorenstein. Then X is clearly locally Gorenstein. By Propo-
sition [2.6] there is ¢ € (wg)_ry4+1 such that wg = ¢ - R and Anng(p) = 0, and so
Amng(wg)—ry+1 = 0. Proposition c yields that SE/R = @i>rR;. It follows that

K(R/sﬁ/R) = Z;Zgl HF x (7). We also have

rx—1

((R/R) =) (dx — HF x(i)).

=0

Since HF x is symmetric by Proposition , Lemma 3.2 yields {(R/F /) = ((R/R).
Conversely, suppose that conditions (a)-(c) are satisfied. Condition (b) implies

AnnR(wR)—rX—i-l =0.

Since K is infinite, we find ¢ € (wg)—ry+1 such that Anng(p) = 0. In particular, we have
an injection pu, : R(rx — 1) — wg given by u,(f) = f - ¢. This shows that

HF)((Z) S dX — HF)((TX —1- Z)

for all i € Z. So, conditions (b) and (c) yields that HF x is symmetric. Hence the map
fty is an isomorphism. Therefore X is Gorenstein by Proposition O]

Now we apply previous results to prove the following theorems.

Theorem 3.4. Suppose X is locally Gorenstein and in generic position. Then the fol-
lowing conditions are equivalent.

(a) X is Gorenstein.
(b) SE/R = @iZTXRir rxdx = 2(”51”5()

(C) gﬁ/R = @ierRi; dx =2 ordx =n+ 2.



Proof. Since X is in generic position, we have

Xl X 4 n+r
N _ X
o= ()= (0)
1=0 =0
The equivalence of (a) and (b) follows from Lemma and the fact that (R/R) =
U(R/Sg/r) is equivalent to
Tde = 2(”-}—7“)()

n+1

n+rx

For the equivalence of (b) and (c), we need to verify that rydx = 2(" i

dx =2 or dx =n+ 1. We distinguish two cases.

) if and only if

(c1) If dyx = ("7%) then rydx = 2("::;‘) if and only if n = 1. (We omit this case, since,

for n = 1, X is always a complete intersection.)

(c2) If ("Mri‘_l) <dy < (”t:x), then rydx = 2(”7:3) implies

n+rx —1 - 2 (n+rx

n rx\n+1
that is rx < nz_”l =2+ % Hence rx < 3 and rx = 3 if and only if n = 2. Using
rxdx =2("7X), we see that (rx,dx) € {(1,2),(2,n+2)} are satisfied. In the case

+1
ry =3 and n =2, we get 3dx = 2(2), which is impossible.

m
Next, we prove the following theorem.

Theorem 3.5. Suppose that X is locally Gorenstein with minimal conductor, but not in
generic position, and that there is a subset Y in generic position with dy = dx — 1. Then
X is Gorenstein if and only if

n+rxy —1
—2)dx =2 — 2.
(rx Jx ( n+1 >

Proof. Clearly, Ix C Iy and

HF x (¢ if 1 < ,
T

HF_)((Z) —1 ifq > Ay/x,
where oy, x = min{i € N | (Iy/Ix); # 0}. In particular, rx —1 < ry < rx. By the
assumption, Y is in generic position, and so ax > ay > ry. Since X is not in generic
position, it must be the case axy = ay = ry = rx—1. Subsequently, HF x (rx—1) = dx—1
and

rx—2

UR/Sg/r) = 2_; (n:Z) + (dx — 1)
_ (”tlrj:l_l) Yy —1.



Also, X has the minimal conductor, i.e., SE/R = @j>r, R, this implies

rx—1
((R/R) =rxdx — »_ HFx(i)
i=0
n+rx —1
= —1)dx — 1.
(rx = Ldx ( n+1 ) *
Hence an application of Lemma [3.3] yields the claim. O

If dxy < n then X is contained in a hyperplane H = P"~!, 5o in the following corollary
it suffices to treat the case dx > n.

Corollary 3.6. In the setting of Theorem if dx > n then X is Gorenstein if and
only if dx =2(n+2) ordx = (n+3)(n+2)/2 — 1.

Proof. This follows by Theorem and from a similar calculation as in the proof of [3]
Theorem 9] for sets of K-rational points. O

Remark 3.7. When g, is generated by linear forms (i.e., p; is K-rational) for j =1, ..., s,
our theorems cover a result in [5, Sections 3-4].

Example 3.8. Let X = {p1,p2,p3,p4} CP3, wherep; = (1:0:0:0), pp=(1:1:0:0),
ps = (1 :0:1:0) and a non-reduced point p, corresponding to q4 = (z7 — =g, T2 —
Ty, (r3 — 70)?) C Klzg, ..., x3]. Clearly, X is locally Gorenstein with dx = 5. We have
HFy : 1455---, and so ax = rx = 2 and X is in generic position. Also, we have
Si/r = (f2) and rxdx = 10 = 2(7) = 2("7"x). Thus, Theorem yields that X is a

n+1
Gorenstein set.

Example 3.9. Consider the set X' = {pi,p2,p3,p}} € P> with p; = (1 :0:0 : 0),
pp=(1:1:0:0),ps = (1:0:1:0) and a non-reduced point p} corresponding
to q) = ((z1 — x0)% 2 — To, 23 — 19) C Klxg,...,23). Then HFy, : 1 4 5 5--- and
rx = ax: = 2, and so X’ is in generic position. However, we have (SE/R)l # 0 and so
(Ry) €35 /g~ Theorem yields that X’ is not a Gorenstein set.
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