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Abstract

Given a 0-dimensional scheme X in generic position in Pn over a field K, we
prove some characterizations of the Gorenstein property ofX in terms of its colength
and conductor.
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1 Introduction

Let K be an arbitrary infinite field, and let Pn be the projective n-space over K. We are
interested in studying of a 0-dimensional scheme X in Pn. In particular, we would like to
examine closely the Gorenstein singularities of the scheme X. The Gorenstein property
is very well-known and has been investigated in many decades (see e.g. [1], [3], [2], [6],
[5], [4], [10]).

By IX we denote the homogeneous vanishing ideal of X in the standard graded polyno-
mial ring P = K[x0, . . . , xn], where deg(x0) = · · · = deg(xn) = 1. Then the homogeneous
coordinate ring of X is R = P/IX . The ring R is a 1-dimensional Cohen-Macaulay ring.
Because K is infinite, after a change of coordinates, we may assume that x0 is a non-
zerodivisor of R. Here the image of xi in R is also denoted by xi for i = 0, . . . , n. Note
that the localization Rx0 of R at x0 is also a graded ring. Set R̃ =

⊕
i≥0(Rx0)i. The

natural map R → Rx0 embeds R as a subring of the graded ring R̃. The conductor of R

in R̃ is the ideal FR̃/R = {f ∈ Rx0 | f ·R̃ ⊆ R}. Under this terminology and Definition 2.3,
we prove the following characterization of the Gorenstein property of X.

Theorem 1.1 (Theorem 3.3). The scheme X is Gorenstein if and only if it is locally

Gorenstein, FR̃/R = ⊕i≥rXRi, and ℓ(R̃/R) = ℓ(R/FR̃/R), where “ℓ” denotes length (or

dimension) as K-vector space.
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Based on this theorem, we may characterize the Gorenstein property of X when X is
in generic position, as follows.

Theorem 1.2 (Theorem 3.4). Suppose X is locally Gorenstein and in generic position.
Then the following conditions are equivalent.

(a) X is Gorenstein.

(b) FR̃/R = ⊕i≥rXRi, rXdX = 2
(
n+rX
n+1

)
.

(c) FR̃/R = ⊕i≥rXRi, dX = 2 or dX = n+ 2.

Theorem 1.3 (Theorem 3.5). Suppose that X is locally Gorenstein with minimal con-
ductor, but not in generic position, and that there is a subset Y in generic position with
dY = dX − 1. Then X is Gorenstein if and only if

(rX − 2)dX = 2

(
n+ rX − 1

n+ 1

)
− 2.

In the case that X is a finite set of points in Pn, the two last theorems cover some of
main results given in [5].

2 Preliminary

Our subjects of study are 0-dimensional schemes X in the projective n-space Pn over
the field K. Let Supp(X) = {p1, ..., ps} be the set of all closed points of X, and let
IX = q1 ∩ · · · ∩ qs be the irredundant primary decomposition of IX , where qj be the
homogeneous primary ideal associated to the point pi for i = 1, ..., s. The homogeneous
coordinate ring of X is given by R = P/(q1∩· · ·∩qs). Since K is infinite, there is a linear
form ℓ ∈ P such that ℓ /∈ √

qj for all j = 1, ..., s (see [9, Proposition 6.3.20]). By changing
coordinates, we may assume that ℓ = x0. Set S := R/⟨x0 − 1 ⟩ ∼= P/(IX + ⟨x0 − 1 ⟩).
Then the ring S is a K-vector space of finite dimension. The dimension dX := dimK(S)
is also called the degree of X.

The Hilbert function of X is a map HFX : Z → N given by HFX(i) = dimK(Ri). We
have HFX(i) = 0 if i < 0 and

1 = HFX(0) < HFX(1) < · · · < dX

and there exists a number rX , called the regularity index ofX, such that HFX(rX−1) < dX
and HFX(i) = dX for all i ≥ rX . The Hilbert function of X is symmetric if

HFX(i− 1) + HFX(rX − i) = dX

for all i ∈ Z.

Definition 2.1. We say that the scheme X is in generic position, if we have

HFX(i) = min{ dX ,
(
n+i
n

)
}

for all i ∈ Z.
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When n = 1 or dX = 1, it is easy to see that X is in generic position. In the following,
we omit these cases by assuming that n, dX ≥ 2. Let

αX := min{i ∈ N | (IX)i ̸= 0}

be the initial degree of IX . Due on [4, Proposition 1.1], we have the following lemma.

Lemma 2.2. The scheme X is in generic position if and only if αX = rX . In this case
IX can be generated by polynomials of degree αX and αX +1, and αX is the unique integer
such that (

n+ αX − 1

n

)
≤ dX <

(
n+ αX

n

)
.

Next, let us introduce briefly to the Gorenstein property of X. For j = 1, ..., s, let qj
be the image of qj under the canonical map π : R → S = R/⟨x0 − 1 ⟩. The ring S/qj is

a 0-dimensional local ring for all j = 1, ..., s. Moreover, the graded ring R := R/⟨x0 ⟩ is
also a 0-dimensional local ring and it is isomorphic to the associated graded ring gr(S) of
S with respect to the maximal ideal ⟨x1, ..., xn ⟩.

Definition 2.3. (a) A 0-dimensional local ring (T, n) is called a Gorenstein local ring
if dimT/n(0 : n) = 1.

(b) X is called locally Gorenstein if S/qj is a Gorenstein local ring for j = 1, ..., s.

(c) X is called (arithmetically) Gorenstein if R is a Gorenstein local ring.

(d) X is called a complete intersection if IX can be generated by n homogeneous poly-
nomials.

It is well-known (see e.g. [8]) that any complete intersection is Gorenstein and any
Gorenstein scheme is locally Gorenstein. Moreover, a Gorenstein scheme in P2 is also a
complete intersection (see []).

Lemma 2.4. There does not exist a Gorenstein set X in P2 such that:

(a) 17 ≤ dX ≤ 24;

(b) X is not in generic position;

(c) there is a subset Y ⊆ X in generic position with dY = dX − 1.

Proof. Suppose X is a Gorenstein scheme with properties (a)-(c). Then X is also a
complete intersection, and so IX is generated by two homogeneous polynomials of degrees
d1 and d2 with 1 ≤ d1 ≤ d2. Then dX = d1d2. Since dY = dX − 1 > 15 and Y is
in generic position, we have αY > 4. So, we have (IX)4 ⊆ (IY )4 = 0. The condition
17 ≤ dX = d1d2 ≤ 24 implies that d1 ≤ 4, and consequently we get (IX)4 ̸= 0, a
contradiction.

Notice that K[x0] is a Noetherian normalization of the ring R.

Definition 2.5. The graded R-module

ωR = HomK[x0](R,K[x0])(−1)

is called the canonical module of R (or of X).

3



The canonical module ωR is finitely generated and its Hilbert function satisfies

HFωR
(i) = dX − HFX(−i)

for all i ∈ Z. The following characterization of the Gorenstein property of X can be found
in [6, Proposition 2.1.3].

Proposition 2.6. The scheme X is Gorenstein if and only if ωR
∼= R(rX − 1). In this

case HFX is symmetric.

Next, let Rx0 be the graded localization of R at x0 and let R̃ =
⊕

i≥0(Rx0)i. Note

that Rx0 , R̃ are graded rings and ı : R → Rx0 , f 7→ f/1, is an injection with Im(ı) ⊆ R̃.
In particular, we can identify R with its image in Rx0 .

Definition 2.7. The conductor of R in R̃ is the ideal

FR̃/R = {f ∈ Rx0 | f · R̃ ⊆ R}.

The conductor FR̃/R is a homogeneous ideal of both R and R̃. When qj is generated

by linear forms (i.e., pj is K-rational) for j = 1, ..., s, the ring R̃ is exactly the integral
closure of R in its full quotient ring (see [5, Thm. 2]).

Proposition 2.8. (a) We have HFR̃(i) = dX for all i ≥ 0.

(b) We have HFF
R̃/R

(i) ≤ HFX(i) for all i ∈ Z and HFF
R̃/R

(i) = dX for all i ≥ rX .

(c) FR̃/R = ⊕i≥rXRi if and only if AnnR(ωR)−rX+1 = 0.

Proof. (a) This follows from the fact that x−k
0 Ri+k ⊆ R̃i, HFX(i) = dX for i ≥ rX and

x0 is a nonzero-divisor of Rx0 .
(b) Since FR̃/R is a homogeneous ideal of R, the first part of (b) holds true. For the

second part of (b), it suffices to show that RrX ⊆ FR̃/R. Let f ∈ RrX and g ∈ (R̃)i be

nonzero elements with i ≥ 0. We write g = h/xk
0 with h ∈ Ri+k with k ≥ 0. Then

fh ∈ RrX+i+k = xi+k
0 RrX , and so there is f ′ ∈ RrX such that fh = xi+k

0 f ′. This implies
that fg = fh/xk

0 = xi
0f

′ ∈ RrX+i. Hence f ∈ FR̃/R, as wanted.

(c) This follows from [7, Thm. 5.4] and [8, Thm. 5.6].

Remark 2.9. If X satisfies (c) of Proposition 2.8, then X attains the minimal conductor
and it is also known that X has the CB-property (see [8]).

3 Main Results

In this section we continue using the notation introduced in the previous section.

Definition 3.1. The number ℓ(R/FR̃/R) is called the conductor colength of X, where “ℓ”

denotes length (or dimension) as K-vector space.

The lengths ℓ(R/FR̃/R) and ℓ(R̃/R) are finite, since RrX = R̃rX = (FR̃/R)rX by Propo-
sition 2.8. In particular, we have the following relation between them.
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Lemma 3.2. We have

ℓ(R/FR̃/R) = ℓ(R̃/FR̃/R)− ℓ(R̃/R).

Proof. This follows from the exact sequence

0 −→ R/FR̃/R −→ R̃/FR̃/R −→ R̃/R −→ 0.

Furthermore, we have the following characterization of the Gorenstein property of X.

Theorem 3.3. X is Gorenstein if and only if the following conditions are satisfied:

(a) X is locally Gorenstein;

(b) FR̃/R = ⊕i≥rXRi;

(c) ℓ(R̃/R) = ℓ(R/FR̃/R).

Proof. Suppose that X is Gorenstein. Then X is clearly locally Gorenstein. By Propo-
sition 2.6, there is φ ∈ (ωR)−rX+1 such that ωR = φ · R and AnnR(φ) = 0, and so
AnnR(ωR)−rX+1 = 0. Proposition 2.8.c yields that FR̃/R = ⊕i≥rXRi. It follows that

ℓ(R/FR̃/R) =
∑rX−1

i=0 HFX(i). We also have

ℓ(R̃/R) =

rX−1∑
i=0

(dX − HFX(i)).

Since HFX is symmetric by Proposition 2.6, Lemma 3.2 yields ℓ(R/FR̃/R) = ℓ(R̃/R).

Conversely, suppose that conditions (a)-(c) are satisfied. Condition (b) implies

AnnR(ωR)−rX+1 = 0.

Since K is infinite, we find φ ∈ (ωR)−rX+1 such that AnnR(φ) = 0. In particular, we have
an injection µφ : R(rX − 1) → ωR given by µφ(f) = f · φ. This shows that

HFX(i) ≤ dX − HFX(rX − 1− i)

for all i ∈ Z. So, conditions (b) and (c) yields that HFX is symmetric. Hence the map
µφ is an isomorphism. Therefore X is Gorenstein by Proposition 2.6.

Now we apply previous results to prove the following theorems.

Theorem 3.4. Suppose X is locally Gorenstein and in generic position. Then the fol-
lowing conditions are equivalent.

(a) X is Gorenstein.

(b) FR̃/R = ⊕i≥rXRi, rXdX = 2
(
n+rX
n+1

)
.

(c) FR̃/R = ⊕i≥rXRi, dX = 2 or dX = n+ 2.
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Proof. Since X is in generic position, we have

rX−1∑
i=0

HFX(i) =

rX−1∑
i=0

(
n+ i

n

)
=

(
n+ rX
n+ 1

)
.

The equivalence of (a) and (b) follows from Lemma 3.3 and the fact that ℓ(R̃/R) =
ℓ(R/FR̃/R) is equivalent to

rXdX = 2

(
n+ rX
n+ 1

)
.

For the equivalence of (b) and (c), we need to verify that rXdX = 2
(
n+rX
n+1

)
if and only if

dX = 2 or dX = n+ 1. We distinguish two cases.

(c1) If dX =
(
n+rX

n

)
then rXdX = 2

(
n+rX
n+1

)
if and only if n = 1. (We omit this case, since,

for n = 1, X is always a complete intersection.)

(c2) If
(
n+rX−1

n

)
< dX <

(
n+rX

n

)
, then rXdX = 2

(
n+rX
n+1

)
implies(

n+ rX − 1

n

)
<

2

rX

(
n+ rX
n+ 1

)
that is rX < 2n

n−1
= 2 + 2

n−1
. Hence rX ≤ 3 and rX = 3 if and only if n = 2. Using

rXdX = 2
(
n+rX
n+1

)
, we see that (rX , dX) ∈ {(1, 2), (2, n+2)} are satisfied. In the case

rX = 3 and n = 2, we get 3dX = 2
(
5
3

)
, which is impossible.

Next, we prove the following theorem.

Theorem 3.5. Suppose that X is locally Gorenstein with minimal conductor, but not in
generic position, and that there is a subset Y in generic position with dY = dX − 1. Then
X is Gorenstein if and only if

(rX − 2)dX = 2

(
n+ rX − 1

n+ 1

)
− 2.

Proof. Clearly, IX ⊆ IY and

HFY (i) =

{
HFX(i) if i < αY/X ,

HFX(i)− 1 if i ≥ αY/X ,

where αY/X = min{i ∈ N | (IY /IX)i ̸= 0}. In particular, rX − 1 ≤ rY ≤ rX . By the
assumption, Y is in generic position, and so αX ≥ αY ≥ rY . Since X is not in generic
position, it must be the case αX = αY = rY = rX−1. Subsequently, HFX(rX−1) = dX−1
and

ℓ(R/FR̃/R) =

rX−2∑
i=0

(
n+ i

n

)
+ (dX − 1)

=

(
n+ rX − 1

n+ 1

)
+ dX − 1.
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Also, X has the minimal conductor, i.e., FR̃/R = ⊕i≥rXRi, this implies

ℓ(R̃/R) = rXdX −
rX−1∑
i=0

HFX(i)

= (rX − 1)dX −
(
n+ rX − 1

n+ 1

)
+ 1.

Hence an application of Lemma 3.3 yields the claim.

If dX ≤ n then X is contained in a hyperplane H ∼= Pn−1, so in the following corollary
it suffices to treat the case dX > n.

Corollary 3.6. In the setting of Theorem 3.5, if dX > n then X is Gorenstein if and
only if dX = 2(n+ 2) or dX = (n+ 3)(n+ 2)/2− 1.

Proof. This follows by Theorem 3.5 and from a similar calculation as in the proof of [5,
Theorem 9] for sets of K-rational points.

Remark 3.7. When qj is generated by linear forms (i.e., pj is K-rational) for j = 1, ..., s,
our theorems cover a result in [5, Sections 3-4].

Example 3.8. Let X = {p1, p2, p3, p4} ⊆ P3, where p1 = (1 : 0 : 0 : 0), p2 = (1 : 1 : 0 : 0),
p3 = (1 : 0 : 1 : 0) and a non-reduced point p4 corresponding to q4 = ⟨x1 − x0, x2 −
x0, (x3 − x0)

2⟩ ⊆ K[x0, ..., x3]. Clearly, X is locally Gorenstein with dX = 5. We have
HFX : 1 4 5 5 · · · , and so αX = rX = 2 and X is in generic position. Also, we have
FR̃/R = ⟨R2⟩ and rXdX = 10 = 2

(
5
4

)
= 2

(
n+rX
n+1

)
. Thus, Theorem 3.4 yields that X is a

Gorenstein set.

Example 3.9. Consider the set X ′ = {p1, p2, p3, p′4} ⊆ P3 with p1 = (1 : 0 : 0 : 0),
p2 = (1 : 1 : 0 : 0), p3 = (1 : 0 : 1 : 0) and a non-reduced point p′4 corresponding
to q′4 = ⟨(x1 − x0)

2, x2 − x0, x3 − x0⟩ ⊆ K[x0, ..., x3]. Then HFX′ : 1 4 5 5 · · · and
rX′ = αX′ = 2, and so X ′ is in generic position. However, we have (FR̃/R)1 ̸= 0 and so

⟨R2⟩ ⊊ FR̃/R. Theorem 3.4 yields that X ′ is not a Gorenstein set.
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