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1. Introduction

In March 2023, we were fortunate to participate in the lectures on binomial ideals 
by Professor Jürgen Herzog in the CoCoa school at Hue University. Motivated by his 
beautiful lectures and his recent joint work with Professor Takayuki Hibi on the regularity 
of Rees algebras of edge ideals we asked him about the regularity of Rees algebras of 
edge ideals of odd cycles. Professor Herzog said that it is a good research problem, so 
we started by trying to compute the regularity of Rees algebras of edge ideals of odd 
cycles. It turns out that a simple modification of the argument in [9] gives us the answer. 
Furthermore, it was known at that time that if R(G) is normal and G is a König graph 
or has a perfect matching then reg(R(G)) = mat(G), where R(G) is the Rees algebra of 
the edge ideal of G, reg denotes the Castelnuovo-Mumford regularity, and mat(G) is the 
matching number of G. It is not hard to find a non König graph which does not have a 
perfect matching but still has reg(R(G)) = mat(G). But they are essentially gluing of 
König graphs to perfect matching graphs. We will prove a more precise statement below 
in this work which grew out of influential lectures and the work of Professor Herzog. We 
humbly dedicate this to our admiral teacher, Professor Jürgen Herzog.

Let us now recall the notion of the Rees algebra of the edge ideal of a simple graph. 
Let G be a simple graph on the vertex set V (G) and edge set E(G) ⊆ V (G) × V (G). 
Assume that V (G) = [n] = {1, . . . , n}. The Rees algebra of the edge ideal of G over a 
field k, denoted by R(G) is the subalgebra of k[x1, . . . , xn, t] generated by x1, . . . , xn and 
xixjt where {i, j} is an edge of G. In [9], Herzog and Hibi proved that R(G) is normal 
if and only if G satisfies the odd cycle condition [13] and has at most one non-bipartite 
connected component. Furthermore, in this case, mat(G) ≤ reg(R(G)) ≤ mat(G)+1. By 
[4, Theorem 4.2], [9, Corollary 2.3], and [12, Corollary 3.2], we have that reg(R(G)) =
mat(G) when G is a bipartite graph, a perfect matching graph, or a connected König 
graph. But it was not known whether reg(R(G)) = mat(G) or mat(G) + 1 when G is an 
odd cycle, which is the starting point of this work.

We will now introduce relevant graph concepts to state our main result. A subset 
T ⊆ V (G) is an independent set of G if E(G) ∩ T × T = ∅. For a subset U of V (G), we 
denote by NG(U) the set of neighbors of U in G.

Definition 1.1. A graph G is called a Tutte-Berge graph if there exists an independent 
set T of G such that

|T | = |NG(T )| + |V (G)| − 2 mat(G). (1)

The number |V (G)| − 2 mat(G) is the number of uncovered vertices by a maximum 
matching, which was described by Tutte [T] and Berge [1]. When G has a perfect 
matching, T = ∅ satisfies Eq. (1). When G is König, then a maximum independent 
set of G satisfies Eq. (1). Hence, perfect matching graphs and König graphs are two 
extremes of Tutte-Berge graphs. Tutte-Berge graphs are precisely the graphs for which 
reg(R(G)) = mat(G) when R(G) is normal.
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Theorem 1.2. Let G be a simple graph. Assume that G has at least two edges and R(G)
is normal. Then reg(R(G)) = mat(G) if and only if G is a Tutte-Berge graph.

The main ingredients for the proof of Theorem 1.2 are the Gallai-Edmonds Structure 
Theorem and the description of the edge polytope of a graph of Ohsugi and Hibi [13]. 
To state a characterization of Tutte-Berge graphs, we recall the Gallai-Edmonds decom-
position. Let G be a simple graph. Denote by D(G) the set of all vertices in G which are 
not covered by at least one maximum matching of G. Let A(G) be the set of vertices in 
V (G)\D(G) adjacent to at least one vertex in D(G) and C(G) = (V (G)\D(G))\A(G). 
The decomposition V (G) = D(G) ∪ A(G) ∪ C(G) is called the Gallai-Edmonds decom-
position.

Theorem 1.3. Let G be a simple graph. Then G is Tutte-Berge if and only if D(G) consists 
of isolated vertices only.

In the next section, we establish properties of Tutte-Berge graphs and prove Theo-
rem 1.3. In Section 3, we prove Theorem 1.2.

2. Tutte-Berge graphs

In this section, we classify all Tutte-Berge graphs. We first introduce relevant con-
cepts. We refer to the beautiful exposition [11] for unexplained terminology and further 
information.

Definition 2.1. Let G be a simple graph. A matching in G is a set of edges, no two of 
which share an endpoint. The matching number of G, denoted by mat(G), is the size of 
a maximum matching of G. A perfect matching is a matching that covers every vertex of 
the graph. A graph that has a perfect matching is also called a perfect matching graph.

For a subset U ⊂ V (G), we denote by G\U the induced subgraph of G on V (G) \ U . 
When U = {u}, we use G\u instead of G\{u}. We denote by α(G) the maximum size of 
an independent set of G.

Definition 2.2. Let G be a simple graph.

(1) G is factor-critical if for every vertex v of G, G\v has a perfect matching.
(2) G is König if α(G) + mat(G) = |V (G)|.

Gallai [7,8] and Edmonds [6] independently proved the following structure theorem.

Theorem 2.3 (Gallai-Edmonds Structure Theorem). Let G be a simple graph, and 
D(G), A(G) and C(G) be defined as above. Then
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(1) the components of the subgraph induced by D(G) are factor-critical,
(2) the subgraph induced by C(G) has a perfect matching,
(3) if M is any maximum matching of G, it contains a near-perfect matching of each 

component of D(G), a perfect matching of each component of C(G) and matches all 
vertices of A(G) with vertices in distinct components of D(G),

(4) 2 mat(G) = |V (G)| − c(D(G)) + A(G), where c(D(G)) denotes the number of com-
ponents of the graph spanned by D(G).

We now have some preparation lemmas.

Lemma 2.4. Let G be a factor-critical graph. Assume that |V (G)| > 1. Then for any 
independent set T of G we have |T | ≤ |NG(T )|. In particular, if |V (G)| > 1 then G is 
not Tutte-Berge.

Proof. By definition, we have that |V (G)| is odd. Let T be an independent set of G. 
Since |V (G)| > 1, there exists a vertex v of G such that v / ∈ T . Since G\v has a perfect 
matching and contains T , we deduce that

|T | ≤ |NG\v(T )| ≤ |NG(T )|.

The conclusion follows. �
Lemma 2.5. Let G be a simple graph and U ⊆ V (G) a subset of vertices of G. We denote 
by G1 and G2 the induced subgraphs of G on U and V (G)\U , respectively. Assume that 
there exists a maximum matching M of G and a partition M = M1 ∪M2 such that M1
is contained in G1 and M2 is contained in G2. Then mat(G) = mat(G1) + mat(G2).

Proof. Since a matching of G1 and a matching of G2 give a matching of G, we deduce 
that mat(G) ≥ mat(G1) + mat(G2). The existence of a maximum matching M in the 
hypothesis implies that mat(G) ≤ mat(G1) + mat(G2). The conclusion follows. �
Lemma 2.6. Let G be a simple graph and T ⊆ V (G) an independent set of G. Then

|T | ≤ |NG(T )| + |V (G)| − 2 mat(G).

Proof. Assume by contradiction that there exists a graph G and an independent set T
of G such that |T | > |NG(T )|+ |V (G)|−2 mat(G). Let G be such a graph of the smallest 
size. In particular, G is connected. If G has a perfect matching, then |T | ≤ |NG(T )|
for any independent set T , so we must have G does not have a perfect matching. If 
A(G) = ∅ then G = D(G) is factor-critical, which is a contradiction to Lemma 2.4. Hence, 
A(G) 
= ∅. Let v be any element of A(G). Let M be any maximum matching of G. By the 
Edmonds-Gallai Structure Theorem, M contains an edge of the form vw with w in some 
component D2 of D(G). Let G2 be the induced subgraph of G on V (D2)∪{v} and G1 be 



T.Q. Hoa et al. / Journal of Algebra 680 (2025) 1–11 5

the induced subgraph of G on V (G) \ V (G2). By Theorem 2.3 and Lemma 2.5, we have 
that G2 has a perfect matching and mat(G) = mat(G1) + mat(G2). Let T1 = T ∩V (G1)
and T2 = T ∩ V (G2). Then we have NG(T ) ≥ NG1(T1) + NG2(T2). Thus, we have

|T1| + |T2| > |NG1(T1)| + |NG2(T2)| + |V (G1)| − 2 mat(G1).

Since G2 has a perfect matching, |T2| ≤ |NG2(T2)|. Therefore, we must have

|T1| > |NG1(T1)| + |V (G1)| − 2 mat(G1),

which is a contradiction, as G1 is strictly smaller than G. The conclusion follows. �
Lemma 2.7. Let G be a simple graph. Then G is Tutte-Berge if and only if each connected 
component of G is Tutte-Berge.

Proof. The conclusion follows from the definition and Lemma 2.6. �
The following properties of Tutte-Berge graphs make it a natural class containing 

König graphs and perfect matching graphs.

Lemma 2.8. Let G be a Tutte-Berge graph and U ⊆ V (G) a subset of vertices of G. We 
denote by G1 and G2 the induced subgraph of G on U and V (G)\U , respectively. Assume 
that there exists a maximum matching M of G and a partition M = M1 ∪M2 such that 
M1 is contained in G1 and M2 is contained in G2. Then G1 and G2 are Tutte-Berge.

Proof. By Lemma 2.5, mat(G) = mat(G1) + mat(G2). Let T be an independent set 
of G such that |T | = |NG(T )| + |V (G)| − 2 mat(G). We denote by T1 = T ∩ U and 
T2 = T ∩ (V (G)\U). We have that |NG(T )| ≥ NG1(T1) + NG2(T2). Hence,

|T1| + |T2| ≥ (|NG1(T1)| + |V (G1)| − 2 mat(G1)) + (|NG2(T2)| + |V (G2)| − 2 mat(G2)) .

By Lemma 2.6, we deduce that |T1| = |NG1(T1)| + |V (G1)| − 2 mat(G1) and |T2| =
|NG2(T2)| + |V (G2)| − 2 mat(G2). The conclusion follows. �
Lemma 2.9. Assume that G is a Tutte-Berge graph and D(G) has no isolated vertices. 
Then D(G) = ∅ and G has a perfect matching.

Proof. By Lemma 2.7, we may assume that G is connected. We prove by induction on 
|V (G)|. If |A(G)| = 0 then D(G) = ∅ or G = D(G). By Lemma 2.4, we must have 
D(G) = ∅ and G has a perfect matching. Assume by contradiction that |A(G)| ≥ 1. 
Let u be an element of A(G). As in the proof of Lemma 2.6, let M be any maximum 
matching of G. Then M contains an edge that connects u to a connected component D2
of D(G). Let G1 = G\(D2 ∪ {u}) and G2 be the induced subgraph of G on D2 ∪ {u}. 
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By Theorem 2.3 and Lemma 2.8, G1 is Tutte-Berge and G2 has a perfect matching. We 
will prove that D(G1) has no isolated vertices. Let w be any element of D(G1). Then 
there exists a maximum matching M1 of G1 such that w / ∈ M1. M1 and a maximum 
matching of G2 form a maximum matching of G. Hence, w ∈ D(G). In other words, 
D(G1) ⊆ D(G) \D2 and A(G1) ⊆ A \ u. Assume by contradiction that w ∈ D(G1) is an 
isolated vertex. Then, the connected component of D(G) containing w must have vertices 
in A(G1) ⊆ A(G)\u. In other words, D(G)∩A(G)\u 
= ∅. This is a contradiction. Thus, 
D(G1) has no isolated vertices. By induction, G1 has a perfect matching. Hence, G itself 
has a perfect matching. In other words, D(G) = ∅. The conclusion follows. �
Lemma 2.10. Assume that G is a Tutte-Berge graph. Then, D(G) consists of isolated 
vertices only.

Proof. By Lemma 2.7, we may assume that G is connected. Assume by contradiction that 
D(G) has a connected component G1 that is not an isolated vertex. By Theorem 2.3, G1 is 
factor-critical. Let G2 = G\V (G1). Since G1 ⊆ D(G), there exists a maximum matching 
M of G that uncovers a vertex of G1. This implies that mat(G) = mat(G1) + mat(G2). 
By Lemma 2.8, we deduce that G1 is Tutte-Berge, which is a contradiction to Lemma 2.4. 
The conclusion follows. �

We are now ready for the proof of a characterization of Tutte-Berge graphs.

Proof of Theorem 1.3. By Lemma 2.10, it remains to prove the sufficiency condition. Let 
G1 be the induced subgraph of G on D(G)∪A(G). By Theorem 2.3, mat(G1) = |A(G)|
and mat(G) = mat(G1) + |C(G)|/2. We have that D(G) is an independent set of G and

|D(G)| = |V (G1)| − mat(G1) = |A(G)| + |V (G1)| − 2 mat(G1)

= |NG(D(G))| + |V (G)| − 2 mat(G).

Hence, G is Tutte-Berge. �
Example 2.11. The following graph is Tutte-Berge but is not König nor has a perfect 
matching.

Remark 2.12. 

(1) The Edmonds’ blossom algorithm [6] gives a polynomial time algorithm for the 
Gallai-Edmonds structure decomposition. Hence, it also yields a polynomial time 
algorithm for determining if a graph is Tutte-Berge.
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(2) When D(G) consists of isolated vertices only the induced subgraph of G on D(G)∪
A(G) is König. Hence, a Tutte-Berge graph decomposes into a König graph and a 
perfect matching graph.

(3) Deming [5] and Sterboul [S] independently gave the first characterization for König 
graphs. Theorem 1.3 is a natural analog of the characterization of König graphs 
given by Lovász [10, Lemma 3.3].

3. Regularity of normal Rees algebras of edge ideals

In this section, we compute the regularity of normal Rees algebras of edge ideals of 
graphs. First, we recall the description of the edge polytope of a graph by Ohsugi and 
Hibi [13].

Let G be a simple graph on n vertices. We denote by e1, . . . , en the standard basis 
vectors of Rn. The edge polytope of G, denoted by PG, is the convex hull of {ei + ej |
{i, j} is an edge of G}. Let L be the hyperplane L = {x ∈ Rn | x1 + · · · + xn = 2}. For 
each i = 1, . . . , n, we denote by H+

i the half-space H+
i = {x ∈ Rn | xi ≥ 0}. For each 

independent set T of G, we denote by H−
G,T the half-space

H−
G,T =

⎧⎨
⎩x ∈ Rn |

∑
i∈T 

xi ≤
∑

j∈NG(T )

xj

⎫⎬
⎭ .

Let T be an independent set of G, the bipartite graph induced by T , denoted by 
BG(T ), is the graph with vertex set V (BG(T )) = T ∪NG(T ) and edge set E(BG(T )) =
{{v, w} | v ∈ T,w ∈ NG(T )}.

Definition 3.1. A vertex v of G is said to be regular in G if each connected component 
of G \ v has at least one odd cycle.

Definition 3.2. An independent set T of G is said to be fundamental in G if it satisfies 
the following conditions

(1) the bipartite graph BG(T ) induced by T is connected;
(2) if T ∪NG(T ) 
= V (G), then each connected component of G\V (BG(T )) has at least 

one odd cycle.

We have the following description of PG [13, Theorem 1.7].

Theorem 3.3. Assume that G has at least one odd cycle. Let R be the set of regular 
vertices of G and F the set of nonempty fundamental independent sets of G. Then

PG = L ∩
⋂
i∈R

H+
i

⋂
T∈F

H−
G,T .
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Let G∗ be the cone graph over G, i.e., V (G∗) = V (G) ∪ {n + 1} and

E(G∗) = E(G) ∪ {{i, n + 1} | i = 1, . . . , n}.

We now have some preparation lemmas.

Lemma 3.4. Assume that G has more than one edge. Then each vertex v ∈ V (G) is a 
regular vertex of G∗.

Proof. Since G∗\v is the cone graph over G\v, it is connected. Furthermore, since G has 
more than one edge, G\v has at least one edge; this edge and the new vertex in G∗ form 
a triangle in G∗\v. The conclusion follows. �
Lemma 3.5. Let G be a simple graph on n vertices. Assume that G has at least two edges 
and R(G) is normal. Let q0 = min{q ≥ 1 | q(PG∗ \ ∂PG∗) ∩ Zn+1 
= ∅}, where ∂PG∗ is 
the boundary of PG∗ . Then

reg(R(G)) = n + 1 − q0.

Proof. The conclusion follows from the proof of [9, Theorem 2.2]. �
Lemma 3.6. Assume that q < n and a = (a1, . . . , an+1) ∈ q(PG∗\∂PG∗). If ai > 1 then 
b ∈ q(PG∗\∂PG∗) where b = a + en+1 − ei.

Proof. Since ai > 1, we have that bi ≥ 1. Thus, b ∈ H+
j \∂H+

j for all j = 1, . . . , n + 1. 
Now, let T be an independent set of G∗. If T = {n+ 1}, then we have bn+1 = 2q− (b1 +
· · ·+bn). Since q < n and bi > 0 for all i = 1, . . . , n, we deduce that bn+1 < n ≤

∑n
i=1 bi. 

Hence, b ∈ H−
G∗,T \∂H−

G∗,T . Now, assume that T is an independent set of G. If i ∈ T

then

∑
j∈T

bj =
∑
j∈T

aj − 1 <
∑

j∈NG(T )

aj + an+1 − 1 =
∑

j∈NG(T )

bj + bn+1 − 2.

Now, assume that i / ∈ T . Then

∑
j∈T

bj =
∑
j∈T

aj <
∑

j∈NG(T )

aj + an+1 − 1 ≤
∑

j∈NG(T )

bj + bn+1 − 1.

Hence, b ∈ H−
G∗,T for all independent sets T of G. The conclusion follows. �

Lemma 3.7. Let G be a simple graph. Let p = (1, 1, . . . , 1, n − 2 mat(G)) be a point in 
Rn+1. Then p ∈ qPG∗ , where q = n− mat(G).
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Proof. Clearly, p ∈ H+
i for all i = 1, . . . , n+1. Let T be an independent set of G∗. Then 

either T = {n+1} or T is an independent set of G. If T = {n+1}, then n−2 mat(G) < n, 
so p ∈ H−

G∗,T . If T is an independent set of G, the conclusion follows from the definition 
and Lemma 2.6. �
Lemma 3.8. Let G be a simple graph with connected components G1, . . . , Gc. Assume that 
T1, . . . , Tc are fundamental independent sets of G1, . . . , Gc. Then T = T1 ∪ · · · ∪ Tc is a 
fundamental independent set of G∗.

Proof. Since BG∗(T ) = BG1(T1) ∪ · · · ∪ BGc
(Tc) ∪ {n + 1}, BG∗(T ) is connected. Fur-

thermore, G∗ \ BG∗(T ) = (G1\BG1(T1)) ∪ · · · ∪ (Gc\BGc
(Tc)). The conclusion follows 

from the definition of fundamental independent sets. �
Lemma 3.9. Assume that G is a Tutte-Berge graph. Then there exists a fundamental 
independent set T of G∗ such that |T | = |NG(T )| + |V (G)| − 2 mat(G).

Proof. By Lemma 3.8, we may assume that G is connected. If G is bipartite, we can 
take T to be the maximum independent set of G. Thus, we may assume that G is not 
bipartite. If G has a perfect matching, we may take T = ∅. Thus, we may assume that 
G does not have a perfect matching. By Theorem 1.3, we have that |P | = |NG(P )| +
|V (G)| − 2 mat(G), where P = D(G). By definition V (BG(P )) = D(G) ∪ A(G). Let 
H1, . . . , Hc be the connected components of C(G). Since C(G) has a perfect matching, 
H1, . . . , Hc have a perfect matching. For each i = 1, . . . , c, we set

Ti =
{
∅ if Hi is non-bipartite,
a maximum independent set of Hi if Hi is bipartite.

Let T = P ∪ T1 ∪ · · · ∪ Tc. Then T is an independent set of G and have |T | = |NG(T )|+
|V (G)| − 2 mat(G). Furthermore, G \ BG(T ) =

⋃
j Hj , where the union is taken over 

the indices j such that Hj is non-bipartite. Note that BG∗(T ) = BG(T ) ∪ {n + 1}, 
hence BG∗(T ) is connected. By definition, T is a fundamental set of G∗. The conclusion 
follows. �

We are now ready for the proof of Theorem 1.2.

Proof of Theorem 1.2. We may assume that G does not have a perfect matching. Note 
that R(G) is normal by assumption.

First, assume that G is not Tutte-Berge. In particular, n− 2 mat(G) > 0 and for any 
independent set T of G we have |T | < |NG(T )| + n − 2 mat(G). Let p = (1, . . . , 1, n −
2 mat(G)) be a point in Zn+1. Hence, p ∈ q(PG∗\∂PG∗) where q = n − mat(G). By 
Lemma 3.5, we have

reg(R(G)) = n + 1 − q0 ≥ n + 1 − q = n + 1 − (n− mat(G)) = mat(G) + 1.
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By [9, Theorem 2.2], reg(R(G)) = mat(G) + 1.
Now, assume that G is Tutte-Berge. By [4, Theorem 4.2] and [9, Corollary 2.3], we 

may assume that G is not bipartite and does not have a perfect matching. Since R(G)
is normal, G can have at most one non-bipartite connected component. Let G1 be the 
unique non-bipartite connected component of G. By Lemma 2.7, G1 is Tutte-Berge. 
By Lemma 3.9, there exists a fundamental set T1 of G∗

1 such that |T1| = |NG1(T1)| +
|V (G1)| − 2 mat(G1). Let G2, . . . , Gc be bipartite connected components of G. For each 
i = 2, . . . , c, let Ti be a maximum independent set of Gi. Then T = T1 ∪ · · · ∪ Tc is a 
fundamental set of G∗ such that |T | = |NG(T )| + |V (G)| − 2 mat(G). Since G does not 
have a perfect matching, |T | ≥ 1.

We will now prove that reg(R(G)) = mat(G). By Lemma 3.5, it suffices to prove that 
q0 ≥ n − mat(G) + 1. Indeed, let a = (a1, . . . , an+1) be a point in q0(PG∗\∂PG∗). By 
Lemma 3.4, each i ∈ [n] is a regular vertex of G∗. Hence, ai ≥ 1 for all i = 1, . . . , n. Now, 
assume by contradiction that q0 ≤ n−mat(G) < n. By Lemma 3.6, we may assume that 
ai = 1 for all i = 1, . . . , n. Then an+1 = 2q0−(a1 + · · ·+an) = 2q0−n ≤ n−2 mat(G). In 
other words, a / ∈ q0(HG∗,T \∂H−

G∗,T ). This is a contradiction. The conclusion follows. �
Corollary 3.10. Let G = C2n+1 be an odd cycle of length 2n + 1 ≥ 3. Then

reg(R(G)) = mat(G) + 1 = n + 1.

Proof. Since G is not Tutte-Berge, the conclusion follows from Theorem 1.2. �
Remark 3.11. Let G = Kn be a complete graph on n vertices. Assume that n ≥ 3 is odd. 
Then G is not Tutte-Berge. Hence, reg(R(G)) = mat(G) + 1. This is also a special case 
of [3, Corollary 2.12].

Remark 3.12. The assumption that R(G) is normal is crucial in Theorem 1.2. As pointed 
out by Herzog and Hibi [9, Example 2.4], there is a perfect matching graph G such that 
reg(R(G)) > mat(G). The reason is that when R(G) is not normal, one cannot use 
Danilov-Stanley Theorem [2, Theorem 6.3.5]; hence, Lemma 3.5 is no longer valid.

Declaration of competing interest

The authors have no relevant financial interests to disclose.

Acknowledgments

Tran Quang Hoa is supported by the Vietnam National Foundation for Science and 
Technology Development (NAFOSTED) under grant number 101.04-2023.07. Cao Huy 
Linh is partially supported by the Vietnam National Program for the Development of 
Mathematics 2021-2030 under grant number B2023-CTT-03. We thank the anonymous 



T.Q. Hoa et al. / Journal of Algebra 680 (2025) 1–11 11

referees for their valuable suggestions, which helped improve the clarity and readability 
of the paper.

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed 
during the current study.

References

[1] C. Berge, Sur le couplage maximum d’un graphe, C. R. Acad. Sci. 247 (1958) 258–259.
[2] W. Bruns, J. Herzog, Cohen-Macaulay Rings, rev. ed., Cambridge Studies in Advanced Mathemat-

ics, vol. 39, Cambridge University Press, 1998.
[3] W. Bruns, W.V. Vasconcelos, R.H. Villarreal, Degree bounds in monomial subrings, Ill. J. Math. 

41 (1997) 341–353.
[4] Y. Cid-Ruiz, Regularity and Gröbner bases of the Rees algebra of edge ideals of bipartite graphs, 

Matematiche 73 (2018) 279–296.
[5] R.W. Deming, Independence numbers of graphs-an extension of the Koenig-Egervary theorem, 

Discrete Math. 27 (1979) 23–33.
[6] J. Edmonds, Paths, trees, and flowers, Can. J. Math. 17 (1965) 449–467.
[7] T. Gallai, Kritische graphen II, Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 8 (1963) 373–395.
[8] T. Gallai, Maximale Systeme unabhängiger Kanten, Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 9 

(1964) 401–413.
[9] J. Herzog, T. Hibi, Matching numbers and the regularity of the Rees algebra of an edge ideal, Ann. 

Comb. 24 (2020) 577–586.
[10] L. Lovász, Ear decompositions of matching-covered graphs, Combinatorica 3 (1983) 105–117.
[11] L. Lovász, M. Plummer, Matching Theory, North-Holland, 1986.
[12] R. Nandi, R. Nanduri, On regularity bounds and linear resolutions of toric algebras of graphs, J. 

Commut. Algebra 14 (2) (2022) 285–296.
[13] H. Ohsugi, T. Hibi, Normal polytopes arising from finite graphs, J. Algebra 207 (1998) 409–426.
[S] F. Sterboul, A characterization of the graphs in which the transversal number equals the matching 

number, J. Comb. Theory, Ser. B 27 (1979) 228–229.
[T] W.T. Tutte, The factorization of linear graph, J. Lond. Math. Soc. 22 (1947) 107–111.

http://refhub.elsevier.com/S0021-8693(25)00292-3/bib9D5ED678FE57BCCA610140957AFAB571s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bib1BAA5A77AEFF33338948C1E0C4466462s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bib1BAA5A77AEFF33338948C1E0C4466462s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibD02E590570A67EC30712C72A459CB7DFs1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibD02E590570A67EC30712C72A459CB7DFs1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bib1D7B33FC26CA22C2011AAA97FECC43D8s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bib1D7B33FC26CA22C2011AAA97FECC43D8s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibF623E75AF30E62BBD73D6DF5B50BB7B5s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibF623E75AF30E62BBD73D6DF5B50BB7B5s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bib3A3EA00CFC35332CEDF6E5E9A32E94DAs1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibC0497521D35D66866E3AF408094864C3s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibD24BADE136BC8CD77E37395EA94226EBs1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibD24BADE136BC8CD77E37395EA94226EBs1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibFAAFC315B95987FC2B071BCD8F698B81s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibFAAFC315B95987FC2B071BCD8F698B81s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibD20CAEC3B48A1EEF164CB4CA81BA2587s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bib233724C5ADF28DA47784390134DB3C66s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bib8CC2E7240164328FDC3F0E5E21032C56s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bib8CC2E7240164328FDC3F0E5E21032C56s1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibEC947A7CC943C84B1EF84958A7DF827Cs1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bib5DBC98DCC983A70728BD082D1A47546Es1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bib5DBC98DCC983A70728BD082D1A47546Es1
http://refhub.elsevier.com/S0021-8693(25)00292-3/bibB9ECE18C950AFBFA6B0FDBFA4FF731D3s1

	Regularity of normal Rees algebras of edge ideals of graphs
	1 Introduction
	2 Tutte-Berge graphs
	3 Regularity of normal Rees algebras of edge ideals
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


