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Abstract. Soil erosion is one of the most severe global threats to watershed 

sustainability. Fragmented forests lead to increased surface runoff, 

accelerating erosion, particularly in watersheds characterized by rugged 

terrains. Therefore, understanding the impact of forest fragmentation on 

soil erosion rate is crucial for effective forest and watershed management. 

This study applies the revised universal soil loss equation model to predict 

the annual average soil erosion rate and then combine it with the sediment 

delivery ratio to estimate sediment yield. Forest fragmentation is analyzed 

using a land use/land cover map derived from Landsat image, which 

classifies the landscape into five categories: interior, patch, transitional, 

edge, and perforated. The results show that the Zhoushui River Basin 

experiences a severe impact from soil erosion, with a mean rate of 108.47 t 

ha-1 yr-1 and a mass sediment load of 206.03 × 106 t yr-1 downstream, despite 

forests covering 76.04% of the total area. The RUSLE-SDR model shows 

predicted sediment yields that align closely with observed sediment 

discharges in the sub-basins, with a percent bias ranging from 0.75% to 

24.96%. Soil erosion is particularly severe in areas affected by forest 

fragmentation, averaging over 100 t ha-1 yr-1. Among the different 

fragmentation classes, patches experience the highest erosion rates at 

266.18 t ha-1 yr-1, followed by transitional areas at 225.72 t ha-1 yr-1. Interior 

areas have the lowest erosion rate at 114.10 t ha-1 yr-1, while edge and 

perforated classes experience rates of 136.63 and 188.76 t ha-1 yr-1, 

respectively. These findings would be helpful for prioritizing forest 

management across different forest fragmentation classes. Given the 

complex factors influencing on soil erosion, it is necessary to implement 

additional control measurements along with forest planting, particularly 

engineering solutions, to effectively mitigate soil erosion and sediment loads. 

1. Introduction 

 Human-induced soil erosion causes unexpected damage to soil productivity, lifespan 

reservoirs, water environment, and biodiversity [1]. Watershed management needs to conserve 

different kinds of soil, water, and plants within a catchment to optimize their benefits to human 
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beings. Land use planning and control measurements of soil erosion are crucial for effective 

watershed management. Spatial patterns of soil erosion intensity provide valuable information 

for planning soil and water conservation [2]. Soil erosion modeling is an effective tool for the 

stakeholders in establishing land use scenarios [3].  

 The revised Universal Soil Loss Equation (RUSLE) is a well-known model for estimating 

the annual soil erosion rate, even if it cannot account for gully erosion, channel erosion, and 

sediment transport [4]. The RUSLE combines with sediment delivery ratio (SDR) to estimate 

sediment yield (SY) [5-7]. The RUSLE and SDR are empirically developed for a specific region, so 

their predicable ability is limited when applied for other regions [4, 8]. The RUSLE inputs and 

SDRs were proposed for biophysical conditions of Taiwan [9], that may minimize the uncertainty 

in soil erosion and SY predictions. Among the factors influencing soil erosion, vegetation, and land 

use activities are the most significant components, in addition to rainfall intensity and terrain 

conditions [10]. Afforestation is recognized as one of the optimal solutions for soil conservation 

[11]. Forest can considerably enhance water filtration, reduce runoff rate, and protect soil from 

erosion and runoff [12]. The cover and management (C) factor as an input of the RUSLE stands 

for soil protection by different land uses [13]. The C factor is determined from remote sensing and 

GIS data at landscape level [14]. Land use/land cover is appropriately distributed under various 

environmental conditions that can mitigate soil erosion intensity from human activities [15].  

 Fragmentation refers to the spatial transformation of landscapes, marked by habitat loss 

and a rise in the number of patches [16]. The process of forest fragmentation occurs due to human 

activities such as logging, converting forests into agricultural land, and suburban development 

[17]. Fragmentation adversely affects primates and other species, leading to declines in 

population numbers and sizes, reduced genetic diversity, and an increased risk of extinction [18, 

19]. Changes in forest structure, including canopy closure and ground cover, caused by 

disturbances such as timber harvesting, road construction, and log skidding, can profoundly affect 

headwater stream ecosystems and environmental quality, both directly and indirectly [20-22]. 

Soil erosion following forest disturbances is increasingly becoming a concern worldwide [23]. 

Water erosion frequently leads to land degradation, nutrient loss, and non-point and point source 

pollution [24]. Thus, investigating the impact of forest disturbances on soil erosion and sediment 

production is crucial for effective watershed and land management strategies [25]. The 

composition and spatial arrangement of forest landscapes influence the delivery of various 

ecosystem services  and should therefore be considered in forest management planning [26]. 

Unlike traditional forest planning, spatial forest planning focuses on the spatial arrangement of 

forest management activities. It takes into account factors such as the size, shape, and distribution 

of forest patches across the landscape [26]. However, the review revealed a scarcity of studies that 

integrate water provision, erosion prevention, and cultural services into spatial forest planning 

[26]. Recently, landscape metrics as indicators of spatial arrangement have been incoporated in 

soil erosion researches. Xie, et al. [27] found that PD, SHEI, and AREA_MN are key factors 

influencing soil conservation in the watershed off southern China. Dai, et al. [28] explored that PD 

and ED exhibited a positive correlation with soil conservation function, whereas AREA_MN and 

AI were negatively correlated with it. To date, most studies have prioritized the quantity of forest 

over its spatial pattern. Osewe, et al. [29] utilized morphological spatial pattern analysis using the 

Guidos Toolbox 3.0 to investigate forest fragmentation at Kakamega National Forest Reserve, 

Western Kenya during the period of 2000-2020. Chandra Pa and Kumar Gupt [30] applied the 
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forest fragmentation model developed by Riitters, et al. [31] to monitor the forest status in the 

Hazaribagh Wild Life Sanctuary. Similarly, T V, et al. [32] also used this fragmentation model to 

monitor forest condition from 1979 to 2013 in Uttara Kannada District, Kenya. Understanding 

fragmentation allows for inferences about its potential impacts which can help identify and 

prioritize regions and species for direct impact assessments [30, 31].  

 Forests play a crucial role in reducing soil erosion on sloping land. However, they have 

been declining due to human activities such as settlement development, agricultural expansion, 

and wood production, as well as natural causes like forest fires and landslides. To support effective 

forest planning and management, spatial information on forest cover is essential. Thus, this study 

aims to incoporate forest fragmentation into soil erosion modelling to analyze the relations 

between the fragmented classes and erosion rate. The information would be helpful for soil 

conservation and forest management at watershed scales.  

2. Data and methodology 

2.1 Study site 

 The ZRB, located at the central region is the largest basin in Taiwan (Fig. 1). It covers an 

area of ~ 3200 km2 with a main stream of ~ 187 km [33]. Among Taiwanese river basins, it 

generates the highest amount of sediment loads due to fragile lithology, rugged terrain, heavy 

rainfall, typhoons, and landslides [34]. The terrains sharply change from 0 to 3873 m within a 

short horizontal distance. Average annual rainfall is recorded at 2500 mm, considerably differing 

between the low plains (1500 mm) and mountainous regions (4000 mm). Accumulative 

precipitation from May to October accounts for 75% of total annual rainfall. Its upper regions are 

constructed of fragile materials, such as slate, shale, and sandstone [33]. With the unfavorable 

conditions, the ZRB is extremely prone to soil erosion on sloping land and sediment deposition at 

downstream.  

 

Figure 1. Location of the Zhoushui River Basin and land use/land cover in 2019. 
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2.2. Used data 

 To conduct this study, primary data from remote sensing, GIS, and station level are utilized 

as listed in Table 1. 

Table 1. Main data acquisition. 

Data  Source Analytical purpose 
Land use/Land cover Landsat images 2019 Classify LULC types 
Digital Elevation Model  United States Geological Survey 

(downloaded at 
https://earthexplorer.usgs.gov/) 

Analyze topographic factors in 
the RUSLE  

Annual rainfall 49 weather stations in and around the 
ZRB 

Estimate rainfall erosivity 
factor in the RUSLE  

Soil data Taiwan Agricultural Research 
Institute Council of Agriculture 

Estimate soil erodibility factor 
in the RUSLE and Slopeland 
capability classification 

NDVI  Landsat images 2019 
 

Estimate the vegetation cover 
factor in the RUSLE  

Measured sediment and 
water discharge 

Water Resource Agency of Taiwan 
(2005-2018)  

Validate sediment yield  

2.3. The RUSLE model for soil erosion prediction 

The RUSLE was proposed by Wischmeier and Smith [35] and then revised by Renard et al. 

[36]. It is expressed as: 

A = R × K × L × S × C × P      (1) 

where A is the average soil loss rate (t ha-1 yr-1), R is the rainfall erosivity (MJ mm ha-1 h-1 yr-1), K 

is the soil erodibility (t h MJ-1 mm-1), L is the slope length, S is the slope steepness, C is the cover 

and management (dimensionless), and P is the conservation practice (dimensionless). 

Determination of the RUSLE inputs is referred to the antecedent study for the ZRB [37, 

38] as described in Table 2.  

Table 2. Required inputs for the RUSLE model. 

The RUSLE input Method 

Rainfall erosivity (R)  R = 17.02 × 0.020653 × P1.35072; P is the annual rainfall (mm) [9] 

Soil erodibility (K) K = (KI – 1)/200; KI is the Taiwanese soil type index [9] 

Slope and length (LS)  Algorithm by Desmet and Gover (1996) [39] 

Cover and management (C)  
C = [

1−NDVI

2
]
1+NDVI

        [40] 

Conservation practice (P) P = 0.2 + 0.03 × S; S is the slope (%) [41] 

The annual rainfall data from 49 weather stations is interpolated using the co-kriging 

method to map its spatial distribution, which is then utilized to estimate the R factor. The LS factor 

is determined by the open-source SAGA software which uses the DEM as an input to produce the 

LS values. To derive the C factor, this study utilizes a satellite image preprocessing tool developed 
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by Hurni, et al. [42], which operates on Google Earth Engine. For topographic correction, the study 

specifically employs the physical method proposed by Dymond and Shepherd [43]. Finally, the 

mean C value for 2019 is computed. Regarding the P factor, it is only estimated for agriculture 

land, while water bodies and built-up land is set at the value of 0, and 1 for forests and bare land. 

Using the LULC map and slope gradient derived from the DEM, the P value for 2019 is calculated. 

After preparing the RUSLE inputs, these thematic layers are created at a 30-m resolution and then 

overlayed together to estimate the annual erosion rate, following the Eq. (1).  

2.4. Sediment yield estimation using the RUSLE-SDR model 

Due to a lack of soil erosion monitoring sites, the RUSLE combines with sediment delivery 

ratio (SDR) to estimate sediment yield (SY), which is validated with suspended sediment 

discharge at 6 gauge stations (as shown in Fig. 1). The SDR derived from the length and slope 

gradient of mainstream reveals a better SY prediction in the ZRB [37, 38]. 

SDR = 129.02 × (L/√Sr)-0.19        (2) 

where A is the watershed area in km2; L is the length of mainstream in km and Sr is the slope 

gradient of stream bed in percent (%). Sediment yield is determined for each sub-basin respective 

to its gauge station as expressed [6]: 

SYi = Ai × SDRi                                   (3) 

where SYi is the sediment yield for sub-basin i; Ai is the total soil erosion loss from the RUSLE for 

sub-basin i; and SDRi is the sediment delivery ratio for sub-basin i. The sub-basins are prepsented 

at Fig.1, with their corresponding outlets (gauge stations). The predicted SY using the RUSLE-SDR 

model is checked with observed suspended sediment discharge at 6 gauge stations using the 

percent bias (PBIAS). 

2.5. Forest fragmentation analysis 

 Fragmentation can accelerate the soil erosion rate, so this analysis may be helpful for 

forest planning in soil erosion mitigation. The forest fragmentation map is prepared from the 

LULC map of 2019 at a 30-m resolution using the landscape fragmentation tool from Riitters, et 

al. [31]. The LULC obtained from Landsat images of the year 2019 was classified by using Random 

forest algorithm [44]. The LULC classification results for 2019 demonstrate excellent 

performance, as indicated by both the high overall accuracy value and the kappa index, each 

reaching 0.90. The final LULC map divides the entire basin into five categories: water, forest, bare 

land, agricultural land, and built-up land.  

The fragmentation model quantifies the extent of the forest and its presence as 

neighboring forest pixels within fixed-area "windows" around each forest pixel. This data is then 

used to categorize the window based on the type of fragmentation observed. The classification 

outcome is assigned to the center pixel of the window. Consequently, a pixel value on the 

generated map represents the fragmentation between pixels around that specific forest area. The 

primary analysis of the model centered on the smallest window size [31]. Grid-based 

fragmentation analysis after Riitters et al. (2000) is developed by a module and integrated it into 

SAGA software. The classification model distinguishes six types of fragmentation: (1) interior, 

where Pf equals 1.0; (2) patch, where Pf is less than 0.4; (3) transitional, where Pf is between 0.4 
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and 0.6; (4) edge, where Pf is greater than 0.6 and Pf minus Pff is greater than 0; (5) perforated, 

where Pf is greater than 0.6 and Pf minus Pff is less than 0; and (6) undetermined, where Pf is 

greater than 0.6 and Pf equals Pff (Fig. 2). After idenfiying the forest fragmentation classes, a spatial 

analysis is conducted to obtain a mean erosion rate of each fragmentation class for 2019.  

 

Figure 2. The model classifies forest fragmentation categories based on local measurements of Pf and Pff 

within a fixed-area window. Pf represents the proportion of forest, while Pff refers to the conditional 

probability that a neighboring pixel is also forested, given a forest pixel [31]. 

All study steps, including the performance of the RUSLE model, the RUSLE-SDR model and 

its validation with observed discharge recorded at gauge stations, forest fragmentation analysis, 

and the relationship between fragmented forest classes and soil erosion rate, are summarized in 

Fig. 3. 
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Figure 3. Overall framework of this study. 

3. Results and discussions 

3.1. Predicted soil erosion rate   

 The prediction of soil erosion rate is classified into five classes, namely mild, moderate, 

moderately severe, severe, and very severe (Table 3 & Fig. 4). The ZRB undergoes a severe impact 

from soil erosion with a mean rate of 108.47 t ha-1 yr-1. The moderate and moderately severe 

classes are dominated at 36.54% and 23.82% of the total area, respectively. The severe and very 

severe classes occupy nearly 21% of the total area, whereas the mild class is only 18.69% of the 

total area. 

Table 3. Soil erosion classes for 2019. 

Classes Mild Moderate Moderately 
severe 

Severe Very severe 

t ha-1 yr-1 0-10 10-50 50-100 100-150 >150 
Percentage (%) 18.69 36.54 23.82 8.62 12.33 
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Figure 4. Soil erosion intensity classes. 

 Table 4 shows an annual average soil erosion rate at various LULC types. Among the five 
main LULC categories, bare land experiences the most severe erosion, with a mean rate of 396.58 
t ha-1 yr-1.  Its erosion rate significantly varies across sites, as indicated by a high standard 
deviation of 684.64 t ha-1 yr-1. Despite forest cover, soil resources are still subject to substantial 
erosion, with an estimated mean rate of 102.84 t ha-1 yr-1, with a standard deviation of 316.11 t 
ha-1 yr-1. On agricultural land, soil erosion rate is estimated at 22.79 t ha-1 yr-1, with a standard 
deviation of 72.05 t ha-1 yr-1.  Several studies have assessed soil erosion in Taiwan using the RUSLE 
model. Using an NDVI-based approach to determine the C factor, Tsai et al. (2021) analyzed soil 
erosion in the Shihmen Reservoir watershed (2004-2008) reported annual erosion rates of 
84.00–95.10 t ha⁻¹ yr⁻¹. When using a look-up table for the C factor, the  erosion rate was 116.30 
t ha⁻¹ yr⁻¹ in 2004 [45]. Chen et al. (2022) applied the USPED model to estimate a higher erosion 
rate of 136.40 t ha⁻¹ yr⁻¹ for 2004 [46]. The present study's findings align closely with these 
previous estimates. 

Table 4. Soil erosion rate (t ha-1 yr-1) at LULC types for 2019. 

LULC types Percentage (%) Mean Standard deviation 
Water 4.78 0.00 0.00 
Forest 75.75 102.84 316.11 
Bare land 6.47 396.58 684.64 
Built-up land 1.90 0.00 0.00 
Agricutural land 11.11 22.79 72.05 

3.2. Agreement between the predicted sediment and observed sediment discharge 

 As mentioned in section 2.4, verifying the result of RUSLE modeling is challenging, so this 

study uses observed sediment discharge to compare with the predicted sediment yield from the 

RUSLE-SDR model. Absolute values of the PBIAS at sub-basins range from 0.75 to 24.96%, which 

indicates the model's performance well [47] (Table 5). It is noted that the RUSLE calculates soil 
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loss specifically from sheet and rill erosion, excluding other forms of erosion such as gully erosion, 

channel erosion, bank erosion, and mass wasting events like landslides [48]. By not accounting 

for these types of erosion, the RUSLE could underestimate the total amount of soil loss. Moreover, 

clearly, the factors influencing the SDR are highly complex, as they are linked to watershed 

characteristics, landforms, hydrological and climatic conditions, as well as human management 

practices [49]. 

Table 5. Summary of measured and predicted sediment (106 t yr-1) at sub-basins 

Sub-basins 
Measured 

days 
Observed 
sediment 

SDR A 
Predicted 
sediment 

PBIAS 
(%) 

1510H050 328 12.00 89.33 5.90 7.41 10.88 
1510H079 267 45.99 78.62 23.59 36.28 2.63 
1510H049 398 32.22 81.42 32.64 42.97 0.75 
1510H075 443 156.50 63.09 172.08 179.22 0.80 
1510H063 401 278.46 61.37 198.36 216.59 10.17 
1510H057 407 325.78 57.26 206.03 246.06 24.96 

Note: Data at stations from 2005-2018, except 1510H079 (2009-2018); each sub-basin stands for its entire 

upper areas where water concentrates at its gauge station. 

3.3. Forest fragmentation class and its corresponding soil erosion rate 

Figure 5 shows a spatial distribution of forest fragmentation classes, and Table 6 presents 

the area, percentage, and mean erosion rate for each forest fragmentation class. The interior class 

occupies the largest portion of the basin, covering 50.83% of the total area, followed by the edge 

class at 23.33%. The perforated class accounts for only 0.68% of the total area, while the 

transitional and patch classes cover 5.55% and 6.60% of the total area, respectively.  The spatial 

distribution of each fragmentation class is complicated due to both natural and anthropogenic 

disturbances. Generally, the patch and perforated classes are commonly observed along the river 

valley. These two classes are also found on the sloping areas in the upper regions, where 

landslides have disturbed the forested areas. The edge class is scattered throughout the basin. 
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Figure 5. Forest fragmentation classes. 

Soil erosion severely occurs at a mean value of over 100 t ha-1 yr-1 at forest fragmentation 

classes. Among them, the patch is recorded at the most detrimental impact (266.18 t ha-1 yr-1), 

followed by the transitional class (225.72 t ha-1 yr-1). The interior class receives the lowest value 

at 114.10 t ha-1 yr-1, and the edge and perforated classes are 136.63 and 188.76 t ha-1 yr-1, 

respectively.  

Table 6. Soil erosion rate (t ha-1 yr-1) at forest fragmentation classes. 

Fragmentation classes Area (ha) Percentage (%) Mean erosion rate Standard deviation 
Interior 161092.00 50.83 114.10 379.81 
Perforated 2143.26 0.68 188.76 339.58 
Edge 73949.40 23.33 136.63 344.94 
Transitional 17578.90 5.55 225.72 497.43 
Patch 20926.50 6.60 266.18 609.66 

 The results indicate that interior areas are less susceptible to erosion compared to other 

fragmentation categories. However, these fragmented areas are more vulnerable to both natural 

and anthropogenic disturbances than interior regions [29]. Therefore, soil conservation activities 

and forest management efforts should prioritize these areas to minimize soil erosion rates. 

 In this study, remote sensing and fragmentation model used provide an oppoturnity to 

monitor land use or forest dynamics and their influences on ecosytem services across different 

scales [29, 30]. Moreover, analyzing spatial arrangement through fragmentation assessment helps 

forest planners develop effective strategies to enhance forest ecosystem services. However, it is 

noted that forest pattern analysis still depends on the spatial resolution of remote sensing images 

and the window size used for forest fragmentation computation.  
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4. Conclusions  

 In this study, remote sensing and GIS are ultilized to assess soil erosion and forest 

fragmentation in the ZRB. The results show that the ZRB undergoes adverse soil erosion with a 

mean rate of 108.47 t ha-1 yr-1. Besides, the RUSLE-SDR model to predict SY for sub-basins is fairly 

checked with observed sediment data with the PBIAS values of 0.75 to 24.96%. Soil erosion is 

especially intense in regions suffering from forest fragmentation, with an average rate exceeding 

100 t ha-1 yr-1. Among various fragmentation categories, patches exhibit the highest erosion rate 

at 266.18 t ha-1 yr-1. Transitional areas follow with 225.72 t ha-1 yr-1. Interior zones have the 

lowest erosion rate at 114.10 t ha-1 yr-1, whereas edge and perforated categories experience rates 

of 136.63 and 188.76 t ha-1 yr-1, respectively. Despite the basin maintaining a large proportion of 

its total area as forest, with 75.75% forest cover, the soil erosion rate on forest land remains high. 

Much more effort is needed to control soil erosion in the basin, particularly in fragmented 

categories with severe erosion rates. Moreover, considering the complex factors influencing soil 

erosion, it is essential to implement additional control measures. These measures should include 

engineering solutions alongside forest planting to effectively reduce soil erosion and sediment 

loads. This approach would be useful for monitoring forest dynamics or the effective forest 

planning on soil and water conservation at watershed scales. 
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