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1. Introduction

Throughout this paper, all rings R are associative with identity and all modules are

unitary right R-module. We use Sl, Sr, J , Zl and Zr to denote the left socle, the

right socle, the Jacobson radical, the left singular ideal and the right singular ideal,

respectively. The notation N ≤e M means that N is an essential submodule. If X

is a subset of a ring R, the right (left) annihilator in R is denoted by r(X) (l(X)).

Recall that a ring R is called right CF if every cyclic right R-module embeds

in a free module.

Let M be a right R-module. We consider a right R-module N , I a submodule

of N and f : I → M a homomorphism. Take the following diagram:

0 �� I
ι ��

f

��

N

f̄��
M

• If M = N = R and there exists f̄ for every minimal right ideal I, then R is called

right mininjective.

• If M = N = R and there exists f̄ for every right ideal I of R with f(I) simple,

then R is called right simple-injective.

• If there exists f̄ with I = Soc(N) simple, then M is called soc-N -injective. M

is called soc-injective if M is soc-R-injective. M is called strongly soc-injective if

M is soc-N -injective for all R-modules N . A ring R is called strongly left (right,

respectively) soc-injective if RR (RR), respectively, is strongly soc-injective.

A ring R is called right (left, respectively) quasi-dual if every essential right

(left, respectively) ideal of R is a right (left, respectively) annihilator [15]. R is

called quasi-dual if it is two-sided quasi-dual. A ring R is called right GP -injective

(respectively, right AGP -injective) if for each 0 �= a ∈ R, there exists n ∈ N
such that an �= 0 and lr(an) = Ran (respectively, Ran is a direct summand of

lr(an)) ([27]).

Recall that a module M is said to be a C11-module if every submodule of M has

a complement which is a direct summand [20]. A ring R is called a right C11-ring if

RR is a C11-module. Clearly, every CS-module satisfy the C11-condition. However,

the converse is not true in general (see [20, p. 1814]).

There are several results in the literature that are important sources of semiper-

fectness: For example, in [7], it was shown that every left self-injective right Kasch

ring is semiperfect. Also, it was proved later in [26] that if R is left CS and the dual

of every simple right R-module is simple, then R is semiperfect with Sr = Sl ≤e

RR. The latter result was extended in [9] to left min-CS ring. Motivated by these

results, we introduce the notion of left WIN -rings (i.e. r(I ∩ K) = r(I) + r(K)

for all finitely generated semisimple left ideals I and all left ideals K of R) as a

generalization of left IN -rings (i.e. r(I ∩K) = r(I) + r(K) for all left ideals I and

K of R) and hence of left self-injective rings. In this paper, we show that this weak
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injectivity property is useful in obtaining semiperfect rings. We also investigate left

WIN -rings with ACC on right annihilators. Furthermore, we use left WIN -rings

to characterize Pseudo-Frobenius rings and quasi-Frobenius rings.

In Sec. 2, we give the properties of some classes of WIN -rings. Among other

things, we prove that if R is left WIN -ring, then R is right Kasch with Sr ⊆ Sl

if and only if R is semiperfect with Sr = Sl and Soc(Re) is simple and essential

for every local idempotent e of R. As a corollary of this result, we prove that if R

is left WIN , then the dual of every simple right R-module is simple if and only if

R is semiperfect with Sr = Sl and Soc(Re) is simple and essential for every local

idempotent e of R.

In Sec. 3, some results on Kasch rings and Pseudo-Frobenius rings are obtained

via WIN -rings. It is shown that a right Kasch, right SF -injective and WIN -ring

is two-sided GPF , two-sided finitely cogenerated and right continuous. It is also

proved that a ring R is left PF if and only if it is left automorphism-invariant, left

WIN and the dual of every simple right R-module is simple. Moreover, it is shown

that every strongly right soc-injective left Kasch ring with Sl ⊆ Sr is right PF .

The two latter results extend the work in [2, Theorem 5.6(5), 26].

In Sec. 4, we provide new characterizations of quasi-Frobenius via left WIN -

rings. Among other results, we show that a ring R is quasi-Frobenius if and only

if it is left WIN right CF with Sr ⊆ Sl if and only if it is left WIN left GP -

injective with ACC on left annihilators. Recall that a module M is called uniserial

if its submodules are linearly ordered by inclusion. A ring R is called right (left)

uniserial if RR (RR) is uniserial. It was shown in [12, Theorem 2], that a left

uniserial right perfect ring is left aratinian whose factor rings are right P -injective.

Using this result and our work, we prove that every left uniserial right perfect ring

is quasi-Frobenius.

Let P be a property of rings. A ring R is said to be completely P if each factor

ring of R has the property P . At the end of this section, we characterize completely

quasi-Frobenius rings in terms of completely WIN -rings by showing for example

that a ring R is completely quasi-Frobenius if and only if it is completely WIN

completely quasi-dual.

In Sec. 5, it is shown that every right cogenerator left C11-ring is right PF . We

also prove that if R is a left C11 right CF ring, then R is quasi-Frobenius if and

only if Soc(Re) �= 0 for every local idempotent e of R. We also prove that a ring

R is QF if and only if it is a right C-continuous (i.e. right C2 and right C11) left

WIN -ring with ACC on right annihilators if and only if it is a right C-continuous

left WIN-ring and R/Sr is right Goldie.

2. On Certain Classes of Left WIN-Rings

We have a very interesting property of a left self-injective ring as follows: If R is a

left self-injective ring then

r(I ∩K) = r(I) + r(K),
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for all left ideals I and all left ideals K of R. A ring satisfies this condition is called

a left Ikeda–Nakayama ring (briefly, left IN -ring). Of course, left self-injective ring

⇒ left IN -ring. We will consider a weak class of IN -rings as follows.

Definition 2.1. A ring R is called a left weakly Ikeda–Nakayama ring (briefly, left

WIN -ring) if r(I∩K) = r(I)+r(K) for all finitely generated semisimple left ideals

I and all left ideals K of R. Right WIN -rings can be defined similarly. And a ring

R is called a WIN -ring if it is a left and right WIN -ring.

We obtain immediately the following implication:

a left IN-ring ⇒ a left WIN-ring.

Firstly, we give some basic properties of left WIN -rings.

Proposition 2.1. Let R be a left WIN -ring. Then:

(1) If T is a finitely generated semisimple left ideal of R, then T ≤e lr(T ).

(2) If lr(Sl) = Sl, then lr(T ) = T for all finitely generated semisimple left ideals T

of R.

(3) If R is right Kasch and lr(Sl) = Sl, then kR is simple whenever Rk is simple.

In particular, Sl ⊆ Sr.

(4) If T is a finitely generated semisimple left ideal of R and r(T ) ⊆ J, then T ≤e

RR.

Proof. (1) Let T be a finitely generated semisimple left ideal of R. Assume that

there exists c ∈ lr(T ) such that T ∩Rc = 0. Then by hypothesis, r(T ∩ Rc) =

r(T ) + r(c) = R. As c ∈ lr(T ), then r(T ) ⊆ r(c), from which it follows that

R = r(c). Thus, c = 0, and so T ≤e lr(T ).

(2) Assume that lr(Sl) = Sl and T is a finitely generated semisimple left ideal of R.

Then by (1), T ≤e lr(T ). Since lr(T ) ⊆ lr(Sl) = Sl, it follows that T = lr(T ).

(3) Let Rk be simple left ideal of R and let T be a maximal right ideal of R such

that r(k) ⊆ T . By (2), l(T ) ⊆ Rk. Since l(T ) �= 0, l(T ) = Rk, and so T = r(k).

Therefore, kR is simple and consequently, Sl ⊆ Sr.

(4) Suppose that there exists c ∈ R such that T ∩ Rc = 0. Then R = r(T ) +

r(c), and so by hypothesis, R = J + r(c). This implies that R = r(c), and

so c = 0.

A ring R is called right minsymmetric if for any minimal right ideal kR of R,

Rk is a minimal left ideal of R. Our next result characterizes the right mininjective

rings among the left WIN -rings.

Proposition 2.2. Let R be a left WIN -ring. Then the following conditions are

equivalent:

(1) R is right mininjective;

(2) R is right minsymmetric;
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(3) Sr ⊆ Sl.

In particular, a commutative WIN -ring is mininjective.

Proof. (1) ⇒ (2) ⇒ (3) follow from [13, Theorem 2.21].

(3) ⇒ (1) Suppose Sr ⊆ Sl. Let kR be a simple right ideal of R. According

to [13, Lemma 2.1], we need to show that lr(k) = Rk. Now, let 0 �= x ∈ lr(k). Then,

r(k) ⊆ r(x). Since, r(k) is a maximal right ideal of R, r(k) = r(x). Consequently,

xR is a right simple ideal of R, and so xR ⊆ Sl. It follows that Rk ⊆ lr(k) ⊆ Sl.

So lr(k) is a semisimple left R-module containing Rk. Therefore, lr(k) = Rk by

Proposition 2.1(1), as desired.

Examples of left WIN -rings include left simple-injective rings (see [4, Lemma

2.2]) and strongly left soc-injective rings (see [2, Proposition 5.2]).

Corollary 2.1. Let R be a left simple-injective or strongly left soc-injective ring.

Then the following conditions are equivalent:

(1) R is right mininjective;

(2) R is right minsymmetric;

(3) Sr ⊆ Sl.

It is clear that left IN -rings and hence left uniserial rings are left WIN . But

neither of the converses is true, in general as illustrated in the following examples.

The second example shows also that a left WIN -ring need not be right WIN .

Example 2.1 ([2, Example 5.9]). Let K be a field and let R be the ring of

all lower triangular, countably infinite square matrices over K with only finitely

many off-diagonal entries. Let S be the K-subalgebra of R generated by 1 and J .

By [2, Proposition 5.2], S is left perfect leftWIN which is not left finite dimensional.

Therefore, S is not left IN by [13, Theorem 6.32].

Example 2.2 ([13, Example 6.41]). Consider the Bjørk Example in [13, Exam-

ple 2.5]. Let F be a field and assume that

F → F̄ ⊆ F

a 	→ ā

is an isomorphism, where the subfield F̄ �= F. Let R denote the left vector space

on basis {1, t}, and make R into an F -algebra by defining t2 = 0 and ta = āt

for all a ∈ F. Then R is local, R/J ∼= F, J2 = 0 and J = Rt = Ft is the only

proper left ideal of R. Moreover, lr(L) = L for all left ideals L of R. From this, R

is left WIN and Sl ⊆ Sr. However, R need not be right WIN . In addition, R is

not left mininjective. If R were right WIN , then it would be left mininjective by

Proposition 2.2, a contradiction. Moreover, as R is not left mininjective, then R is

neither left simple-injective nor strongly left soc-injective.

2450087-5



November 7, 2024 9:39 WSPC/246-AEJM 2450087

L. Van Thuyet et al.

A ring R is said to be left minannihilator (respectively, left min-CS) if every

minimal left ideal I of R is an annihilator (respectively, I is essential in a direct

summand).

Theorem 2.1. Let R be a right Kasch left WIN -ring in which Sr ⊆ Sl. The

following statements hold:

(1) R is semiperfect;

(2) Sr = Sl is finitely generated and essential as a left ideal;

(3) R is left minannihilator;

(4) R is left min-CS;

(5) Soc(Re) is simple and essential for every local idempotent e of R;

(6) For every x ∈ R, Rx is a simple left ideal if and only if xR is simple right ideal.

Conversely, if R is semiperfect with Sr = Sl and Soc(Re) is simple and essential

for every local idempotent e of R, then R is right Kasch.

Proof. (1) By Proposition 2.2, R is right mininjective. Now, let T be a maximal

right ideal of R. Since R is right Kasch, l(T ) �= 0. There exists 0 �= a ∈ R such

that aT = 0. Thus, T = r(a), and so R/r(a) ∼= aR is a simple right ideal. As R

is right mininjective, then Ra is a left simple ideal by [13, Theorem 2.21]. Let L

be a left ideal maximal with respect to Ra∩L = 0. By hypothesis, r(Ra∩L) =

r(a) + r(L) = r(0) = R. On the other hand, we have T ∩ r(L) = r(a) ∩ r(L) =

r(Ra+L) and Ra+L = Ra⊕L ≤e RR. Consequently, T ∩ r(L) ⊆ Zl. As R is

right Kasch, then Zl ⊆ J by [13, Proposition 1.46]. Thus, R is semilocal by [18,

Corollary 2.2], and so l(J) = Sr is a finitely generated semisimple left ideal

by [13, Theorem 5.52]. Hence, by hypothesis r(l(J)∩I) = rl(J)+r(I) = J+r(I)

for every left ideal I of R. Using [10, Theorem 3.8], we deduce that idempotents

can be lifted over J . Therefore, R is semiperfect.

(2) By the proof of (1), Sr is a finitely generated semisimple left ideal of R. But

R is right Kasch. Then r(Sr) = J and we conclude by Proposition 2.1(4) that

Sr ≤e RR. Therefore, it follows from (1), Proposition 2.2 and [13, Proposition

5.54] that Sr = Sl is finitely generated and essential as a left ideal.

(3) Since R is right Kasch, r(Sr) = J . Thus, by (1) and (2), lr(Sl) = Sl. Using

Proposition 2.1(2), we deduce that R is left minannihilator.

(4) By (1) and (2), R is semiperfect and Sr ≤e RR. Thus, by [13, Lemma 4.2], lr(T )

is essential in a direct summand of RR for every left ideal T of R. Therefore,

by (3), R is left min-CS.

(5) and (6) follow from (4), Proposition 2.2 and [13, Theorem 4.8].

Conversely, assume that R is semiperfect with Sr = Sl and Soc(Re) is simple and

essential for every local idempotent e of R. Then, Sl ≤e RR. Therefore, being

semiperfect, R is right Kasch by [13, Lemma 4.2].

2450087-6



November 7, 2024 9:39 WSPC/246-AEJM 2450087

On weak Ikeda–Nakayama rings

Following [13, Theorem 2.31], a ring R is right Kasch right minininjective if and

only if the dual of every simple right R-module is simple.

Corollary 2.2. Let R be a left WIN -ring. Then, the dual of every simple right

R-module is simple if and only if R is semiperfect with Sr = Sl and Soc(Re) is

simple and essential for every local idempotent e of R.

Proof. This follows from Theorem 2.1 and [13, Theorem 2.31].

Now, we will close this section by investigating left WIN -rings satisfying ACC

on right annihilators.

Proposition 2.3. If R is a left WIN-ring and satisfying ACC on right annihilators,

then Soc(RR) is finitely generated.

Proof. If Soc(RR) = 0, then we are done. Otherwise, assume that Soc(RR) is

not finitely generated, then it contains
⊕∞

i=1 Rai with Rai simple. Call In =

r(an, an+1, . . .) for all n ≥ 1. Then, we have

I1 ≤ I2 ≤ · · · ≤ In ≤ · · · .
Since R has ACC on right annihilators, there exists m ≥ 1 such that Im = Ik for

all k ≥ m. It follows that r(am+1, am+1, . . .) ≤ r(am). As
⊕∞

i=m+1 Rai ∩ Ram = 0

and R is a left WIN-ring, R = r(
⊕∞

i=m+1 Rai∩Ram) = r(
⊕∞

i=m+1 Rai)+ r(Ram).

Then, we have R = r(am+1, am+2, . . .) + r(am) = r(am) and so am = 0, a contra-

diction. We deduce that Soc(RR) is finitely generated.

Corollary 2.3. Assume that R is a left WIN-ring and satisfies ACC on right

annihilators. If r(Sl) ≤ J(R) then R is left finitely cogenerated.

Corollary 2.4. Let R be a right perfect left WIN-ring. If R is left pseudo-coherent,

then R is left finitely cogenerated.

Proof. Since R right perfect, R has DCC on finitely generated left ideal. Hence,

if X ⊆ R, then l(X) = l(X0) for some finite subset X0 of X . It follows that R

satisfies DCC on left annihilators and so R has ACC on right annihilators. But R

is left WIN-ring. Then R is left finitely cogenerated by Proposition 2.3.

Lemma 2.1 ([25, Lemma 4.3]). If R has ACC on right annihilators and Sl ≤e

RR, then R is semiprimary.

Lemma 2.2. Let R be a semiperfect ring in which Sl ≤e RR. Then:

(1) R is left Kasch and rl(T ) is essential in a direct summand of RR for every

right ideal T of R.

(2) If R is left WIN, then R is right mininjective.
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Proof. (1) follows from [13, Lemma 4.2].

(2) By (1), R is left Kasch, and so l(Sl) = J . On the other hand, since Sl ≤e RR,

we have l(Sl) ⊆ Zr. Therefore, J ⊆ Zr. Now, let y ∈ Sr. Then, Zry = 0, and

so y ∈ r(Zr) ⊆ r(J). Since R is semiperfect, r(J) = Sl. Thus, Sr ⊆ Sl and we

deduce from Proposition 2.2 that R is right mininjective.

Theorem 2.2. Let R be a left WIN -ring with ACC on right annihilators in which

Sl ≤e RR. Then R is right mininjective, left Artinian and satisfies the conditions (1)

through (6) of Theorem 2.1.

Proof. Since R has ACC on right annihilators with Sl ≤e RR, it follows from

Lemma 2.1 that R is semiprimary. Thus, being left WIN , R is right mininjective by

Lemma 2.2. In [13, Theorem 3.12], it was proved that a right mininjective semipri-

mary ring is right Kasch. Thus, since R is left WIN , we infer from Theorem 2.1

that Sr = Sl is finitely generated and essential as a left ideal. Therefore, according

to [13, Lemma 3.30], R is left Artinian. The last part follows from Theorem 2.1(2)

because R is right Kasch.

In general, a right AGP -ring with ACC on right annihilators need not be left

Artinian as showed in [27, P. 339]. The following corollary shows that the condi-

tion “R is left WIN -ring” forces “a right AGP -injective ring with ACC on right

annihilators to be left Artinian”.

Corollary 2.5. Let R be a left WIN, right AGP -injective ring with ACC on right

annihilators. Then R is right mininjective, left Artinian and satisfies the conditions

(1) through (6) of Theorem 2.1.

Proof. Since R is right AGP -injective with ACC on right annihilators, we infer

from [27, Lemma 1.3 and Corollary 1.6] that R is semiprimary and J = Zr. Thus,

Sr ⊆ Sl and so Sl ≤e RR. Therefore, the claim follows from Theorem 2.2.

Proposition 2.4. Let R be a left WIN -ring with ACC on right annihilators such

that the dual of every simple right R-module is simple. Then R is left Artinian.

Proof. We firstly prove that J is nilpotent. Since the dual of every simple right R-

module is simple, R is right Kasch right mininjective by [13, Theorem 2.31]. Thus,

R is semilocal and Sr = Sl by Theorem 2.1. Hence, [13, Lemma 3.36] implies that

l(Jn) = r(Jn) for all n ≥ 1. Since R has ACC on right annihilators, there exists

an integer m such that l(Jm) = r(Jm) = r(J2m) = l(J2m). Then the following

proof is owing to [17, Theorem 18]. Suppose that J is not nilpotent. Then Jm �= 0,

and so MR = R/l(Jm) is a nonzero R-module. Hence, by [17, Lemma 17], the

non-empty set {rR(a) : 0 �= a ∈ M} has a maximal element, say rR(a1). Write

a1 = x+ l(Jm) where x ∈ R. Then, xJm �= 0. Since l(Jm) = l(J2m), xJm � l(Jm).

So, there exists b ∈ Jm such that xb /∈ l(Jm). Since R is semilocal, it follows from
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Theorem 2.1(2) that l(J) ≤e RR and hence l(Jm) ≤e RR. So,Rxb∩l(Jm) �= 0. Thus,

there exists y ∈ R such that 0 �= yxb /∈ l(Jm). Let a2 = yx + l(Jm) ∈ M . Then,

a2 �= 0 and b ∈ rR(a2). But b /∈ rR(a1). So the inclusion rR(a1) ⊂ rR(a2) is

proper. This contradicts the choice of a1. Therefore, J is nilpotent. Hence, R being

semilocal, R is semiprimary. Note that Sr = Sl. Therefore, the claim follows from

Theorem 2.2.

3. On Kasch Rings and Pseudo-Frobenius Rings via WIN-Rings

Following [24], a ring R is called right simple-FJ-injective if every right R-

homomorphism from a small finitely right ideal to R with a simple image, can

be extended to an endomorphism of RR. A ring R is called left P -injective ring if

every R-homomorphism from a principal left ideal to R extends to an endomor-

phims of RR. A ring R is called left GPF if R is a left P -injective, semiperfect ring

and Sl ≤e RR.

Proposition 3.1. Let R be a right Kasch, right simple-FJ-injective and left WIN -

ring. Then, R is left GPF, two-sided finitely cogenerated and right continuous.

Proof. Since R is right simple-FJ-injective, R is right mininjective by [24, Lemma

3.3]. So, being right Kasch and left WIN , R is semiperfect and Sr = Sl ≤e RR by

Theorem 2.1. Therefore, it follows from [24, Proposition 3.7] that Soc(eR) is either

simple or zero for all local idempotents e of R. Hence, R is left mininjective by [13,

Proposition 3.5]. Now, since R is semiperfect and Sr = Sl ≤e RR, Soc(eR) �= 0

by [13, Theorem 3.12]. Using [24, Proposition 3.8], we deduce thatR is left GPF and

two-sided finitely cogenerated. Hence, R is left Kasch. Note that rl(I) = I for every

finitely generated right ideal I of R by [24, Proposition 3.8]. Thus, every finitely

generated right ideal of R is essential in a direct summand of RR by [13, Lemma

4.2]. Therefore, being left Kasch, R is right continuous by [6, Corollary 7.8].

Corollary 3.1. Let R be a right Kasch and left simple-injective ring with Sr ⊆ Sl.

Then, R is right GPF, two-sided finitely cogenerated and left continuous.

Proof. Since R is left simple-injective, it is left WIN by [4, Lemma 2.2]. Using

Theorem 2.1, we deduce that R is semiperfect with essential left socle. Thus, R is

left Kasch by [13, Theorem 6.16]. Therefore, the claim follows from the left version

of Proposition 3.1.

Following [24], a ring R is called right SF -injective if every homomorphism from

a small finitely generated right ideal to RR can be extended to an endomorphism

of RR.

Proposition 3.2. Let R be a right Kasch, right SF -injective and left WIN -ring.

Then, R is two-sided GPF, two-sided finitely cogenerated and right continuous.
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Proof. Since R is right SF -injective, R is right mininjective by [24, Proposition

2.6]. So, being right Kasch and left WIN , R is semiperfect and Sr = Sl ≤e RR by

Theorem 2.1. Therefore, it follows from [24, Proposition 2.7 and Theorem 2.10]

that R is two-sided P -injective. Hence, R is two-sided GPF and two-sided

finitely cogenerated by [13, Theorem 5.31]. Note that rl(I) = I for every small

finitely generated right ideal I of R by [24, Proposition 2.7]. Now, let I be a finitely

generated right ideal of R. Since R is semiperfect, there exists a decomposition

RR = e1R ⊕ e2R such that e1R ⊆ I and e2R ∩ I are a small right ideal of R.

It follows that I = e1R ⊕ (I ∩ e2R), and hence l(I) = R(1 − e1) ∩ l(I ∩ e2R).

Thus, rl(I) = r[R(1 − e1) ∩ l(I ∩ e2R)] = e1R + I ∩ e2R = I by [14, Lemma 2.1].

Using [13, Lemma 4.2], we deduce that every finitely generated right ideal of R

is essential in a direct summand of RR. Therefore, being left Kasch, R is right

continuous by [6, Corollary 7.8].

A ring R is right (left, respectively) dual if every right (left, respectively) ideal

of R is a right (left, respectively) annihilator. A ring is called a dual ring if it is

left and right dual. It was proved in [13, Theorem 6.18] that a ring is dual if and

only if it is two-sided Kasch two-sided simple-injective. In the next proposition, we

show that the condition “two-sided Kasch” can be weakened to “one-sided Kasch”

by using the WIN -rings.

Proposition 3.3. The following conditions are equivalent:

(1) R is a dual ring;

(2) R is a one-sided Kasch two-sided simple-injective ring.

Proof. (1) ⇒ (2) follows from [13, Theorem 6.18].

(2) ⇒ (1) Assume that R is a right Kasch two-sided simple-injective ring. Since

R is left simple-injective, R is left WIN by [4, Lemma 2.2]. So, R is left GPF

by Proposition 3.1. Therefore, R is left Kasch by [13, Theorem 5.31]. Using [13,

Theorem 6.18], we deduce that R is a dual ring. Similarly, if we assume that R is

left Kasch two-sided simple-injective, then we can show that R is a dual ring.

The following result extends the work in [26, Theorem 2].

Theorem 3.1. Then following conditions are equivalent for a ring R :

(1) R is a left PF -ring;

(2) R is a left automorphism-invariant left WIN -ring such that the dual of every

simple right R-module is simple.

Proof. By Theorem 2.1, R is left min-CS and Sl is a finitely generated and essen-

tial left ideal ofR. Then, Sl = ⊕n
i=1Si, where each Si is a simple left ideal, 1 ≤ i ≤ n.

Since R is left min-CS, there exists an idempotent ei of R such that Si ≤e Rei,

1 ≤ i ≤ n. As {Si}1≤i≤n is an independent family, then so is {Rei}1≤i≤n by
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[8, Proposition 1.1(d)]. On the other hand, it is well known that a left

automorphism-invariant ring is left C3. Hence, ⊕n
i=1Rei is a direct summand of R.

Since Sl ⊆ ⊕n
i=1Rei and Sl ≤e RR, ⊕n

i=1Rei ≤e RR. Consequently, R = ⊕n
i=1Rei.

Let A be a nonzero submodule of Rei. Since Si ≤e Rei, A ∩ Si �= 0. But Si is

simple. Then, A ∩ Si = Si, i.e. Si ⊆ A. Similarly, for any nonzero submodule B

of Rei, we have Si ⊆ B. Thus, 0 �= Si ⊆ A ∩ B, and hence each Rei is uniform,

1 ≤ i ≤ n. Therefore, R is left self-injective by [1, Lemma 3.5]. Note that Sl is a

finitely generated and essential left ideal of R. Then, R is left PF .

It was shown in [2] that if R strongly left soc-injective and the dual of every

simple right R-module is simple, then R is left PF . We extend this result by using

the WIN -rings in the following theorem, improving in passing [26, Theorem 2].

Theorem 3.2. Then following conditions are equivalent for a ring R :

(1) R is a right PF -ring;

(2) R is a strongly right soc-injective left Kasch ring with Sl ⊆ Sr.

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (1) By [2, Proposition 5.2], R is right WIN . Thus, R is semiperfect with

essential right socle by the right version of Theorem 2.1. Using [2, Corollary 3.2],

we deduce that R is right self-injective. Therefore, R is right PF .

A module M is said to be ef -extending if every closed essentially finite submod-

ule ofM is essential in a direct summand ofM . A ring R is called right ef -extending

if RR is ef -extending.

Corollary 3.2. Then the following conditions are equivalent for a ring R :

(1) R is a right PF -ring;

(2) R is left Kasch with Sl ⊆ Sr and R⊕R is ef -extending as a right R-module;

(3) R is a right self-injective left Kasch ring with J ⊆ Zl;

(4) R is a right self-injective left Kasch ring with Sl ⊆ Sr.

Proof. (1) ⇒ (2), (3), (4) are clear.

(2) ⇒ (1) Being right ef -extending and left Kasch, R is right self-injective by

the proof of [16, Theorem 2.7]. Therefore, we conclude by Theorem 3.2 that R is

right PF .

(3) ⇒ (4) Being right self-injective left Kasch, R is semiperfect. Let x ∈ Sl.

Then xZl = 0, and hence x ∈ l(Zl) ⊆ l(J) = Sr (for R is semiperfect).

(4) ⇒ (1) follows from Theorem 3.2.

Remark 3.1. There exists a left Kasch ring R with Sl ⊆ Sr such that the dual of

a simple left R-module need not be simple. In fact, the ring R in [13, Example 2.5]

is left continuous left Artinian, and hence R is left Kasch with Sl ⊆ Sr. However,
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R is not left mininjective. Therefore, the dual of a simple left R-module can’t be

simple by [13, Theorem 2.31].

Following [23], a ring is called right FSG if every finitely generated cofaithful

R-module is a generator.

Theorem 3.3. Then following conditions are equivalent for a ring R :

(1) R is a left PF -ring;

(2) R is a right Kasch, left WIN, left FSG ring and Sr ⊆ Sl;

(3) R is a left WIN, left FSG ring and the dual of every simple right R-module is

simple.

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (3) By Theorem 2.1, R is right minininjective. Hence, by [13, Theorem

2.31], the dual of every simple right R-module is simple.

(3) ⇒ (1) By [13, Theorem 2.31] and Theorem 2.1, R is semiperfect with essen-

tial left socle. Therefore, being left FSG, R is left PF by [23, Theorem 3.8].

Proposition 3.4. Then following conditions are equivalent for a left WIN -ring R :

(1) R is a right PF -ring;

(2) Sr ⊆ Sl and every 2-generated right R-module is torsionless;

(3) R is right Kasch right small injective.

Proof. (1) ⇒ (2), (3) are clear.

(2) ⇒ (1) Clearly, R is right Kasch. Thus, in view of Theorem 2.1, R is semiper-

fect with essential left socle. Therefore, R is right finitely cogenerated by [13, The-

orem 5.31]. So, it remains to show that R is right self-injective. Since J = Zr

by [13, Theorem 5.31], this can be proved by arguing as in [14, Theorem 2.8].

(3) ⇒ (1) Being right small injective, R is right mininjective. Thus, R is semilo-

cal by Theorem 2.1. Therefore, the claim follows from [19, Theorem 3.16].

4. On Quasi-Frobenius Rings via WIN-Rings

There exist commutative noetherian WIN -rings that are not Artinian (for example

Z). However, we do have the following result.

Proposition 4.1. Then following conditions are equivalent for a WIN -ring R :

(1) R is quasi-Frobenius;

(2) R is two-sided Kasch with ACC on right or left annihilators and Sr ⊆ Sl.
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Proof. (1) ⇒ (2) is clear.

(2) ⇒ (1) By Theorem 2.1, R is semiperfect, two-sided mininjective and Sr = Sl

is essential as a left and right ideal of R. Thus, according to [13, Theorem 3.31], R

is quasi-Frobenius.

Theorem 4.1. Let R be a left WIN -ring with ACC on right annihilators such that

Sl ≤e RR. If xR ≤e rl(x) for every simple right ideal xR, then R is quasi-Frobenius.

Proof. Since R has ACC on right annihilators with Sl ≤e RR, it follows from

Lemma 2.1 that R is semiprimary. Then, by Lemma 2.2, R is right mininjective and

rl(T ) is essential in a direct summand of RR for every right ideal T of R. So, from

the hypothesis, we deduce that R is right min-CS. On the other hand, being right

mininjective, R is right Kasch by [13, Theorem 3.12]. Then, in view of [13, Lemma

4.5], Soc(eR) is simple for every local idempotent e ∈ R. Note that Sl = Sr by

Theorem 2.2. Thus, being semiperfect, R is left mininjective by [13, Proposition

3.5]. As R is right mininjective with Sr ≤e RR, then according to [13, Theorem

3.31], R is quasi-Frobenius.

Corollary 4.1. Then following conditions are equivalent for a ring R :

(1) R is quasi-Frobenius;

(2) R is WIN and left quasi-dual with ACC on right annihilators;

(3) R is WIN and right AGP -injective with ACC on right annihilators;

(4) R is WIN with ACC on right annihilators and Sl ≤e RR.

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (3) follows from [15, Lemma 2.6].

(3) ⇒ (4) By [27, Lemma 3.1 an Corollary 1.6], R is semiprimary and J = Zr.

It follows that Sr ⊆ Sl. Since Sr ≤e RR, Sl ≤e RR.

(4) ⇒ (1) Since R is right WIN , it follows from the right version of Proposi-

tion 2.1 that xR ≤e rl(x) for every simple right ideal xR. Now, we conclude by

Theorem 4.1 that R is quasi-Frobenius.

Theorem 4.2. Then following conditions are equivalent for a ring R :

(1) R is quasi-Frobenius;

(2) R is left WIN and left GP -injective with ACC on left annihilators;

(3) R is a left WIN right GP -injective ring with ACC on right annihilators.

Proof. (1) ⇒ (2), (3) are clear.

(2) ⇒ (1) By [27, Corollary 1.9] and its proof, R is right minannihilator and

right Artinian. Thus, since R is left mininjective, we infer from [13, Corollary 3.13]

that Sr = Sl. Hence, by Proposition 2.2, R is right mininjective. Therefore, the

claim follows from [13, Theorem 3.31].
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(3) ⇒ (1) Since right GP -injective with ACC on right annihilators, we infer

from [27, Corollary 1.9] that R is left Artinian. Thus, R is right Kasch by [23,

Proposition 2.2]. Note that R is left WIN . Then for every x ∈ R, xR is simple,

whenever, Rx is simple by Theorem 2.1. Therefore, in view of [23, Theorem 2.4], R

is quasi-Frobenius.

Theorem 4.3. Then the following conditions are equivalent for a ring R :

(1) R is quasi-Frobenius;

(2) R is right CF and left WIN with Sr ⊆ Sl;

(3) R is right Johns and left WIN with Sr ⊆ Sl.

Proof. (1) ⇒ (2), (3) are clear.

(2) ⇒ (1) Since R is right CF , it is right Kasch. Thus, R is semilocal and right

mininjective by Proposition 2.2 and Theorem 2.1, and we conclude by [13, Theorem

8.11] that R is quasi-Frobenius.

(3) ⇒ (1) By Proposition 2.2, R is right mininjective. Therefore, we infer from

[13, Theorem 8.11] that R is quasi-Frobenius.

It was shown in [12, Theorem 2], that a left uniserial right perfect ring is left

aratinian whose factor rings are right P -injective. Using this result and Theorem 4.3,

we prove in the next corollary that every left uniserial right perfect ring is quasi-

Frobenius.

Corollary 4.2. Let R be a left uniserial right perfect ring. Then R is quasi-

Frobenius.

Proof. Being left uniserial right perfect, R is left Artinian right P -injective by [12,

Theorem 2]. Note that every left uniserial ring is left WIN and every right P -

injective ring is right GP -injective. Therefore, we conclude by Theorem 4.3 that R

is quasi-Frobenius.

Let P be a property of rings. A ring R is said to be completely P if each factor

ring of R has the property P .

Theorem 4.4. Suppose R is completely left WIN, completely right Kasch and

completely right mininjective. Then R is left Artinian.

Proof. Let I be a two-sided ideal of R. Since R is completely left WIN , completely

right Kasch and completely right mininjective, R = R/I has a finitely generated

and essential left socle by Theorem 2.1. Using [13, Lemma 1.52], we deduce that R

is left Artinian.

Corollary 4.3. Suppose R is left perfect, completely left WIN, completely right

mininjective. Then R is left Artinian.
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Proof. Let I be a two-sided ideal of R. Since R is left perfect completely right

mininjective, R = R/I is right Kasch right mininjective by [13, Theorem 3.12].

Now, being completely left WIN , R is left Artinian by Theorem 4.4.

Theorem 4.5. The following conditions are equivalent for a ring R :

(1) R is completely quasi-Frobenius;

(2) R is completely WIN, completely quasi-dual;

(3) R is completely WIN, completely right Kasch and Soc(RR) ⊆ Soc(RR) for

every factor ring R of R;

(4) R is completely WIN, completely right Kasch and completely right mininjective.

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (3) Let I be a two-sided ideal of R. Since R is completely quasi-dual,

R = R/I is two-sided Kasch and Soc(RR) = Soc(RR) by [15, Theorem 2.8].

(3) ⇒ (4) follows from Proposition 2.2.

(4) ⇒ (1) Let I be a two-sided ideal of R. Then, R = R/I is left Artinian by

Theorem 4.4. Moreover, Soc(RR) = Soc(RR) by Theorem 2.1. Therefore, the claim

follows from Corollary 4.1.

Corollary 4.4. The following conditions are equivalent for a ring R :

(1) R is completely quasi-Frobenius;

(2) R is left perfect, completely WIN and completely right mininjective.

5. On Left C11-Rings and WIN-Rings

A direct summand of a C11-module need not be a C11-module (see [21, Example

4.33]). According to [21, p. 192], we say that a module M satisfies P+ if and only

if every direct summand of M satisfies P .

Lemma 5.1 ([20, Theorem4.3]). Let R be a ring and let M be a C11 right R-

module with the C3 condition. Then M is a C+
11-module (i.e. every direct summand

of M is a C11-module).

Lemma 5.2 ([20, Proposition2.3(iii)]). Let R be a ring and let M be an inde-

composable C11 right R-module. Then M is uniform.

The proofs of the following lemmas are motivated by [14, Lemmas 2.2 and 2.3].

Lemma 5.3. Let R be a right Kasch, left C11-ring. Then, Sr ≤e RR.

Proof. Since R is left C11, there exists e2 = e ∈ R such that Sr ≤e Re by [20,

Lemma 2.8]. Hence, (1− e)R ⊆ r(Sr). But R is right Kasch. Then J = r(Sr), and

so 1− e ∈ J . It follows that 1 = e. Therefore, Sr ≤e RR.

Lemma 5.4. Let R be a right dual, left C11-ring. Then R is semiperfect and has

finite left uniform dimension.
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Proof. Let T be a right ideal of R. Since R is left C11, there exists an idempotent

e of R such that l(T ) ∩ Re = 0 and l(T ) ⊕ Re ≤e RR by [20, Proposition 2.3].

Hence, by [20, Lemma 2.2], Re is a complement to l(T ) in R. Thus, Re is maximal

with respect to l(T ) ∩ Re = 0. So, R = T + r(e) by [14, Lemma 2.1]. Suppose

now there exists K ⊆ r(e) such that R = T + K. Then, Re ⊆ lr(e) ⊆ l(K). As

l(T ) ∩ l(K) = 0, then the maximality of Re implies that Re = l(K), from which it

follows that K = rl(K) = r(e). Therefore, R is semiperfect by [11, Theorem 11.1.5].

Now, write R = Re1 ⊕ · · · ⊕Ren where each ei is a local idempotent. As RR is left

C11 module with C2-condition, then each Rei is a uniform module by Lemmas 5.1

and 5.2. Therefore, R has finite left uniform dimension.

Proposition 5.1. Let R be a right cogenerator ring.

(1) If R is left C11, then R is right PF .

(2) If R⊕R is C11 as a left R-module, then R is right PF .

Proof. (1) Being right cogenerator, R is right dual. Hence, R is semiperfect by

Lemma 5.4. In particular, R has a finite number of isomorphism classes of

simple right (and left) R-modules. Since R is right cogenerator, R is right self-

injective, and hence right PF .

(2) Since R is right cogenerator, it is left P -injective, and so J = Zl. On the other

hand, R is semiperfect by Lemma 5.4. Using [13, Example 7.18], we deduce that

R⊕R satisfies the C2-condition as a left R-module. Thus, RR is a C11-module

by Lemma 5.1 and we conclude by (1) that R is right PF .

The following result extends [14, Theorem 2.8] from left CS rings to left C11-

rings.

Proposition 5.2. Then following conditions are equivalent for a left C11-ring R :

(1) R is a right PF -ring;

(2) J ⊆ Zr and every 2-generated right R-module is torsionless.

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (1) Clearly, R is right dual. Thus, in view of Lemmas 5.4 and 5.1, R is

semiperfect with Sr ≤e RR. Then, it follows from (2) that Sr ⊆ Sl. Thus, Sl ≤e

RR. Since R is left P -injective, we infer from [13, Theorem 5.31] that R is right

finitely cogenerated. So, it remains to show that R is right self-injective and this

can be proved by arguing as in [14, Theorem 2.8].

The following theorem extends [14, Theorem 2.9] from left CS rings to left

C11-rings.
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Theorem 5.1. The following conditions are equivalent for a left C11 right CF

ring R :

(1) R is quasi-Frobenius;

(2) J ⊆ Zr;

(3) Sr ⊆ Sl;

(4) Soc(Re) �= 0 for every local idempotent e of R.

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (3) Being right CF , R is right dual. Hence, by Lemma 5.4, R is semiper-

fect. But J ⊆ Zr. Then, Sr ⊆ Sl.

(3) ⇒ (4) Since R is right dual, it is right Kasch. Hence, Sr ≤e RR by Lemma 5.3.

By hypothesis, Sr = Sl. Therefore, Sl ≤e RR from which it follows that Soc(Re) �= 0

for every local idempotent e of R.

(4) ⇒ (1) Being right CF , R is right dual. Hence, R is semiperfect by Lemma

5.4. If 1 = e1+· · ·+en, where each ei is a local idempotent, then Sl = ⊕n
i=1Soc(Rei).

Since R is right Kasch, it is left C2. Thus, Rei is uniform for each i by Lemmas

5.1 and 5.2. Therefore, by hypothesis, Soc(Rei) ≤e Rei for each i. It follows that

Sl ≤e RR. Hence, R is right finitely cogenerated by [13, Theorem 5.31]. As R is

right CF , then R is right Artinian. Now, let e be any local idempotent of R. As

RR is a C11-module satisfying the C2-condition, then by Lemma 5.1, RR is a C+
11-

module. Hence, since Re is indecomposable, it follows from Lemma 5.2 that Re is

uniform. Note that Soc(Re) �= 0. Therefore, Soc(Re) is a minimal left ideal. So,

by [22, Corollary 7], Soc(eR) is simple for every local idempotent e of R. Hence,

using [13, Theorems 3.12(4) and 3.7(1)], we deduce that Sr = Sl. Being semiperfect,

R is right mininjective by [13, Proposition 3.5]. Therefore, according to [13, Theorem

3.31], R is quasi-Frobenius.

Recall that a ring is called left QF -2 if it is a direct sum of uniform left ideals.

According to [20, Theorem 2.4], every left QF -2 ring is left C11. Hence, we can

obtain the following corollary.

Corollary 5.1. The following conditions are equivalent for a left QF -2, right CF

ring R :

(1) R is quasi-Frobenius;

(2) J ⊆ Zr;

(3) Sr ⊆ Sl;

(4) Soc(Re) �= 0 for every local idempotent e of R.

Now, we introduce the following notion.

Definition 5.1. We call a ring R right (left) C-continuous if RR (RR) is a C11-

module and satisfies the C2-condition. It is clear that a continuous ring is C-

continuous. But the converse is not true in general as illustrated in the following

example.
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Example 5.1 ([21, Example 77]). Let F be a field which has a proper subfield

K, set Fn = F and Kn = K for n = 1, 2, . . . , and Q =
∏

Fn. Let R = {x ∈ Q :

xn ∈ Kn}. By [8, Example 13.8], R is a commutative C11-ring and M2(R) is a von

Neumann regular ring which is neither right nor left continuous. On the other hand,

since R is C11, M2(R) is both left and right C11 by [21, Corollary 4.82]. But M2(R)

is a right and left C2-ring (for, M2(R) is von Neumann regular). Then M2(R) is

both left and right C-continuous. This shows that class of right (left) C-continuous

rings properly contains the class of right (left) continuous rings.

The following lemmas are needed to prove our next theorem.

Lemma 5.5. Let R be a right C-continuous ring. Then, J = Zr and R/J is a von

Neumann regular right C2 right C11-ring.

Proof. By [21, Theorem 4.64], J = Zr and R/J is von Neumann regular. Clearly,

R/J is right nonsingular. Thus, by [21, Proposition 4.79], (R/J)R/J has C11. But

R/J is a right C2-ring. Then R/J is right C-continuous.

Lemma 5.6. Let R be a right C-continuous ring with ACC on right annihilators.

Then R is semiprimary and Sr ⊆ Sl.

Proof. Since R has ACC on right annihilators, it is orthogonally finite. Thus,

by Lemma 5.5, R is semilocal and J = Zr. Then, J is nilpotent, and so R is

semiprimary. It follows that Sr ⊆ Sl.

It is clear that “right continuous” ⇒ “right C-continuous” and the converse

is not true, in general. So now, we are able to prove the following result which

extends [3, Theorem 1].

Theorem 5.2. The following conditions are equivalent for a ring R :

(1) R is quasi-Frobenius.

(2) R is two-sided C-continuous with ACC on right annihilators.

(3) R is a left WIN, left mininjective ring with ACC on right annihilators in which

Sl ≤e RR.

(4) R is a right C-continuous, left WIN-ring with ACC on right annihilators.

Proof. (1) ⇒ (2), (3), (4) are clear.

(2) ⇒ (1) By Lemma 5.6, R is semiprimary and Sr = Sl. Thus, Soc(eR) and

Soc(Re) are nonzero for all local idempotent e of R. By Lemmas 5.1 and 5.2, eR and

eR are uniform. So, both Soc(Re) and Soc(eR) are simple. Now, being semiperfect

with Sr = Sl, R is two-sided mininjective by [13, Proposition 3.5]. Therefore, R is

QF by [13, Theorem 3.31].

(3) ⇒ (1) Since R is a left WIN -ring with ACC on right annihilators in which

Sl ≤e RR, R is right mininjective, left Artinian and satisfies the conditions (1)

through (6) of Theorem 2.1. Now, R is QF by [22, Corollary 13].
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(4) ⇒ (1) In this case, by Lemma 5.6, R is semiprimary and Sr ⊆ Sl. Then

by Proposition 2.2, R is right mininjective. Now, let e be any local idempotent of

R. As RR is a C11-module satisfying the C2-condition, then by Lemma 5.1, RR

is a C+
11-module. Hence, it follows from Lemma 5.2 that eR is uniform. Note that

Soc(eR) �= 0. Therefore, Soc(eR) is a simple right ideal of R. As Sr ⊆ Sl and

Sr ≤e RR, then we have Sl ≤e RR. By Theorem 2.2, R is right mininjective, left

Artinian and satisfies the conditions (1) through (6) of Theorem 2.1. So, Sr = Sl.

Since R is semiperfect and Soc(eR) is a simple right ideal of R for all idempotents

e of R, infer from [13, Proposition 3.5] that R is left mininjective. Now, R is QF

by [22, Corollary 13].

Recall that a ring R is right CEP if every cyclic right R-module is essentially

embedded in a projective module. A moduleM is said to beGC2 if every submodule

of M isomorphic to M is a direct summand of M . A ring R is called right GC2 if

RR is a GC2 module.

Corollary 5.2. Then following conditions are equivalent for a ring R :

(1) R is quasi-Frobenius;

(2) R is right Johns, right GC2 and left WIN ;

(3) R is right CEP and left WIN .

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (3) By [27, Lemma 1.1], R is semilocal. Since R is right Johns, J is

nilpotent by [13, Lemma 8.7]. Thus, R is semiprimary. Now, being right noetherian,

R is right Artinian. On the other hand, it is clear that R is right dual. Therefore,

we deduce from [14, Proposiition 3.3] that R is right CEP .

(3) ⇒ (1) By [14, Proposiition 3.3], R is right continuous and right Artinian.

Thus, we can apply Theorem 5.2 to show that R is quasi-Frobenius.

Proposition 5.3. Let R be a left perfect right C-continuous left WIN -ring. If

J2 = r(A) for a finite subset A of R. Then R is quasi-Frobenius.

Proof. Let J2 = r(a1, . . . , an). Define φ : R/J2 → Rn
R via φ(a + J2(R)) =

r(a1a, a2a, . . . , ana) for a ∈ R. Then φ is a monomorphism. Hence, we may regard

J2/J as a submodule of Rn
R. Also, we have J/J

2 = Soc(J/J2) ⊆ Soc(Rn
R) = (Sr)

n.

Since R is semiperfect, RR has a decomposition RR = e1R⊕e2R⊕· · ·⊕enR, where

each ei is a local idempotent. Note that RR is a C3-module. Then, since RR is a

C11-module, it follows from Lemmas 5.1 and 5.2 that each eiR is uniform. Conse-

quently, R has finite right uniform dimension. Then, Sr is finitely generated and

so is (Sr)
n. Therefore, as a direct summand of (Sr)

n, J/J2 is a finitely generated

right R-module. Hence, R is right Artinian by [5, Lemma 2.9]. Thus, by Theorem

5.2, R is quasi-Frobenius.
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Theorem 5.3. Let R be a left perfect right C-continuous left WIN -ring. If R is

left (or right) pseudo-coherent, then R is quasi-Frobenius.

Proof. By Lemma 5.5, J = Zr. Since R is semiperfect, it follows that Sr ⊆ Sl.

Therefore, R is right mininjective by Proposition 2.2. Now, being left perfect, R is

right Kasch by [13, Theorem 3.12]. Using Theorem 2.1, we deduce that S = Sl = Sr.

Since R is left perfect, Soc(eR) �= 0 for every local idempotent e of R. As eR is

indecomposable, it follows from Lemmas 5.1 and 5.2 that eR is uniform. Thus,

Soc(eR) is simple. Hence, by [13, Proposition 3.5], R is left mininjective. Therefore,

S = Sl = Sr is a finitely generated left and right ideal by [13, Corollary 5.53]. Again

by [13, Theorem 3.12], R is left Kasch. As R is right Kasch, then J = l(S) = r(S).

By hypothesis, R is left (or right) pseudo-coherent, and so J is left (or right) finitely

generated ideal, from which it follows that J/J2 is a finitely generated left (or right)

R-module. Since R is left perfect, R is left or (right) Artinian by [5, Lemma 2.9].

Now, R is quasi-Frobenius by Theorem 5.2.

Remark 5.1. A left C-continuous ring need not be right C-continuous. For ex-

ample, the ring R in [13, Example 2.5] is a left C-continuous left WIN two-side

Artinian ring that is not right C-continuous. Indeed, if R were right C-continuous,

then being left WIN with ACC on right annihilators, it would be quasi-Frobenius

by Theorem 5.2. However, R is not left mininjective, a contradiction.

Lemma 5.7 ([21, Theorem 4.64]). Let M be a module such that M satisfies C+
11

and M/Soc(M) has finite uniform dimension. Then M contains a semisimple sub-

module and a submodule M2 with finite uniform dimension such that M =M1 ⊕M2.

By using the technique of proving [13, Lemma 4.21], we can obtain the following

result.

Lemma 5.8. Let R be a right C-continuous ring. If either R/Sr or R/Sl has ACC

on right annihilators, then R is semiprimary.

Proof. We first suppose that R/Sr has ACC on right annihilators. Since R is a

right C2 right C11-ring, J = Zr by Lemma 5.5. So J is nilpotent by [13, Lemma

4.20(4)]. Write R = R/Sr and R̃ = R/J and denote by J and S̃ the images of J

in R and Sr in R̃, respectively. Then, R/J ∼= R/(J + Sr) ∼= R̃/S̃. Note that R̃ is

von Neumann regular by Lemma 5.5. Then R/J is von Neumann regular. Since R

is I-finite and J is nilpotent, R/J is also I-finite. Consequently, R/J is semisimple

Artinian. So, by the previous isomorphism, R̃/S̃ is semisimple Artinian. By Lemma

5.5, R̃ is a right C-continuous ring. Hence, using [20, Theorem 4.3] and Lemma 5.7,

we deduce that S̃
˜R is finitely generated. Therefore, R̃ is semisimple Artinian, and

so R is semiprimary.

Now, assume that R/Sl has ACC on right annihilators. By Lemma 5.5, J = Zr,

and so J is nilpotent by [13, Lemma 4.20(4)]. Write R = R/Sl and R̃ = R/J

2450087-20



November 7, 2024 9:39 WSPC/246-AEJM 2450087

On weak Ikeda–Nakayama rings

and denote by J and S̃ the images of J in R and Sl in R̃, respectively. Then,

R/J ∼= R/(J + Sl) ∼= R̃/S̃. Note that R̃ is von Neumann regular by Lemma 5.5.

ThenR/J is von Neumann regular too. Since R is I-finite and J , R/J is also I-finite.

So, by the previous isomorphism, R̃/S̃ is semisimple Artinian. As R̃ is semiprime,

then S̃
˜R =

˜RS̃. Thus, since R̃ is a right C-continuous ring by Lemma 5.5, we infer

from Lemma 5.7 that S̃
˜R is finitely generated. Therefore, R̃ is semisimple Artinian.

This completes the proof.

Theorem 5.4. Then following conditions are equivalent for a ring R :

(1) R is quasi-Frobenius;

(2) R is a right C-continuous, left WIN-ring and R/Sr is right Goldie;

(3) R is a right C-continuous, left WIN-ring and R/Sl is right Goldie.

Proof. (1) ⇒ (2) is clear.

(2) ⇒ (1) By Lemma 5.8, R is semiprimary. Now, let e be a local idempo-

tent of R. Then, by Lemmas 5.1 and 5.2, eR is uniform. Note that Soc(eR) �= 0.

Then, Soc(eR) is simple. Note by Lemma 5.5 that J = Zr. Now, let y ∈ Sr.

Then, Zry = 0, and so y ∈ r(Zr) ⊆ r(J). Since R is semiperfect, r(J) = Sl. Thus,

Sr ⊆ Sl and we deduce from Proposition 2.2 that R is right mininjective. Hence,

using [13, Theorem 3.12(1)] and Theorem 2.1, we deduce that Sr = Sl. But R

is semiperfect and Soc(eR) is simple for all local idempotents e of R. Then, R

is left mininjective by [13, Proposition 3.5] and so R is two-sided minannihilator

by [13, Corollary 2.34]. Therefore, according to [13, Corollary 3.25(1) and Theorem

3.38], R is quasi-Frobenius.

Similarly, (1) ⇔ (3).
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