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Abstract
This paper is concerned with strongly pseudomonotone equilibrium problems on Hadamard
manifolds. We first prove the existence and uniqueness of solution for this class of problems.
We then establish lower and upper error bounds for strongly pseudomonotone equilibrium
problems. Linear convergence and strong convergence of sequences generated by the modi-
fied projection method with suitable choices of step sizes are also investigated. Furthermore,
we present finite convergence results, which are new even for the case of linear space setting,
for the modified projection method under linear conditioning assumption. Some examples
are given to support our results.

Keywords Equilibrium problems · Hadamard manifolds · Strongly pseudomonotone ·
Modified projection method · Linear conditioning · Finite convergence

Mathematics Subject Classification 49J40 · 65K15 · 90C33 · 58D17

1 Introduction

The equilibrium problem (in short, EP), introduced by Blum and Oettli (1994), is a general
mathematical model which contains optimization problems, variational inequality problems,
saddle point problems, complementarity problems, fixed point problems, Nash equilibrium
problems in noncooperative games and others as special cases (see, e.g., Bigi et al. (2019);
Blum andOettli (1994); Konnov (2007) and references therein). Because of its applications in
many areas such as economics, transportations, networks, image reconstructions, elasticity,
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etc., EP has been studied extensively. Two basic and important issues for EP are the existence
of solutions and iterative methods for finding solutions. There have been a large number of
papers dealing with the solution existence and solution methods for equilibrium problems
in the literature (see, Anh and Hai (2017, 2019); Blum and Oettli (1994); Duc et al. (2016);
Hai (2020); Hieu (2019); Muu and Quy (2015); Nguyen et al. (2020); Quoc andMuu (2012);
Vuong and Strodiot (2020); Yin et al. (2022) and references therein).

In recent years, several concepts and results of nonlinear analysis and optimization the-
ory have been extended from Euclidean spaces to Riemannian manifolds (see, e.g., Azagra
et al. (2005); Ledyaev and Zhu (2007); Li et al. (2009)). It is worth noting that these
extensions have some significant benefits. For example, by choosing a suitable Rieman-
nian metric, constrained problems can be reduced to unconstrained problems, non-convex
optimization problems can be transformed to convex problems on Riemannian manifolds,
and non-monotone bifunctions can be transformed into monotone bifunctions. Colao et al.
(2012) was first introduced the equilibrium problem onmanifolds. In that paper, by extending
the well-known KKM lemma in Knaster et al. (1929), the authors proved an existence result
for solutions of equilibrium problems on Hadamard manfolds. As consequences, existence
results for solutions of variational inequality, fixed point andNash equilibrium problemswere
derived. They also proved the convergence of Picard iteration for firmly nonexpansive map-
pings in the setting of Hadamrd manifolds and used to devise an algorithm to approximate
solutions. The results presented in Colao et al. (2012) were then improved and extended to
general Riemannianmanifolds byWang et al. (2019)with a new approach. For other existence
results for solutions of equilibrium problems, we refer the reader to, e.g., Al-Homidan et al.
(2021); Bento et al. (2022); Cruz Neto et al. (2018); Jana (2022); Pang (2018) and references
therein. Several solution methods for equilibrium problems in the setting of manifolds have
also been developed. Cruz Neto et al. (2016) presented an extragradient algorithm for solving
EPs on Hadamard manifolds to the case where the equilibrium bifunction is not necessarily
pseudomonotone. Extragradient type algorithms for solving (strongly) pseudomonotone EPs
on Hadamard manifolds were considered in Al-Homidan et al. (2021); Chen et al. (2021);
Fan et al. (2021); Khammahawong et al. (2020). Other results concerning solution methods
for solving EPs on manifolds can be found in Ansari and Islam (2020); Babu et al. (2022); Li
et al. (2016) and references therein. Noting that strongly pseudomonotone equilibrium prob-
lems in linear spaces have been studied in many papers and they are still attracted to many
researchers (see, e.g., Anh andHai (2017, 2019);Muu andQuy (2015); Duc et al. (2016); Hai
(2020); Hieu (2019); Vuong and Strodiot (2020); Yin et al. (2022) and references therein).
However, there were few papers dealt with strongly pseudomonotone equilibrium problems
on manifolds.

Motivated by the above-mentioned works, the aim of this paper is to establish some new
results for strongly pseudomonotone equilibrium problems on Hadamard manifolds. We
first prove the existence and uniqueness for the solution of EPs governed by strongly pseu-
domonotone bifunctions onHadamardmanifolds.We then present and prove error bounds for
EPs when the considered equilibrium bifunction is strongly pseudomonotone and satisfies a
Lipschitz-type condition.We aslo study, under the same setting, the convergence property for
sequences generated by the modified projection method with different step size rules. These
results extend the analogous results from linear spaces to the setting of Hadamard manifolds.
We also introduce the notion of linear conditioning for equilibrium problems on Hadamard
manifolds and use it to study the finite termination of sequences generated by the modified
projectionmethod. An upper bound for the number of iterates for which a sequence generated
by the modified projection method converges to the solution of the EP is also given. These
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finite convergences results are new even for the case of Euclidean spaces. Some examples
and numerical experiments are also presented to support our results.

The rest of this paper is organized as follows. In Sect. 2, we recall some notions, definitions
and basic results ofHadamardmanifoldswhichwill be used in the sequel. Section3 is devoted
to the existence, uniqueness and error bounds for the solution of strongly pseudomonotone
EPs on Hadamard manifolds. In Sect. 4.2, we establised the linear and finite convergence for
the modified projection method for solving EPs. Finally, some conclusions are presented in
Sect. 5.

2 Preliminaries

This section consists of some basic definitions, notations and useful results about Riemannian
geometry which can be found in, for instances, do Carmo (1992); Lang (1999); Sakai (1996);
Udriste (1994).

Let M be a connected finite-dimensional smooth manifold. We denoted by TxM the
tangent space of M at a point x ∈ M and by T M = ⋃

x∈M TxM the tangent bundle of
M. Note that TxM is a vector space with the same dimension as M and T M is naturally a
manifold.We suppose thatM is endowedwith a Riemannianmetric to become a Riemannian
manifold. We denote by 〈·, ·〉x the inner product on TxM and by || · ||x the corresponding
norm to the inner product 〈·, ·〉x . If no confusion occurs, the subscript x is omitted.

The length of a piecewise smooth curve γ : [a, b] → M joining x to y in M, i.e.,
x = γ (a) and y = γ (b), is defined by

L(γ ) :=
∫ b

a
||γ ′(t)||dt,

where γ ′(t) ∈ Tγ (t)M is a tangent vector. The Riemannian distance d(x, y) between x and
y is the minimal length of all such curves connecting x and y. This distance induces the
original topology on M. Let p ∈ M and r > 0. We denote by B(p, r) and B(p, r) which
are defined respectively as

B(p, r) = {q ∈ M : d(p, q) < r} and B(p, r) = {q ∈ M : d(p, q) ≤ r},
the open metric ball and the closed metric ball at p with radius r , respectively. We denote by
int C the interior of a set C ⊂ M with respect to the topology induced by the distance d . The
distance from a point p ∈ M to a subset C of M is defined as

d(p, C) := inf{d(p, q) : q ∈ C}.
A mapping V : M → T M is called a vector field if V (x) ∈ TxM for each x ∈ M. Let
∇ be the Levi-Civita connection associated with the Riemannian metric. A vector field V is
said to be parallel along a smooth curve γ if ∇γ ′(t)V = 0, where 0 is the zero tangent vector.
If γ ′ is parallel along γ , i.e., ∇γ ′(t)γ ′(t) = 0, then we say that γ is a geodesic. A geodesic
γ joining x to y is said to be a minimal geodesic if its length equals d(p, q) and in this case
the geodesic γ is called a minimizing geodesic. By the Hopf-Rinow theorem, a Riemannian
manifold M is complete if and only if any pair of points in M can be joined by a minimal
geodesic. Moreover, if M is complete, then (M, d) is a complete metric space and every
bounded closed subset is compact. A Hadamard manifold is a complete, simply connected
Riemannian manifold of non-positive sectional curvature. From now on, we always assume
that M is an m-dimensional Hadamard manifold.
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The exponentialmap expx : TxM → M at a point x ∈ M is defined by expxv := γv(1, x)
for each v ∈ TxM, where γ (·) := γv(·, x) is the geodesic starting from x with velocity v,
i.e., γ (0) = x and γ ′(0) = v. It is known that expx tv = γv(t, x) for any real number t
and expx0 = γv(0, x) = x . Note that for x ∈ M, the exponential map expx : TxM → M
is a diffeomorphism. Thus, there exists an inverse exponential map exp−1

x : M → TxM.
Moreover, we have d(x, y) = ||exp−1

x y|| for any x, y ∈ M.
A geodesic triangle �(x1, x2, x3) is a set consisting of three points x1, x2 and x3 in M

and three minimal geodesics γi joining xi to xi+1, where i = 1, 2, 3(mod 3).

Proposition 2.1 (Sakai 1996) (Comparison result for triangles). Let�(x1x2x3)be a geodesic
triangle in M. For each i = 1, 2, 3(mod 3), let γi : [0, �i ] → M denote the geodesic
joining xi to xi+1, and �i = L(γi ) and αi be the angle between tangent vectors γ ′

i (0) and−γ ′
i−1(�i−1). Then

(i) α1 + α2 + α3 ≤ π ;
(ii) �2i + �2i+1 − 2�i�i+1 cosαi+1 ≤ �2i−1;

Since 〈
exp−1

xi+1
xi , exp

−1
xi+1

xi+2

〉
= d(xi , xi+1)d(xi+1, xi+2) cosαi+1,

the inequality (ii) of Proposition 2.1 can be rewritten in terms of the distance and the expo-
nential map as

d2(xi , xi+1) + d2(xi+1, xi+2) − 2
〈
exp−1

xi+1
xi , exp

−1
xi+1

xi+2

〉
≤ d2(xi , xi+2). (1)

The following useful property was proved in Tam (2022).We present here a simpler proof.

Lemma 2.1 For any x, y, z ∈ M, it holds

|| exp−1
z x − exp−1

z y|| ≤ d(x, y). (2)

Proof Let x, y, z ∈ M. Using (1), we have

|| exp−1
z x − exp−1

z y||2 = || exp−1
z x ||2 + || exp−1

z y||2 − 2〈exp−1
z x, exp−1

z y〉
= d2(x, z) + d2(y, z) − 2〈exp−1

z x, exp−1
z y〉

≤ d2(x, y)

which implies that (2) holds. 
�
Definition 2.1 (Udriste 1994) A subsetK ⊂ M is said to be (geodesically) convex if for any
two point x and y inK, the geodesic joining x to y is contained inK, that is, if γ : [a, b] → M
is a geodesic such that γ (a) = x and γ (b) = y, then γ (ta + (1− t)b) ∈ K for all t ∈ [0, 1].

The projection of a point x ∈ M onto a subset K of M is defined by

P(x,K) := {p ∈ K : d(x, p) = d(x,K)}.
Proposition 2.2 (Walter 1974) Let K be a closed convex subset of a Hadamard manifold
M. Then, for any x ∈ M, P(x,K) is a singleton set. Also, for any p ∈ M, the following
assertions are equivalent:

(i) y = P(p,K);
(ii) 〈exp−1

y p, exp−1
y q〉 ≤ 0 for all q ∈ K.
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Definition 2.2 (Udriste 1994) Let C be a nonempty convex set ofM. A function f : C → R

is said to be (geodesically) convex if for any geodesic γ : [a, b] → C the composition
f ◦ γ : [a, b] → R is convex.

For any x, y ∈ M, there is a unique minimal geodesic γ joining x to y which is defined
by γ (t) = expx (t exp

−1
x y) for all t ∈ [0, 1] (see, e.g., Sakai (1996)). Thus, f : C → R is

convex if and only if

f (expx (t exp
−1
x y)) ≤ (1 − t) f (x) + t f (y), ∀x, y ∈ C and t ∈ [0, 1].

Let C be a nonempty convex set of M and f : C → R be convex. The subdifferential of f
at a point x ∈ C is defined by

∂ f (x) := {v ∈ TxM : f (y) − f (x) ≥ 〈v, exp−1
x y〉, ∀y ∈ C}.

It is known that if f : C → R is convex, then the set ∂ f (x) is nonempty convex and compact
for each x ∈ C (see, (Udriste, 1994, Theorem 4.6)).

The normal cone of C at a point x ∈ C is defined by

NC(x) = {v ∈ TxM : 〈v, exp−1
x y〉 ≤ 0 for all y ∈ C}.

We have that
NC(x) = ∂δC(x) ∀x ∈ C,

where δC is the indicator function of the set C defined by δC(x) = 0 if x ∈ C and δC(x) = +∞
if x /∈ C.

Assume that f : M × M → R is a bifunction and C is a convex subset of M such that
y �→ f (x, y) is convex on C for each x ∈ C. For each x, y ∈ C, we denote by ∂2 f (x, y) the
subdifferential of f (x, ·) at y, that is,

∂2 f (x, y) :=
{
u ∈ TyM :

〈
u, exp−1

y z
〉
+ f (x, y) ≤ f (x, z),∀z ∈ C

}
.

For our analysis, we need the following result.

Proposition 2.3 Let f : M → R be a lower semicontinuous function and C ⊂ M be a
nonempty closed convex set such that f is convex on an open set containing C. Then, x∗ is a
minimizer of the problem min{ f (x) : x ∈ C} if and only if

0 ∈ ∂ f (x∗) + NC(x∗).

Proof Consider the function fC : M → R ∪ {+∞} defined by
fC(x) = f (x) + δC(x) for all x ∈ M.

Under our assumption, fC is a proper lower semicontinuous convex function. Moreover,
x∗ ∈ C is a minimizer of the problem min{ f (x) : x ∈ C} if and only if x∗ is a minimizer
of fC on M. This is equivalent to 0 ∈ ∂ fC(x∗) (see, e.g., (Li et al. 2009, Page 675)). Since
x∗ ∈ C ∩ int(dom f ), by (Li et al. 2011, Proposition 4.3), we have

∂ fC(x∗) = ∂ f (x∗) + NC(x∗).

This yields the desired conclusion. 
�
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From now on, unless otherwise stated, let X be a nonempty closed convex subset of M
and f : M×M → R be a bifunction satisfying f (x, x) = 0 for all x ∈ X . The equilibrium
problem in the Riemanian context (in short, EP) consists of finding x∗ ∈ X such that

f (x∗, y) ≥ 0 for all y ∈ X . (3)

In this case, the bifunction f is said to be an equilibrium bifunction. We denote by X ∗ the
solution set of the equilibrium problem (3).

The equilibriumproblem in themanifold contextwas first considered inColao et al. (2012)
where the authors pointed out some important problems, which can be formulated by (3). In
particular, if f (x, y) = 〈V (x), exp−1

x y〉 for all x, y ∈ X , where V is a vector field onM, then
the problem (3) reduces to the variational inequality problem on Hdamard manifolds which
was first introduced by Németh (2003). Concerning the existence of solutions of equilibrium
problems on manifolds under different assumptions, we refer the reader to, e.g., Al-Homidan
et al. (2021); Bento et al. (2022); Cruz Neto et al. (2018); Jana (2022); Pang (2018); Wang
et al. (2019). Some algorithms for solving equilibrium problems on manifolds can be found
in, e.g., Ansari and Islam (2020); Al-Homidan et al. (2021); Babu et al. (2022); Chen et al.
(2021); Cruz Neto et al. (2016); Fan et al. (2021); Li et al. (2016) and references therein.

We next recall some concepts related to the equilibrium bifunction.

Definition 2.3 (Cruz Neto et al. 2016; Al-Homidan et al. 2021) Let f : M × M → R be a
bifunction and X be a nonempty closed convex subset of M. The bifunction f is said to be

(i) monotone on X if for any x, y ∈ X ,

f (x, y) + f (y, x) ≤ 0;
(ii) strongly monotone on X with modulus μ if there exists a positive constant μ such

that for any x, y ∈ X ,

f (x, y) + f (y, x) ≤ −μd2(x, y);
(iii) pseudomonotone on X if, for any x, y ∈ X ,

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0;
(iv) strongly pseudomonotone on X with modulus μ if, there exists a positive constant μ

such that for any x, y ∈ X ,

f (x, y) ≥ 0 ⇒ f (y, x) ≤ −μd2(x, y).

From the definition we have the following implications:

(i i) ⇒ (i) ⇒ (i i i) and (i i) ⇒ (iv) ⇒ (i i i).

However, the converse implications do not hold even in the linear space setting.

Definition 2.4 Let f : M × M → R be a bifunction and X be a nonempty subset of M.
The bifunction f is said to satisfy the Lipschitz-type condition with constant L on X if there
is a constant L > 0 such that

f (x, y) + f (y, z) ≥ f (x, z) − Ld(x, y)d(y, z) ∀x, y, z ∈ X . (4)
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Remark 2.1 The Lipschitz-type condition (4) was introduced by Quoc and Muu (2012) in
Hilbert spaces. This condition has been used to investigate the convergence of several algo-
rithms for solving equilibrium problems in the linear space setting in, for instance, Quoc
and Muu (2012); Vuong and Strodiot (2020). This condition is weaker than the following
Lipschitz-type condition introduced by Antipin (1995):

| f (x, y) − f (x, z) + f (u, y) − f (u, z)| ≤ Ld(x, u)d(y, z) ∀u, x, y, z ∈ X ,

and the condition introduced by Anh and Hai (2017):

| f (x, y) + f (y, z) − f (x, z)| ≤ Ld(x, y)d(y, z) ∀x, y, z ∈ X .

On the other hand, the Lipschitz-type condition (4) implies the Lipschitz-type condition
introduced by Mastroeni (2003):

f (x, y) + f (y, z) ≥ f (x, z) − L1d
2(x, y) − L2d

2(y, z) ∀x, y, z ∈ X , (5)

where L1, L2 are two given positive constants.

Remark 2.2 Assume that X has more than one element. If f : M × M → R is strongly
monotone with modulus β and satisfies the Lipschitz - type condition (4) with constant L on
X , then β ≤ L . Indeed, by the condition (4) and the strong monotonicity of f , we have for
all x, y ∈ X with x �= y that

−Ld(x, y)d(y, x) ≤ f (x, y) + f (y, x) ≤ −βd2(x, y).

This implies that β ≤ L .

To end this section, we propose the following assumptions on the equilibrium bifunction
f which will be required in the sequel.
Assumption (A):

(A1) For each x ∈ X , the mapping y �→ f (x, y) is convex on X .
(A2) For each x ∈ X , the mapping y �→ f (x, y) is lower semicontinuous on X .
(A3) For each y ∈ X , the mapping x �→ f (x, y) is upper semicontinuous on X .
(A4) For each x ∈ X , the function y �→ f (x, y) is convex on an open set containing X .

3 Existence of solutions and error bounds for strongly
pseudomonotone equilibrium problems

This section is devoted to the study of existence of solutions and error bounds for strongly
pseudomonotone equilibrium problems. The results in this section extend some existing
results from linear spaces to Hadamard manifolds.

3.1 Existence of solutions

Before stating our existence result, we recall the following result which will be used for
proving our result.

Theorem 3.1 (see (Wanget al., 2019,Corollary 3.1)). Assume that (A1) and (A3) are satisfied.
If X is compact or there exists a compact set L ⊂ M such that: for any x ∈ X \ L, there
exists y ∈ X ∩ L satisfying f (x, y) < 0, then EP (3) has a solution.
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Our existence result is stated as follows.

Theorem 3.2 Assume that (A1) – (A3) are satisfied. If f is strongly pseudomonotone with
modulus β on X , then EP (3) has a unique solution.

Proof We first show that EP (3) has a solution. If X is bounded, then X is compact. Then,
by Theorem 3.1, EP(3) has a solution.

Assume now thatX is unbounded.Wefixed a point x̄ ∈ X .We claim that there exists r > 0
such that: for all x ∈ X \B(x̄, r), there exists y ∈ X∩B(x̄, r) satisfying f (x, y) < 0.Assume
to the contrary that the claim is not true. Then, for each k ∈ N, there exists xk ∈ X \ B(x̄, k)
such that

f (xk, y) ≥ 0 for all y ∈ X ∩ B(x̄, k).

Take y0 ∈ X∩B(x̄, 1). Then, f (xk, y0) ≥ 0 for all k. Since f is strongly pseudomonotone
with modulus β on X , we have

f (y0, xk) + βd2(xk, y0) ≤ 0 for all k. (6)

Since f (y0, ·) is convex and lower semicontinuous, ∂2 f (y0, x̄) �= ∅ (see Udriste (1994)).
Take v ∈ ∂2 f (y0, x̄). Then we have for all k that

〈v, exp−1
x̄ xk〉 ≤ f (y0, xk) − f (y0, x̄).

This implies that

f (y0, xk) + βd2(y0, xk) ≥ f (y0, x̄) + 〈v, exp−1
x̄ xk〉 + βd2(y0, xk)

≥ f (y0, x̄) − ||v||.|| exp−1
x̄ xk || + βd2(y0, xk)

= f (y0, x̄) − ||v||.d(x̄, xk) + βd2(y0, xk)

≥ f (y0, x̄) − ||v||[d(x̄, y0) + d(y0, xk)] + βd2(y0, xk)

= f (y0, x̄) − ||v||d(x̄, y0) + d(y0, xk)[βd(y0, xk) − ||v||].
Since d(y0, xk) → ∞ as k → ∞, we have f (y0, xk) + βd2(y0, xk) → ∞ as k → ∞. This
contradicts (6). Thus, our claim is true. Applying Theorem 3.1, we conclude that EP (3) has
a solution.

Assume now that EP has two solutions z1 and z2. Then, f (z1, z2) ≥ 0 and f (z2, z1) ≥ 0.
By the strongly pseudomonotonicity of f , we have

0 ≤ f (z1, z2) ≤ −βd2(z1, z2).

This implies that d(z1, z2) = 0, i.e., z1 = z2. Therefore, EP (3) has a unique solution. 
�
Theorem 3.2 extends to Hadamard manifolds the result presented in Duc et al. (2016).

The following example illustrates the validity of Theorem 3.2.

Example 3.1 Let M = R++ = {x ∈ R : x > 0} be the Riemannian manifold with the
Riemannian metric

〈u, v〉 := 1

x2
uv, ∀u, v ∈ TxM.

Here, the tangent space TxM at a point x ∈ M is equal to R. The Riemannian distance
d : M × M → R+ is defined by

d(x, y) =
∣
∣
∣
∣ln

x

y

∣
∣
∣
∣ , ∀x, y ∈ M.
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It holds that M is a Hadamard manifold. The unique geodesic γ starting from a point
x = γ (0) ∈ M with velocity v = γ ′(0) ∈ TxM is defined by γ (t) = xe(v/x)t . In terms of
the initial point γ (0) = x and the terminal point γ (1) = y, the geodesic γ (t) is defined by
γ (t) = x1−t yt for all t ∈ [0, 1].

Let X = [1,∞) be a convex set in M and f : M × M → R be defined by

f (x, y) =
(

1 + 1

x

)

ln x · ln y

x
+ y − x, ∀x, y ∈ M.

It is evident that the bifunction f satisfies assumptions (A2) and (A3). For each x ∈ X , the
function f (x, ·) is geodesically convex. Indeed, for any y1, y2 ∈ M, the geodesic joining y1
to y2 is γ (t) = y1−t

1 yt2 and thus

f (x, γ (t)) =
(

1 + 1

x

)

ln x · ln y1−t
1 yt2
x

+ y1−t
1 yt2 − x

and
f "(x, γ (t) = y1−t

1 yt2 ln
2 y2
y1

≥ 0

for all t ∈ [0, 1]. Hence, f (x, ·) ◦ γ is convex in the Euclidean sense. Therefore, f (x, ·) is
geodesically convex for each x ∈ X and f satisfies assumption (A1).Moreover, f is strongly
pseudomonotone on X . Indeed, let x, y ∈ X be such that f (x, y) ≥ 0, i.e.,

(

1 + 1

x

)

ln x · ln y

x
+ y − x ≥ 0.

This implies that y ≥ x . In this case, one has

f (y, x) =
(

1 + 1

y

)

ln y · ln x

y
+ x − y

≤
(

1 + 1

y

)

ln y · ln x

y
+ x − y +

[(

1 + 1

y

)

ln x ln
y

x
+ y − x

]

=
(

1 + 1

y

)

(ln y − ln x) ln
x

y

= −
(

1 + 1

y

)

ln2
x

y

≤ −d2(x, y).

Thus, f is strongly pseudomonotone with modulus β = 1 on X .
Since all assumptions of Theorem 3.2 are satisfied, EP (3) has a unique solution. In fact,

x∗ = 1 is the unique solution of EP (3).
We note that for each x ∈ X , the function y �→ h(y) = f (x, y) is not convex in the

Euclidean sense. Indeed, for all y > 0, we have

h"(y) = −
(

1 + 1

x

)

ln x · 1

y2
< 0,

i.e., h is not convex in the Euclidean sense.
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3.2 Global error bounds

We establish global bound for the distance between an arbitrary point x to the unique solution
of the strongly pseudomonotone equilibrium problem in terms of some easily computable
quantities merely depending on x and the data of the considered problem. For our purpose,
we consider the mapping sλ : X → X defined by

sλ(x) = argmin

{

λ f (x, y) + 1

2
d2(x, y) : y ∈ X

}

for x ∈ X ,

where λ is a positive real number.
Fromnowon,we always suppose thatAssumption (A) is satisfied.Under this assumption,

the function fλ : M → R, with λ > 0, defined by

fλ(y) := λ f (x, y) + 1

2
d2(x, y)

is strongly convex on X . Hence, the mapping sλ is well-defined and it has single values on
X (see, e.g., Udriste (1994)). It is also noted that for any λ > 0, x is a solution of EP (3) if
and only if x = sλ(x) (see, e.g., (Cruz Neto et al., 2016, Remark 5)).

Theorem 3.3 Assume that f : M × M → R is strongly pseudomonotone with modulus β

and satisfies the Lipschitz -type condition (4) with constant L on X . Let x∗ be the unique
solution of EP (3) and λ > 0. Then, for each x ∈ X , we have

d(x, x∗) ≤ 1 + λβ + λL

λβ
d(x, sλ(x)), (7)

and

d(x, x∗) ≥ 1 − λL

1 + λL
d(x, sλ(x)). (8)

Proof For each x ∈ X and λ > 0, we denote by z := sλ(x) ∈ X the unique solution of the
strongly convex problem

min

{

λ f (x, y) + 1

2
d2(x, y) : y ∈ X

}

.

It is evident that (7) and (8) hold if z = x∗. Assume now that z �= x∗. By Proposition 2.3,
we have

0 ∈ ∂

[

λ f (x, ·) + 1

2
d2(x, ·)

]

(z) + NX (z),

or
0 ∈ λ∂2 f (x, z) − exp−1

z x + NX (z).

Thus, there exists w ∈ ∂2 f (x, z) such that

−λw + exp−1
z x ∈ NX (z).

Using the definition of normal cones, one has

〈exp−1
z x − λw, exp−1

z y〉 ≤ 0 ∀y ∈ X .

This implies that
〈exp−1

z x, exp−1
z y〉 ≤ λ〈w, exp−1

z y〉 ∀y ∈ X .
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On the other hand, since w ∈ ∂2 f (x, z), we have

〈w, exp−1
z y〉 ≤ f (x, y) − f (x, z) ∀y ∈ X .

It follows from the last two inequalities that

〈exp−1
z x, exp−1

z y〉 ≤ λ[ f (x, y) − f (x, z)] ∀y ∈ X .

Replacing y := x∗ in the latter inequality, we get

〈exp−1
z x, exp−1

z x∗〉 ≤ λ[ f (x, x∗) − f (x, z)]. (9)

Since x∗ is the solution of EP (3), we have f (x∗, z) ≥ 0. By the strong pseudomonotonicity
of f ,

f (z, x∗) ≤ −βd2(z, x∗). (10)

We have from (9) and (10) that

〈exp−1
z x, exp−1

z x∗〉 + λβd2(z, x∗) ≤ λ[ f (x, x∗) − f (x, z) − f (z, x∗)]. (11)

By the Lipschitz-type continuity of f , one has

f (x, z) + f (z, x∗) − f (x, x∗) ≥ −Ld(x, z).d(z, x∗).

This implies that

λ[ f (x, x∗) − f (x, z) − f (z, x∗)] ≤ λLd(x, z).d(z, x∗). (12)

It follows from (11) and (12) that

〈exp−1
z x, exp−1

z x∗〉 ≤ −λβd2(z, x∗) + λLd(x, z).d(z, x∗). (13)

Then, by the Cauchy-Schwarz inequality, one has

−|| exp−1
z x ||.|| exp−1

z x∗|| ≤ −λβd2(z, x∗) + λLd(x, z).d(z, x∗),

or equivalently
−d(x, z) ≤ −λβd(z, x∗) + λLd(z, x).

Thus,

d(x, x∗) ≤ d(x, z) + d(z, x∗) ≤ 1 + λβ + λL

λβ
d(z, x).

The upper error bound is proved.
We now prove the lower error bound. Using the Cauchy-Schwarz inequality and Lemma

2.1, we have

〈exp−1
z x, exp−1

z x∗〉 = 〈exp−1
z x, exp−1

z x〉 + 〈exp−1
z x, exp−1

z x∗ − exp−1
z x〉

≥ || exp−1
z x ||2 − || exp−1

z x ||.|| exp−1
z x∗ − exp−1

z x ||
≥ d2(x, z) − d(x, z)d(x, x∗).

Hence, by (13), one has

d2(x, z) − d(x, z)d(x, x∗) ≤ −λβd2(z, x∗) + λLd(x, z).d(z, x∗) ≤ λLd(x, z).d(z, x∗).

This implies that

d(x, z) − d(x, x∗) ≤ λLd(z, x∗) ≤ λL[d(z, x) + d(x, x∗)].
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Thus,
1 − λL

1 + λL
d(x, z) ≤ d(x, x∗).

The proof is complete. 
�
When the equilibrium bifunction f is strongly monotone, we have sharper estimates.

Theorem 3.4 Suppose that X has more than one element and that f is strongly monotone
with modulus β and satisfies the Lipschitz - type condition (4) with constant L on X . Let x∗
be the unique solution of EP (3) and λ > 0. Then, for every x ∈ X , we have

d(x, x∗) ≤
⎛

⎝λL + 1

2λβ
+
√
(

λL + 1

2λβ

)2

− 1

λβ

⎞

⎠ d(x, sλ(x)). (14)

and

d(x, x∗) ≥
⎛

⎝λL + 1

2λβ
−
√
(

λL + 1

2λβ

)2

− 1

λβ

⎞

⎠ d(x, sλ(x)), (15)

Proof Let x ∈ X , λ > 0. Set z := sλ(x). As in the proof of Theorem 3.3 (see Inequality (9)),
one has

〈exp−1
z x, exp−1

z x∗〉 ≤ λ[ f (x, x∗) − f (x, z)].
Since x∗ is the solution of EP (3), we have f (x∗, z) ≥ 0. Hence,

〈exp−1
z x, exp−1

z x∗〉 ≤ λ[ f (x, x∗) − f (x, z) + f (x∗, z)].
Using Lemma 2.1, the strong monotonicity of f and the Lipschitz-type condition, we have

0 ≤ −〈exp−1
z x, exp−1

z x∗〉 + λ[ f (x, x∗) − f (x, z) + f (x∗, z)]
= −〈exp−1

z x, exp−1
z x〉 − 〈exp−1

z x, exp−1
z x∗ − exp−1

z x〉
+λ[ f (x∗, x) + f (x, x∗)] + λ[ f (x∗, z) − f (x, z) − f (x, x∗)]

≤ −d2(x, z) + || exp−1
z x |||| exp−1

z x∗ − exp−1
z x ||

−λβd2(x, x∗) + λLd(x, x∗)d(x, z)

≤ −d2(x, z) + d(x, z).d(x, x∗) − λβd2(x, x∗) + λLd(x, x∗)d(x, z)

= −λβ

[

d(x, x∗) − λL + 1

2λβ
d(x, z)

]2
+
[

λβ

(
λL + 1

2λβ

)2

− 1

]

d2(x, z).

This implies that

λβ

[

d(x, x∗) − λL + 1

2λβ
d(x, z)

]2
≤
[

λβ

(
λL + 1

2λβ

)2

− 1

]

d2(x, z). (16)

Since β ≤ L , we have
(

λL + 1

2λβ

)2

− 1

λβ
≥
(

λβ + 1

2λβ

)2

− 1

λβ
=
(

λβ − 1

2λβ

)2

≥ 0.

From this fact and (16), we obtain the desired inequalities (14) and (15). 
�
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Remark 3.1 Since
⎛

⎝λL + 1

2λβ
+
√
(

λL + 1

2λβ

)2

− 1

λβ

⎞

⎠ ≤ 1 + λβ + λL

λβ
,

the estimate (14) is sharper than the estimate (7).

4 Modified projectionmethod: linear and finite convergence

This section is devoted to the study of the modified projection method for solving the equi-
librium problem (3).

Algorithm 4.1 (Modified Projection Method)
Initialization: Choose an initial point x0 ∈ X . Let {λk} ⊂ (0,+∞) be a sequence of real

numbers and set k = 0.
Iterative step: At stage k, given xk ∈ X , compute xk+1 as

xk+1 = argmin

{

λk f (xk, y) + 1

2
d2(xk, y) : y ∈ X

}

. (17)

Algorithm 4.1 has been considered by several authors for solving equilibrium problems
in linear spaces (see, e.g., Anh and Hai (2017); Duc et al. (2016)).

4.1 Linear convergence of themodified projectionmethod

Our first convergence result extends the analogous result (Anh and Hai, 2017, Corollary 1)
in the linear space setting to the manifold context.

Theorem 4.1 Let f : M×M → R be strongly pseudomontone with modulus β and satisfy
the Lipschitz-type condition (4) with constant L on X . Let {xk} be the sequence generated
by Algorithm 4.1 with

0 < a ≤ λk ≤ b ≤ 2β

L2 ∀k ∈ N, (18)

where a and b are some positive constants. Then, {xk} converges linearly to the unique
solution x∗ of EP (3). Moreover, for all k ∈ N, it holds that

d(xk+1, x
∗) ≤ αk+1

1 − α
d(x1, x0)

and

d(xk+1, x
∗) ≤ 1

1 − α
d(xk, xk+1),

where

α = 1
√
1 + a(2β − bL2)

∈ (0, 1). (19)

Proof As in the proof of Theorem 3.3, letting x := xk , λ := λk and z := xk+1 in (13), we
have

〈exp−1
xk+1

xk, exp
−1
xk+1

x∗〉 ≤ −λkβd
2(xk+1, x

∗) + λk Ld(xk, xk+1)d(xk+1, x
∗). (20)
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By the Cauchy - Schwartz inequality, one has

λk Ld(xk, xk+1)d(xk+1, x
∗) ≤ 1

2

[
d2(xk, xk+1) + λ2k L

2d2(xk+1, x
∗)
]
. (21)

On the other hand, by (1), it holds that

〈exp−1
xk+1

xk, exp
−1
xk+1

x∗〉 ≥ 1

2

[
d2(xk, xk+1) + d2(xk+1, x

∗) − d2(xk, x
∗)
]
. (22)

From (20) - (22), we have

1

2

[
d2(xk, xk+1) + d2(xk+1, x

∗) − d2(xk, x
∗)
] ≤ −λkβd

2(xk+1, x
∗)

+1

2

[
d2(xk, xk+1) + λ2k L

2d2(xk+1, x
∗)
]

which implies that
[
1 + λk(2β − λk L

2)
]
d2(xk+1, x

∗) ≤ d2(xk, x
∗). (23)

Under assumption (18), we have 1 < 1 + a(2β − bL2) ≤ 1 + 2λkβ − λ2k L
2 for all k ∈ N.

Hence, α defined by (19) belongs to (0, 1).
It follows from (23) that

d(xk+1, x
∗) ≤ 1

√
1 + 2λkβ − λ2k L

2
d(xk, x

∗) ≤ αd(xk, x
∗).

Thus, the sequence {xk} converges linearly to the solution x∗ of EP (3). Moreover, from the
latter inequality, one has

d(xk+1, x
∗) ≤ αd(xk, x

∗) ≤ · · · ≤ αk+1d(x0, x
∗).

Since
d(xk, x

∗) ≤ d(xk, xk+1) + d(xk+1, x
∗) ≤ d(xk, xk+1) + αd(xk, x

∗),

we get

d(xk, x
∗) ≤ 1

1 − α
d(xk, xk+1).

It follows that

d(xk+1, x
∗) ≤ αk+1d(x0, x

∗) ≤ αk+1

1 − α
d(x0, x1).

The proof is complete. 
�

We next consider the convergence of Algorithm 4.1 with diminishing step size rules.

Theorem 4.2 Let f : M×M → R be strongly pseudomontone with modulus β and satisfy
the Lipschitz-type condition (4) with constant L on X . Let {xk} be the sequence generated
by Algorithm 4.1 with

∞∑

k=0

λk = ∞, and lim
k→∞ λk = 0. (24)
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Then, {xk} converges to the unique solution x∗ of EP (3). Moreover, there exists k0 ∈ N such
that λk(2β − λk L2) > 0 and

d(xk+1, x
∗) ≤ 1

√
�k

i=k0
[1 + λi (2β − λi L2)]

d(xk0 , x
∗) (25)

for all k ≥ k0.

Proof Since limk→∞ λk = 0, there is some k0 ∈ N such that λk L2 ≤ β. Thus, λk(2β −
λk L2) > λkβ > 0 for all k ≥ k0. As in the proof of Theorem 4.2, we have

[1 + λk(2β − λk L
2)]d2(xk+1, x

∗) ≤ d2(xk, x
∗)

which implies that

d(xk+1, x
∗) ≤ 1

√
1 + λk(2β − λk L2)

d(xk, x
∗)

for all k ≥ k0. Hence, we have for all k ≥ k0 that

d(xk+1, x
∗) ≤ 1

√
1 + λk(2β − λk L2)

d(xk, x
∗)

≤ 1
√
1 + λk(2β − λk L2)

.
1

√
1 + λk−1(2β − λk−1L2)

d(xk−1, x
∗)

≤ · · ·
≤ 1
√∏k

i=k0

[
1 + λi

(
2μ − λi L2

)]d
(
xk0 , x

∗) .

This proves (25).
Now, for eack k, set ak := λk(2β −λk L2). Since ak > λkβ for all k ≥ k0, it follows from

(24) that
∞∑

k=k0

ak = ∞.

Hence,
1

�k
i=k0

(1 + ai )
≤ 1

1 +∑k
i=k0 ai

→ 0 as k → ∞.

Therefore,

d
(
xk+1, x

∗) ≤ 1
√∏k

i=k0

[
1 + λi

(
2μ − λi L2

)]d
(
xk0 , x

∗)

= 1
√∏k

i=k0 (1 + ai )
d
(
xk0 , x

∗)→ 0

as k → ∞. This means that the sequence {xk} converges to the unique solution x∗ of EP (3).
This ends the proof. 
�
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4.2 Finite convergence of themodified projectionmethod

We study the finite convergence of the modified projection method under θ -conditioning
assumption. Recall that the concept of θ -conditioning for the bifunction f in connection
with the solution set of EP was introduced by Moudafi (2007) to obtain the finite and strong
convergence for proximal point method for solving EP in Euclidean spaces. For more results
about concerning θ -conditioning and its applications in the linear space setting, we refer the
reader to Nguyen et al. (2020).

Definition 4.1 (Moudafi 2007) The equilibrium bifunction f is said to be θ -conditioned with
modulus γ if and only if there exist two positive constants γ and θ such that

− f (x, PX ∗(x)) ≥ γ
[
d
(
x,X ∗)]θ for all x ∈ X . (26)

We say that f is linearly conditioned if it is 1-conditioned.

Remark 4.1 If (26) holds, we also say that the solution set X ∗ is θ -conditioned with modulus
γ . In the case when θ = 1, X ∗ is said to be linearly conditioned with modulus γ .

When EP has a unique solution x∗, i.e., X ∗ = {x∗}, then PX ∗(x) = x∗ for all x ∈ X . In
this case (26) can be rewritten as

− f
(
x, x∗) ≥ γ

[
d
(
x, x∗)]θ for all x ∈ X . (27)

Example 4.1 LetM,X and f be as in Example 3.1. In this case, x∗ = 1 is the unique solution
of EP(3). Since (

1 + 1

x

)

ln2 x ≥ 0 and x − 1 ≥ ln x, ∀x ≥ 1,

we have for all x ∈ X that

− f (x, x∗) = −
[(

1 + 1

x∗

)

ln x . ln
x∗

x
+ x∗ − x

]

=
(

1 + 1

x

)

ln2 x + x − 1

≥ ln x = d(x, x∗).

Thus, f is linearly conditioned with modulus γ = 1.

Example 4.2 Let Pn be the set of all real symmetric matrices of order n, and Pn++ be the
cone of all real symmetric positive definite matrices of order n. Then, M = (Pn++, 〈·, ·〉) is
a Riemannian manifold with the Riemmanian metric defined by

〈U , V 〉 = tr(X−1UX−1V ), X ∈ M, U , V ∈ TXM,

where tr(U ) denotes the trace of matrixU ∈ Pn and TXM � Pn for each X ∈ M (see, e.g.,
Rothaus (1960)). Moreover,M is a Hadamard manifold (see, e,g, (Lang, 1999, Theorem 1.2,
p. 325)). The unique geodesic connecting two points X , Y ∈ M is defined by

γ (t) = X1/2(X−1/2Y X−1/2)t X1/2, t ∈ [0, 1].
For any X ∈ M, the exponential map expX : TXM → M and its inverse exp−1

X : M →
TXM are defined respectively by: for any V ∈ TXM and Y ∈ M,

expX V = X1/2e(X−1/2V X−1/2)X1/2
, exp−1

X Y = X1/2 ln(X−1/2Y X−1/2)X1/2,
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where lnU is the logarithm of matrix U . For X , Y ∈ M, the Riemannian distance between
X and Y is defined as

d(X , Y ) = [tr (ln2 (X−1/2Y X−1/2))]1/2 =
[

n∑

i=1

ln2
(
λi
(
X−1/2Y X−1/2))

]1/2

,

where λi
(
X−1/2Y X−1/2

)
denotes the i th eigenvalue of the matrix X−1/2Y B−1/2.

Let X = {X ∈ Pn++ : det X ≥ 1}. We consider the bifunction f : M × M → R defined
by

f (X , Y ) = tr ln Y − tr ln X +
√
tr ln2 Y −

√
tr ln2 X , ∀X , Y ∈ M.

We claim that X∗ = In , the identity matrix of order n, is the unique solution of EP (3).
Indeed, using the property

tr ln X = ln det X , ∀X ∈ Pn++,

we can rewrite f as

f (X , Y ) = ln det Y − ln det X + d(Y , In) − d(X , In).

Thus, f (In, Y ) ≥ 0 for all Y ∈ X and X∗ = In is a solution of EP. Assume that Z �= In is
another solution of EP. Then, f (Z , In) = − ln det Z −d(Z , In) ≥ 0. That is a contradiction.
Therefore, X∗ = In is the unique solution of EP (3). Now, for every X ∈ X , we have

− f (X , X∗) = − ln det X∗ + ln det X − d(X∗, In) + d(X , In)

= ln det X + d(X , In) ≥ d(X , In).

Hence, f is linearly conditioned with modulus γ = 1.

Our finite convergence result is state as follows.

Theorem 4.3 Let f : M×M → R be strongly pseudomonotone with modulus β and satisfy
the Lipschitz-type condition (4) with constant L on X . Let {xk} be a sequence generated by
Algorithm 4.1 with

0 < a ≤ λk ≤ b <
2β

L2 , ∀k ∈ N

where a and b are some positive constants. If f is θ -conditioned with modulus γ for some
θ ∈ (0, 1] and γ > 0, then xk ∈ X ∗ for all k sufficiently large.

Proof Let x∗ be the unique solution of EP(3). Since f is θ -conditioned with modulus γ , by
definition we have

γ [d(x, x∗)]θ ≤ − f (x, x∗) ∀x ∈ X .

It follows that

γ [d(xk+1, x
∗)]θ ≤ − f (xk+1, x

∗) ∀k ∈ N. (28)

In (9), letting x := xk , λ := λk and z := xk+1, we have

〈exp−1
xk+1

xk, exp
−1
xk+1

x∗〉 ≤ λk[ f (xk, x∗) − f (xk, xk+1)]
which implies that

1

λk
〈exp−1

xk+1
xk, exp

−1
xk+1

x∗〉 ≤ f (xk, x
∗) − f (xk, xk+1). (29)
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From (28) and (29), we have

γ [d(xk+1, x
∗)]θ + 1

λk
〈exp−1

xk+1
xk, exp

−1
xk+1

x∗〉 ≤ − f (xk+1, x
∗) + f (xk, x

∗) − f (xk, xk+1).

Then, by the Lipschitz type condition and the Cauchy - Schwarz inequality, one has

γ [d(xk+1, x
∗)]θ ≤ − 1

λk
〈exp−1

xk+1
xk, exp

−1
xk+1

x∗〉 + f (xk, x
∗) − f (xk, xk+1) − f (xk+1, x

∗)

≤ 1

λk
|| exp−1

xk+1
xk ||.|| exp−1

xk+1
x∗|| + Ld(xk, xk+1).d(xk+1, x

∗)

=
(

1

λk
+ L

)

d(xk, xk+1).d(xk+1, x
∗). (30)

Assume to the contrary that the conclusion of the theorem is not true. Then, there exists
a subsequence of {xk} which, without loss of generality, is still denoted by {xk} such that
xk �= x∗ for all k. Thus, by (30), one has

γ ≤
(

1

λk
+ L

)

d(xk, xk+1).[d(xk+1, x
∗)]1−θ

≤
(
1

a
+ L

)

[d(xk, x
∗) + d(xk+1, x

∗).[d(xk+1, x
∗)]1−θ

for all k. Letting k → ∞ in the latter inequality and using the fact that limk→∞ xk = x∗, we
get γ ≤ 0. This is a contradiction. Therefore, xk ∈ X ∗ for all k sufficiently large. 
�

We next give an upper bound for the number of iterations for which sequences generated
by Algorithm 4.1 terminate.

Theorem 4.4 Asume that f : M × M → R is strongly pseudomonotone with modulus β

and satisfy the Lipschitz-type condition (4) with constant L on X . Let {xk} be a sequence
generated by Algorithm 4.1 with

0 < a ≤ λk ≤ b <
2β

L2 , ∀k ∈ N

where a and b are some positive constants. If f is linearly conditioned with modulus γ , then
the sequence {xk} converges to the unique solution x∗ of EP in at most � + 1 iterations with

� ≤ 2β(1 + aL)2d2(x0, x∗)
(2β − bL2)a2γ 2 .

Proof As in the proof of Theorem 4.1, from (20) and (22) we have

1

2

[
d2(xk, xk+1) + d2(xk+1, x

∗) − d2(xk, x
∗)
]

≤ −λkβd
2(xk+1, x

∗) + λk Ld(xk, xk+1)d(xk+1, x
∗)

≤ −λkβd
2(xk+1, x

∗) + λk

[
L2

4β
d2(xk, xk+1) + βd(xk+1, x

∗)
]

which implies that
(

1 − λk L2

2β

)

d2(xk, xk+1) ≤ d2(xk, x
∗) − d2(xk+1, x

∗).
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Since 0 < a ≤ λk ≤ b < 2β/L2 for all k, it follows from the latter inequality that
(

1 − bL2

2β

)

d2(xk, xk+1) ≤ d2(xk, x
∗) − d2(xk+1, x

∗) (31)

For 0 < N ∈ N, we have from (31) that

(

1 − bL2

2β

) N∑

i=0

d2(xi , xi+1) ≤
N∑

i=0

(
d2(xi , x

∗) − d2(xi+1, x
∗)
)

= d2(x0, x
∗) − d2(xN+1, x

∗)
≤ d2(x0, x

∗). (32)

Since limk→∞ xk = x∗, we have that limk→∞ d(xk, xk+1) = 0. Let � be the smallest integer
such that

d(x�, x�+1) <
aγ

1 + aL
. (33)

We claim that x�+1 = x∗. If not, by (30), we have

γ d(x�+1, x
∗) ≤

(
1

λk
+ L

)

d(x�, x�+1)d(x�+1, x
∗)

≤
(
1

a
+ L

)

d(x�, x�+1)d(x�+1, x
∗).

Since d(x�+1, x∗) > 0, using (33), one has

γ ≤
(
1

a
+ L

)

d(x�, x�+1) <
1 + aL

a
.

aγ

1 + aL
= γ,

which is a contradiction. Thus, x�+1 = x∗. By (32),

d2(x0, x
∗) ≥

(

1 − bL2

2β

) �−1∑

i=0

d(xi , xi+1) ≥ (2β − bL2)�a2γ 2

2β(1 + aL)2
.

This implies that

� ≤ 2β(1 + aL)2d2(x0, x∗)
(2β − bL2)a2γ 2 .

The proof is complete. 
�
The results presented in Theorem 4.3 and Theorem 4.4 are new even in the setting of

linear spaces. To illustrate our finding, we present an example in Euclidean spaces in which
the equilibrium bifunction is linearly conditioned and therefore sequences generated by the
modifiedprojectionmethod for solving correspondingproblem terminate after a finite number
of iterations.

Example 4.3 Let M = R
n with the usual inner product 〈·, ·〉 and corresponding norm || · ||

on R
n . Let X = {(x1, x2, · · · , xn)� ∈ R

n : ai ≤ xi ≤ bi } be a closed convex subset of Rn ,
where ai , bi , i = 1, 2 · · · n, are real numbers. Let us consider the bifunction f : Rn×R

n → R

defined by
f (x, y) = g(x)〈Ax + By + p, y − x〉, ∀x, y ∈ R

n,

where g : Rn → R, A = (ai j ), B = (bi j ) inMn×n(R) and p = (p1, · · · , pn)� inRn satisfy
the following conditions:
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i) g is Lipschitz continuous on X with a constant �, i.e.,

|g(x) − g(y)| ≤ �||x − y|| ∀x, y ∈ X ,

and satisfies 0 < δ1 ≤ g(x) ≤ δ2 for all x ∈ X and for some constants δ1, δ2 ∈ R+;
ii) A − B is symmetric positive definite and for all i = 1, 2, · · · , n:

min

⎧
⎨

⎩

n∑

j=1

ai j x j +
n∑

j=1

bi j y j + pi : a j ≤ x j , y j ≤ b j , j = 1, 2, · · · , n

⎫
⎬

⎭
> 0

We show that f satisfies the Lipschitz-type condition (4) on X . Indeed, for x, y, z ∈ R
n ,

if we set h(x, y) = 〈Ax + By + p, y − x〉, then
h(x, y) + h(y, z) − h(x, z) ≥ −||A − B|| · ||y − x || · ||z − y||,

see Quoc and Muu (2012) for details. Thus, for every x, y, z ∈ X , we have

f (x, y) + f (y, z) − f (x, z)

= g(x)h(x, y) + g(y)h(y, z) − g(x)h(x, z)

= g(x)[h(x, y) + h(y, z) − h(x, z)] + [g(y) − g(x)]h(y, z)

≥ −g(x)||A − B|| · ||y − x || · ||z − y|| + [g(y) − g(x)]〈Ay + Bz + p, z − y〉
≥ −δ2||A − B|| · ||y − x || · ||z − y|| − �||Ay + Bz + p|| · ||y − x || · ||z − y||
≥ −δ2||A − B|| · ||y − x || · ||z − y|| − M�||y − x || · ||z − y||
≥ − (δ2||A − B|| + M�) ||y − x || · ||z − y||
= − (δ2||A − B|| + M�) d(x, y)d(y, z),

where M = supx,y∈X ||Ax + By + p||. Thus, f satisfies the Lipschitz-type condition with
constant L = δ2||A − B|| + M� on X .

We now show that f is strongly pseudomonotone on X . Indeed, let x, y ∈ X be such that
f (x, y) ≥ 0. Since g(x) > 0, we have〈Ax + By + p, y − x〉 ≥ 0. Thus,

f (y, x) = g(y)〈Ay + Bx + p, x − y〉
≤ g(y)〈Ay + Bx + p, x − y〉 − g(y)〈Ax + By + p, y − x〉
= −g(y)〈(A − B)(y − x), y − x〉
≤ −δ1λmin(A − B)||x − y||2 = −δ1λmin(A − B)d2(x, y),

where λmin(A−B) is the smallest eigenvalue of the positive definitematrix A−B. Therefore,
f is strongly pseudomonotone on X with modulus β = δ1λmin(A − B).
One can see that all assumptions of Theorem 3.2 are satisfied and the equilibrium problem

(3) has a unique solution. Let x∗ = (x∗
1 , x

∗
2 , · · · , x∗

n )
� ∈ X be the unique solution of EP

(3). Then, for all y = (y1, y2, · · · , yn)� ∈ X , we have f (x∗, y) ≥ 0. Since g(x∗) ≥ 0, it
follows that 〈Ax∗ + By + p, y − x∗〉 ≥ 0. Equivalently,

n∑

i=1

⎡

⎣

⎛

⎝
n∑

j=1

ai j x
∗
j +

n∑

j=1

bi j y j + pi

⎞

⎠ (yi − x∗
i )

⎤

⎦ ≥ 0. (34)

Since
∑n

j=1 ai j x
∗
j +∑n

j=1 bi j y j + pi > 0 for all i = 1, 2, · · · , n, it follows from (34) that

x∗
i = ai for all i = 1, 2, · · · , n. Hence, x∗ = (a1, a2, · · · , an)� is the unique solution of
EP(3).
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Table 1 Finite convergence for Algorithm 4.1 with random data

Samples Number of iterations

n = 2 n = 5 n = 10 n = 20 n = 50 n = 100 n = 200

Sample 1 2 4 6 8 8 11 15

Sample 2 3 2 5 4 9 9 12

Sample 3 1 5 3 5 8 12 13

Sample 4 3 4 3 5 9 10 11

Sample 5 2 3 5 9 10 9 13

Set


 = min
1≤i≤n

min

⎧
⎨

⎩

n∑

j=1

ai j x j +
n∑

j=1

bi j a j + pi : a j ≤ x j ≤ b j , j = 1, 2, · · · , n

⎫
⎬

⎭
.

We now show that f is linearly conditioned, i.e., for some γ > 0,

− f (x, x∗) ≥ γ d(x, x∗), ∀x ∈ X .

For x = (x1, x2, · · · , xn)� ∈ X , we have

− f (x, x∗) = −g(x)〈Ax + Bx∗ + p, x∗ − x〉
= g(x)〈Ax + Bx∗ + p, x − x∗〉

= g(x)
n∑

i=1

⎡

⎣

⎛

⎝
n∑

j=1

ai j x j + bi j ai + pi

⎞

⎠ (xi − ai )

⎤

⎦

≥ δ1


n∑

i=1

(xi − ai ) = δ1


√
√
√
√

(
n∑

i=1

(xi − ai )

)2

≥ γ

√
√
√
√

n∑

i=1

(xi − ai )2 = γ d(x, x∗).

where γ = δ1
 > 0.
By Theorem 4.3, if {xk} is a sequence generated by Algorithm 4.1 with {λk} satisfying

(18), then {xk} converges to the unqiue solution x∗ of EP (3) after a finite number of iterations.
We first test for the case when X = {(x1, x2, · · · , xn)� ∈ R

n : 1 ≤ xi ≤ 10, i =
1, 2, · · · , n}, A and B are diagonal matrices and g(x) = 1 for all x ∈ R

n . Table 1 presents
the finite convergence of sequences {xk} generated by Algorithm 4.1 in different dimensions
where the main diagonal elements of A are randomly chosen in the interval [2.5, 5], the main
diagonal elements of B are randomly chosen in the interval [0.5, 2], the elements of vector
p are randomly chosen in the interval [0, 5], the elements of the initial point x0 are also
randomly chosen in the interval [5, 10] and the step size λk = λ = 1.5 × β/L2 for all k.
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Table 2 Finite convergence for Algorithm 4.1 with different step sizes

Iteration k d(xk , x
∗)

λk = 0.15 λk = (k + 1)/9(k + 2) λk = 0.05

1 4.482567037341691 6.352483212127498 6.634917948743128

2 1.872654123818203 3.430513285886522 4.379463999702835

3 0.624159022806268 1.595655733535987 2.821055326204551

4 0.019783379375767 0.561901882941611 1.751149114875450

5 0 0.010644649652477 1.034819014029203

6 0 0.521523745901228

7 0.163346799307060

8 0

We next consider the case where A, B and p are chosen, as in Quoc and Muu (2012), by

A =

⎡

⎢
⎢
⎢
⎢
⎣

3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎣

1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎦

and p = (1,−2,−1, 2,−1)�. Then, ||A−B|| = 2.905 and λmin(A−B) = 0.7192.We also
let g(x) = 1 for all x ∈ R

5 and considerX = [0, 5]×[1, 5]×[1, 5]×[0, 5]×[1, 5] a closed
convex subset ofR5. Thus, f is strongly pseudomonotone with constant β = λmin(A−B) =
0.7192 and satisfies the Lipschitz - type condition (4) with constant L = ||A− B|| = 2.905.
The unique solution of EP (3) is x∗ = (0, 1, 1, 0, 1)�. Table 2 presents the finite convergence
results for sequence {xk} generated by Algorithm 4.1 with x0 = (5, 5, 5, 5, 5)� and different
step sizes.

5 Conclusions

In this paper, we have obtained several new results for strongly pseudomonotone equilibrium
problems (in short, SPEP) on Hadamard manifolds. Under mild conditions, we have estab-
lished the existence and uniqueness of the solution of SPEP. We have also provided a global
error bound for SPEP. We have proposed the modified projection method and proved that
sequences generated by the method with suitable step size converges to the unique solution of
the SPEP. Moreover, we have shown, under linear conditioning assumption, that sequences
generated by the modified projection method converge to the unique solution of the SPEP
after a finite number of iterations. Some of our results extends the analogous results from
linear spaces to Hadamardmanifolds, while some results are new even in the Euclidean space
setting. We have also provided several examples and numerical experiments to illustrate our
new results.
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