
Journal of Algebra 683 (2025) 319--354

Contents lists available at ScienceDirect

Journal of Algebra  

journal homepage: www.elsevier.com/locate/jalgebra

Research Paper

On modular invariants of the truncated polynomial 
rings in low ranks

Le Minh Ha a, Nguyen Dang Ho Hai b, Nguyen Van Nghia c,∗

a Faculty of Mathematics-Mechanics-Informatics, University of Science, Vietnam 
National University, Hanoi, Viet Nam
b Department of Mathematics, College of Sciences, University of Hue, Viet Nam
c Faculty of Natural Sciences, Hung Vuong University, Phu Tho, Viet Nam

a r t i c l e i n f o a b s t r a c t 

Article history:
Received 27 August 2024
Available online 4 July 2025
Communicated by Gunter Malle

MSC:
primary 54C40, 14E20
secondary 46E25, 20C20

Keywords:
Truncated polynomial ring
Modular invariants
Dickson invariants
Steenrod algebra
q-binomial
q-multinomial
Finite general linear group
Frobenius power

We verify the conjectures due to Lewis, Reiner, and Stanton 
about the Hilbert series of the invariant ring of the truncated 
polynomial ring for all parabolic subgroups up to rank 3. 
This is done by constructing an explicit set of generators for 
each invariant ring in question. We also propose a conjecture 
concerning the action of the Steenrod algebra and the Dickson 
algebra on a certain naturally occurring filtration of the 
invariant ring under the action of the general linear group.

© 2025 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.

* Corresponding author.
E-mail addresses: leminhha@hus.edu.vn (L.M. Ha), ndhhai@husc.edu.vn (N.D.H. Hai), 

nguyenvannghia@hvu.edu.vn (N.V. Nghia).

https://doi.org/10.1016/j.jalgebra.2025.06.034
0021-8693/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, 
and similar technologies.

https://doi.org/10.1016/j.jalgebra.2025.06.034
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2025.06.034&domain=pdf
mailto:leminhha@hus.edu.vn
mailto:ndhhai@husc.edu.vn
mailto:nguyenvannghia@hvu.edu.vn
https://doi.org/10.1016/j.jalgebra.2025.06.034


320 L.M. Ha et al. / Journal of Algebra 683 (2025) 319--354 

1. Introduction

Let Fq denote the finite field of q elements, where q is a power of a fixed prime 
number p. Let Im(n) = (xqm

1 , . . . , xqm

n ) denote the m-th Frobenius power ideal in the 
polynomial algebra S(n) = Fq[x1, . . . , xn]. Denote by Qm(n) the truncated polynomial 
ring S(n)/Im(n). The general linear group Gn = GLn(Fq) acts on S(n) by linear sub
stitutions of variables. Since Im(n) is a Gn-invariant ideal, Qm(n) inherits a Gn-action 
from S(n). As we will be working with a fixed number of generators n, we will usually 
omit n from the notation.

This paper addresses the problem of computing invariants of the truncated ring Qm(n)
under the action of various parabolic subgroups of Gn. This problem arises in several 
contexts, including algebraic combinatorics ([11], [12], [9], [4]), algebraic topology ([1], 
[7], [8]) and number theory [2]. In particular, as shown in [9, Conjecture 1.3], knowing 
the Hilbert series of Qm(n)G provides the Hilbert series of the cofixed space SG of 
the polynomial ring under the action of the general linear group. Surprisingly, while 
the invariant ring SG has been completely determined since the beginning of the 20th 
century, by the fundamental work of Dickson [3], the problem of determining SG is still 
an open problem in modular invariant theory.

For a positive integer n, a composition of n of length � is an ordered set α =
(α1, . . . , α�) of positive integers αi such that |α| = α1 + . . . + α� = n. We will also 
consider weak compositions, which are ordered sets of non-negative integers. The set 
of weak compositions of a given length is partially ordered by declaring that β ≤ α

iff βi ≤ αi for all i. If α is a composition of n, we denote by P (α) the corresponding 
parabolic subgroup of Gn. In [9], Lewis, Reiner, and Stanton proposed a marvelous set 
of conjectures about the Hilbert series of the invariant ring Qm(n)P (α) for arbitrary m
and any composition α of n, expressed in terms of a new combinatorial object called the 
(q, t)-binomial coefficient, introduced in [12]:

Conjecture 1.1. ([9, Parabolic Conjecture 1.5]) The Hilbert series of the ring of invariants 
of Qm(n) under the action of the parabolic subgroup P (α) is:

Cα,m(t) =
∑

β,β≤α,|β|≤m

te(m,α,β)
[

m
β,m− |β|

]
q,t

,

where e(m,α, β) =
∑

(αi − βi)(qm − qBi), Bi = β1 + . . . + βi, and for a composition 
α = (α1, . . . , α�) of d with partial sum α1 + . . . + αi = Ai, the (q, t) binomial coefficient [
d
α

]
q,t

is defined as the quotient

[
d
α

]
q,t

=
∏d−1

j=0(1 − tq
d−qj ) ∏�

i=1
∏αi

j=0(1 − tq
Ai−qAi−1+j )

.
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In particular, in the most interesting case where α = (n), they conjectured that

Conjecture 1.2. ([9, Conjecture 1.2]) The Hilbert series of the ring of invariants of Qm(n)
under the action of the general linear group Gn is:

Cn,m(t) =
min(n,m)∑

k=0 
t(n−k)(qm−qk)

[
m
k

]
q,t

.

These conjectures are inspired by properties of the q-Catalan and q-Fuss-Catalan 
numbers, connecting Hilbert series of certain invariant subspaces with the representation 
theory of rational Cherednik algebras for Coxeter and complex reflection groups. Some 
partial results about these two conjectures have been obtained (see Drescher-Shepler 
[4], Goyal [5], and the original paper [9]). Nevertheless, the role of these combinatorial 
objects in the series remains quite mysterious.

In our previous work [6], we proved their parabolic conjecture for the minimal 
parabolic subgroup B by constructing an explicit basis for the Fq-vector space Qm(n)B
for all m and n. We also refined their conjectures by proposing an explicit Fq-basis for 
Qm(n)P (α).

Conjecture 1.3. A basis for the space of P (α)-invariants of Qm(n) is given by the set 
Bm(α) consisting of elements of the form

δα1−β1
B1+1;m

(
f1δ

α2−β2
B2+1;m

(
· · · f�−1δ

α�−β�

B�+1;m(f�)
))

where β ≤ α, |β| ≤ m, Bi = β1 + . . . + βi (by convention, B0 = 0) and fi ∈
ΦBi−1Δm−Bi−1

βi
⊆ Δm−Bi

Bi
.

Here δa;b is the operator constructed in [6] and Δm
s is a certain subspace of the Dickson 

algebra Ds ([3]) of all GLs-invariant polynomials:

Δm
s ⊂ Ds = Fq[Qs,s−1, . . . , Qs,1, Qs,0].

The Dickson invariants Qs,i are crucial to our investigation and will be reviewed in detail 
in Section 2. The Frobenius-like operator Φ is a ring map from Ds to Ds+1 which sends 
Qs,i to Qs+1,i+1.

The reader of [6] may notice that in this conjecture, we describe a member of the 
conjectural generating set Bm(α) explicitly rather than by induction. In addition, we 
make use of the core subspace Δm

s (see 2.2 below) of the Dickson algebra instead of ∇m
s

in the original conjecture. The two candidates for core spaces can be used interchangeably, 
but Δm

s is more convenient for explicit calculation, as we will see later.
In the case α = (n) so that P (α) is the full general linear group, we have
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Conjecture 1.4. The set Bm(n) consisting of the following family of elements:

δn−s
s+1;m(f), f ∈ Δm

s , 0 ≤ s ≤ min(m,n),

forms a basis for the Fq-vector space of Gn-invariants of Qm(n).

It is a simple counting problem that our proposed bases have the correct Hilbert series 
as predicted. Hence our conjectures refine the two conjectures proposed by Lewis, Reiner, 
and Stanton. Furthermore, they also explain where the summands of the Hilbert series 
occur in the original conjectures: The summands of Cn,m(t) are just the Hilbert series 
of Δm

s , 0 ≤ s ≤ min(m,n), shifted by an appropriate degree due to the iterated delta 
operator.

In [6], we have verified the refined parabolic Conjecture 1.3 for the Borel subgroup, 
that is when α = 1n. The aim of this paper is to verify our conjectures for other parabolic 
subgroups, including the full general linear group, for n ≤ 3. As an immediate corollary, 
the parabolic conjecture of Lewis, Reiner and Stanton is true in these cases.

Theorem 1.5. The refined parabolic Conjectures 1.3 and 1.4 are true for n ≤ 3 and all 
m ≥ 1. Hence, the parabolic conjecture of Lewis, Reiner, and Stanton is true in these 
cases.

In this paper, we choose to work as explicitly as possible to illuminate the underlying 
mechanism of our construction and to highlight the additional structure present in our 
basis. Our computations reveal an interesting property of the invariant rings when con
sidered as modules over the Dickson algebra. We also describe the action of the Steenrod 
algebra. In future work, we hope to revisit this problem in greater generality.

When n = 2, the only parabolic subgroup other than the Borel subgroup is G2 itself, 
and the parabolic conjecture has already been verified in the original paper [9]. However, 
the authors worked with the dual situation involving cofixed spaces and used a specific 
property of the bivariate case to avoid the truncated ring. As a result, it remains unclear 
whether the invariant subspace of Qm(n), even in rank n = 2, can be described explicitly 
using their method.

In [5, Corollary 4.3], Goyal constructed a family of Gn-invariant polynomials in Qm(n)
which corresponds to the family δn−1

2 (Δm
1 ) in our notation.

To simplify the notation, we will often drop the index n in Qm(n), S(n), and Gn when 
the number of variables is well-understood from the context. If the Frobenius power m
is fixed, we write δs instead of δs;m. It is also convenient to write (e1, . . . , es) ∈ Δm

s to 
indicate a Dickson monomial Qe1

s,s−1 . . . Q
es
s,0 in Δm

s . For any nonnegative integer a, we 
denote by [a]q the q-integer (qa − 1)/(q − 1) with the convention that [0]q = 1.

Here is our first result in rank 2.

Proposition 1.6. The set Bm(2) consisting of 3 families below forms a basis for the in
variant subspace Qm(2)G of the full general linear group.
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(1) δ1(δ1(1)) = xqm−1
1 xqm−1

2 .
(2) δ2(Δm

1 ).
(3) Δm

2 .

In rank 3, other than the Borel subgroups, there are two proper parabolic subgroups. 
Their corresponding rings of invariants are described in the next two propositions.

Proposition 1.7. The set Bm(2, 1) consisting of 6 families below forms a basis for the 
invariant subspace QP (2,1)

m of the parabolic subgroup corresponding to the composition 
(2, 1).

(1) Qi1
2,1Q

i2
2,0Q

i
3,2, (i1, i2) ∈ Δm

2 , i < [m− 2]q.
(2) Qi1

2,1Q
i2
2,0δ3(1), (i1, i2) ∈ Δm

2 .
(3) δ2(Qi1

1,0Q
i
2,1), i1 < [m]q, i < [m− 1]q.

(4) δ2(Qi1
1,0δ2(1)), i1 < [m]q.

(5) δ1(δ1(Qi
1,0)), i < [m]q.

(6) δ1(δ1(δ1(1))).

Proposition 1.8. The set Bm(1, 2) consisting of 6 families below forms a basis for the 
invariant subspace QP (1,2)

m of the parabolic subgroup corresponding to the composition 
(1, 2).

(1) Qj1
1,0Q

i1
3,2Q

i2
3,1, j1 < [m]q, (i1, i2) ∈ Δm−1

2 .
(2) Qj1

1,0δ3(Q
j2
2,1), j1 < [m]q, j2 < [m− 1]q.

(3) Qj1
1,0δ2(δ2(1)), j1 < [m]q.

(4) δ1(Qi1
2,1Q

i2
2,0), (i1, i2) ∈ Δm

2 .
(5) δ1(δ2(Qj1

1,0)), j1 < [m]q.
(6) δ1(δ1(δ1(1))).

Our final result, which is also the most technical, is for the full general linear group 
in rank 3:

Proposition 1.9. The set Bm(3) consisting of 4 families below forms a basis for the in
variant subspace Qm(3)G of the full general linear group.

(1) δ1(δ1(δ1(1))) = xqm−1
1 xqm−1

2 xqm−1
3 .

(2) δ2(δ2(Δm
1 )).

(3) δ3(Δm
2 ).

(4) Δm
3 .
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Since the case of the Borel subgroup, which corresponds to the composition (1, 1, 1)
of n = 3, was treated in [6], the propositions stated above together imply the main 
Theorem 1.5.

It is worth noting that when m is small relative to n, all results still hold, provided 
they are interpreted appropriately. For example, when n = 3 and m = 2, the set Δ2

3 is 
empty, and δ3;2(Δ2

2) consists of just a single element, namely δ3;2(1) = 1 ∈ Fq in degree 
0. To avoid excessive attention to these special cases (whose proofs are straightforward), 
we will generally assume that m is sufficiently large compared to n (in fact, m ≥ n is 
enough!).

In the process of establishing these results, we have also computed the structure of 
these invariant spaces considered as modules over the Dickson algebra and the mod q
Steenrod algebra.

Definition 1.10. For each 0 ≤ k ≤ min(m,n), let Fn,k denote the subspace of Qm(n)G
spanned by the subsets δn−s

s+1 (Δm
s ) where 0 ≤ s ≤ k:

Fn,k = Span{δn−s
s+1 (f) : f ∈ Δm

s , 0 ≤ s ≤ k}.

These subspaces form an increasing filtration of Qm(n)G, starting with the one
dimensional subspace Fn,0, which is spanned by the top-degree class (x1 . . . xn)qm−1. 
At least in the cases we have computed, this filtration is exhaustive and exhibits remark
able properties. We propose the following:

Conjecture 1.11. For each 1 ≤ k < min(m,n), Fn,k is an A-submodule as well as 
a Dn-submodule of Qm(n)G. Moreover, Fn,k is annihilated by the Dickson invariants 
Qn,0, Qn,1 . . . Qn,n−k−1.

This conjecture suggests that the filtration Fn,∗ may admit an alternative description 
of a topological nature. We are able to verify this conjecture up to rank 3:

Theorem 1.12. The Conjecture 1.11 is true for n ≤ 3.

The layout of this paper is as follows: Section 2 recalls basic results in modular invari
ant theory and the key constructions from our previous work. In Section 3, we establish 
a lower bound on the total dimension of the invariant subspaces. The subsequent four 
sections are devoted to proving Propositions 1.6 through 1.9. The final section discusses 
the actions of the Dickson algebra and the Steenrod algebra, and presents the proof of 
Theorem 1.12.
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2. Recollection

In this section, we recall some background materials about modular invariant theory 
and the main construction in [6].

2.1. Upper triangular invariants and Dickson invariants

The canonical projection S → Qm is clearly a G-equivariant map. Thus, for each 
parabolic subgroup of G, there is an induced Fq-algebra homomorphism

SG ⊂ SP → QP
m,

which makes the invariant ring QP
m into a module over SG. The structure of the invariant 

ring SG, which is the Dickson algebra [3], is well-known and plays a significant role in 
our investigation.

For each positive integer k, denote by Vk the product

Vk(x1, . . . , xk) =
∏

λi∈Fq

(xk + λ1x1 + . . . + λk−1xk−1).

It is well-known that the invariant ring SB under the Borel subgroup of upper triangular 
matrices is a polynomial algebra generated by V q−1

1 , V q−1
2 , . . . , V q−1

n (see for example, 
[10, Theorem 3.4]). Let X be an indeterminate, and recall the fundamental equation

Vn+1(x1, . . . , xn, X) = Xqn +
n−1∑
i=0 

(−1)n−iQn,iX
qi .

The polynomials Qn,i = Qn,i(x1, . . . , xn) are evidently G-invariant, and are called Dick
son invariants because of the following celebrated theorem due to Dickson:

Dn = SG = Fq[Qn,0, . . . , Qn,n−1].

The Dickson invariants Qn,i can be described more explicitly as follows. For any n-tuple 
of non-negative integers (r1, . . . , rn), put

[r1, . . . , rn] = det(xqrj

i )1≤i,j≤n.
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In particular, let Ln = Ln(x1, . . . , xn) denote [0, 1 . . . , n− 1]. We then have

Qn,i = [0, . . . , î, . . . , n]/Ln.

In particular, Qn,n = 1 and Qn,0 = Lq−1
n . By convention, we set Qn,i = 0 if i < 0 or 

i > n. The following relations are well-known (see for example, [15, Proposition 1.3]):

Proposition 2.1. Let n be a positive integer and 0 ≤ i ≤ n. The following relations hold:

(i) Ln = V1V2 · · ·Vn.
(ii) Qn,i = V q−1

n Qn−1,i + Qq
n−1,i−1.

Note that Ln is, up to sign, the product of all lines in the Fq-vector space spanned by 
x1, . . . , xn.

2.2. The Δ subspace of the Dickson algebra

Lewis, Reiner and Stanton [9, Subsection 7.4] speculated that a portion of the Dickson 
algebra studied in [12, Section 5] might form part of an Fq-basis for Qm(n)G. Our work 
confirms this intuition. In fact, this portion, which we call the Delta subspace, plays a 
central role. We now review its construction and some elementary properties.

Given a positive integer s and a partition λ1 ≥ λ2 ≥ . . . ≥ λs with at most s nonzero 
parts, we say that a Dickson monomial Qe1

s,s−1 . . . Q
es
s,0 in Ds is of type (λ1, . . . , λs) (or q

compatible with (λ1, . . . , λs), in the language of [12, Definition 5.4]) if for each 1 ≤ i ≤ s,

ei ∈
[
qλi − qλi+1

q − 1 
,
qλi+1 − qλi+1

q − 1 

)
.

By convention, λs+1 = 0. Every Dickson monomial in Ds is q-compatible with a unique 
partition (λ1, . . . , λs) of length ≤ s.

Now suppose s ≤ m, and we will restrict our attention to partitions whose Ferrers 
diagrams fit inside a s×(m−s) rectangle, that is, partitions with at most s nonzero parts 
and m − s ≥ λ1. Define Δ(λ1,...,λs) as the subset of the Dickson algebra Ds consisting 
of Dickson monomials of type (λ1, . . . , λs), and let Δm

s denote the disjoint union of all 
subsets over all such partitions fitting inside an s× (m− s) rectangle. By convention, we 
put Δm

s = ∅ if s > m, and Δm
0 = {1}.

The Dickson monomials in Δm
s for s ≤ min(m,n) together with the delta operators 

recalled below are the building blocks for our basis. For this reason, we will say that Dick
son monomials in Δm

s essential monomials. We will also work with the edge monomials, 
which are the Dickson monomials not in Δm

s that have the form Qs,if where f ∈ Δm
s , 

for some 0 ≤ i ≤ s−1. Clearly, the edge monomials are those such that ej = qλj+1−qλj+1

q−1 
for some 1 ≤ j ≤ s and ei ∈ [ q

λi−qλi+1

q−1 , qλi+1−qλi+1

q−1 ) for all i 
= j.
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2.3. The delta operator

The operator δa;b introduced in [6] is fundamental to our construction. We now recall 
its definition and main properties.

Definition 2.2. Let a, b, c be positive integers such that 1 ≤ a ≤ c + 1. If f is a rational 
function in c variables, then δa;b(f) is a function in (c + 1) variables, defined as the 
quotient

δa;b(f) =

∣∣∣∣∣∣∣∣∣∣∣

x1 · · · xa

xq
1 · · · xq

a
...

. . .
...

xqa−2

1 · · · xqa−2

a

xqb

1 f(x̂1, x2, . . . , xc+1) · · · xqb

a f(x1, . . . , x̂a, . . . , xc+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 · · · xa

xq
1 · · · xq

a
...

. . .
...

xqa−1

1 · · · xqa−1

a

∣∣∣∣∣∣∣∣∣

.

Thus if b ≥ a− 1, δa;b increases degree by qb − qa−1. By definition, if we separate the 
first (a− 1) variables and write f in the form f =

∑
g(x1, . . . , xa−1)h(xa, . . . , xc), then

δa;b(f) =
∑

δa;b(g)h(xa+1, . . . , xc+1).

It was shown in greater generality in [6] that δs(f) is generally not a polynomial. 
Still, in the cases that we are interested in, it is a genuine polynomial. Moreover, δs(f)
is rarely a Dickson polynomial but it is a Gs-invariant modulo Im. We give a precise 
statement and provide an elementary proof for δ3 to make the paper self-contained.

Proposition 2.3. If f is a G2-invariant polynomial, then δ3(f) is also a polynomial and 
is G3-invariant in Qm(3).

Proof. We first show that δ3(f) is a polynomial. Recall the denominator L3 = V1V2V3 is 
a product of nonzero linear forms in the variables x1, x2, x3, so it suffices to prove that 
the numerator of δ3(f) becomes zero whenever there exists a nontrivial linear relation 
among the xi, which by symmetry, can be assumed to have the following form:

x3 = a1x1 + a2x2, (a1, a2) ∈ Fq × Fq. (2.1)

We claim that this implies a similar linear relation among the columns of the numerator 
of δ3(f), that is,

xqm

3 f(x1, x2) = a1x
qm

1 f(x2, x3) + a2x
qm

2 f(x1, x3). (2.2)
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Indeed, this is clear if a1 = a2 = 0. If the scalars a1, a2 are both nonzero, then there is 
an equality

f(x2, a1x1 + a2x2) = f(x1, a1x1 + a2x2) = f(x1, x2),

since f is a G2-invariant. So the right-hand side of (2.2) becomes

(a1x
qm

1 + a2x
qm

2 )f(x1, x2) = (a1x1 + a2x2)q
m

f(x1, x2) = xqm

3 f(x1, x2).

Finally, if one of the ai is zero, say a1 = 0, Equation (2.2) is reduced to

(a2x2)q
m

f(x1, x2) = a2x
qm

2 f(x1, a2x2),

which is again true because f is G2-invariant. We have finished the proof that δ3(f) is a 
polynomial.

The next step is to show that δ3(f) is G3-invariant modulo Im. By symmetry, it suffices 
to prove that δ3(f) does not change under the operation that sends x1 to x1 + x2 and 
fixes x2, x3. The denominator L3 certainly satisfies this condition. By direct inspection, 
the difference δ3(f)(x1 + x2, x2, x3) − δ3(f)(x1, x2, x3) equals

xqm

2 ×

∣∣∣∣∣ x1 x2 x3
xq

1 xq
2 xq

3
f(x2, x3) − f(x1 + x2, x3) f(x1 + x2, x3) − f(x1, x3) 0

∣∣∣∣∣
L3

.

We already know that this is a polynomial. Moreover, x2 occurs as a simple factor in the 
denominator L3, and the determinant in the numerator vanishes when x2 = 0. It follows 
that this polynomial is divisible by xqm

2 , thus trivial in Qm(3). �
Example 2.4. The G1-polynomials are of the form f(x) = xs(q−1) = Qs

1,0, s ≥ 0. Then 
δ2(xs(q−1)) is a G2-invariant polynomial in Qm(2). For s < [m]q, this is Goyal’s ys family 
in [5] where it was defined as

ys = xqm−q
1 x

s(q−1)
2 + x

qm−q−(q−1)
1 x

(s+1)(q−1)
2 + . . . + x

s(q−1)
1 xqm−q

2 .

Our construction is also valid for s ≥ [m]q. However, it is trivial in Qm(2) except when 
s = [m]q + 1, in which case

δ2(Q
[m]q+1
1,0 ) = −xqm−1

1 xqm−1
2 = −δ2

1(1).

It is easy to check that ys is a genuine G2-invariant (that is, a Dickson polynomial) 
whenever s = qi−1

q−1 for some non-negative integer i.
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Example 2.5. For s ≤ [m]q, δ2
2(Qs

1,0) is a G3-invariant of degree 2(qm − q) + s(q − 1) in 
Qm(3). This family of elements coincides with Goyal’s polynomials am,3,s in [5, Corollary 
4.3] where it was written in a different form:

am,3,s =
∑

(i1,i2,i3)

x
i1(q−1)
1 x

i2(q−1)
2 x

i3(q−1)
3 ,

where the sum is taken over all triples (i1, i2, i3) of non-negative integers such that 
is < [m]q and i1 + i2 + i3 = 2[m]q − 2 + s. Again, our definition also works for s > [m]q:

δ2
2(Q[m]q+2

1,0 ) = δ3
1(1) = xqm−1

1 xqm−1
2 xqm−1

3 ,

and is trivial in all other cases.

Warning 2.6. It is not true in general that if f = g in Qm(n) then δs(f) = δs(g) in 
Qm(n), even in the case where all expressions involved are polynomials. This is evident 
from Example 2.4 above for f = Q

[m]q+1
1,0 and g = 0. Thus when working with iterated 

delta operators, for example, δ2
2(f) = δ2(δ2f), we cannot take δ2f modulo Im before 

applying δ2 again.

2.4. The delta operator and the Dickson algebra

For each composition α of n, the invariant ring Qm(n)P (α) is a module over the 
Dickson algebra Dn. The next result describes how the delta operator interacts with the 
Dickson algebra in low ranks.

Proposition 2.7. We have the following identities in Qm.

(1) Qs,0δs(f) = 0 for all f ∈ S.
(2) Q2,1δ2(f) = δ2(Qq

1,0f) for all f ∈ D1.
(3) Q3,iδ3(f) = δ3(Qq

2,i−1f) for i = 1 or 2 and for all f ∈ D2.
(4) Q3,2δ

2
2(f) = δ2

2(Qq2

1,0f) for all f ∈ D1.
(5) Q3,1δ

2
2(f) = 0 for all f ∈ D1.

Proof. We will make use frequently of the relation 2.1 relating upper-triangular invari
ants Vk and Dickson invariants Qn,i.

The first part is clear since Qs,0 = Lq−1
s . Note that the numerator of δs(f) always 

vanishes in Qm by considering the Laplace expansion along the last row.

Proof of (2). Since f ∈ D1, let us assume that f = Qs
1,0 for some s ≥ 0. Since

Q2,1 = V q−1
2 (x1, x2) + V

q(q−1)
1 (x1) = V q−1

2 (x2, x1) + V
q(q−1)
1 (x2),

the numerator of the difference Q2,1δ2(f) − δ2(Qq
1,0f) has the form
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xqm

1 V2(x2, x1)q−1x
s(q−1)
2 xqm

2 V2(x1, x2)q−1x
s(q−1)
1

∣∣∣∣ .
Observe that x1V2(x1, x2) = x2V2(x2, x1) = L2(x1, x2), it follows that

Q2,1δ2(f) − δ2(Qq
1,0f) = xqm

2 V2(x1, x2)q−2x
s(q−1)
1 − xqm

1 V2(x2, x1)q−2x
s(q−1)
2 = 0

in Qm(2).

Proof of (3). We will treat the case i = 1, as the situation for i = 2 is similar. Consider 
the difference Q3,1δ3(f) − δ3(Qq

2,0f). Using the identity Q3,1 = V q−1
3 Q2,1 + Qq

2,0, the 
(3,1)-entry in the last row of the determinant in the numerator can be simplified as

xqm

1 V q−1
3 (x2, x3, x1)Q2,1(x2, x3)f(x2, x3).

There is a similar description for other entries in this row. Since

V3(x2, x3, x1)L2(x2, x3) = L3(x2, x3, x1) = L3(x1, x2, x3),

the Laplace expansion along the last row of the determinant in the numerator shows 
that the resulting polynomial belongs to Im, which is zero in Qm(3).

Proof of (4). From Proposition 2.1, we have Q3,2 = V q−1
3 + Qq

2,1. We write Q3,2 in two 
different ways:

Q3,2 = V q−1
3 (x2, x3, x1) + Qq

2,1(x2, x3) = V q−1
3 (x1, x3, x2) + Qq

2,1(x1, x3).

It follows that Q3,2δ2(δ2f) − δ2(Qq
2,1δ2f) equals

1 
L2(x1, x2)

∣∣∣∣ x1 x2
xqm

1 V q−1
3 (x2, x3, x1)(δ2f)(x2, x3) xqm

2 V q−1
3 (x1, x3, x2)(δ2f)(x1, x3)

∣∣∣∣ .
Since x2V3(x2, x3, x1) and x1V3(x1, x3, x2) are divisible by L2(x1, x2), the above expres
sion is a polynomial in the ideal generated by (xqm

1 , xqm

2 ). Thus

Q3,2δ2(δ2f) = δ2(Qq
2,1δ2f) in Qm(3).

At this point, as noted in Warning 2.6, we cannot apply immediately part (2), replacing 

Qq
2,1δ2f with δ2(Qq2

1,0f) on the right-hand side. Rather, we make use of the above strategy 
one more time, writing

Q2,1(x2, x3) = V q−1
2 (x3, x2) + V

q2(q−1)
1 (x3),

and similarly for Q2,1(x1, x3). The difference δ2(Qq
2,1δ2f) − δ2

2(Qq2

1,0f) can be written as 
the sum
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xqm

3
xqm

2 x1f(x1)V q2−q−1
2 (x1, x3) − xqm

1 x2f(x2)V q2−q−1
2 (x2, x3)

L2(x1, x2) 
−

xqm

2 f(x3)
x1x

qm

1 V q2−q−1
2 (x3, x1) − x2x

qm

1 V q2−q−1
2 (x3, x2)

L2(x1, x2) 
.

Now the first summand is a polynomial (since the numerator is divisible by x1 and 
vanishes whenever there is a linear relation x2 = a1x1) and is a multiple of xqm

3 . Similarly, 
the second summand belongs to the ideal (xqm

2 ).

Proof of (5). We first apply the same strategy as part (4), writing

Q3,1 =V q−1
3 (x1, x3, x2)Q2,1(x1, x3) + Qq

2,0(x3, x2)

=V q−1
3 (x2, x3, x1)Q2,1(x2, x3) + Qq

2,0(x3, x1),

and obtain an equality in Qm(3):

Q3,1δ2(δ2f)) = δ2(Qq
2,0δ2f).

The right-hand side, by direct inspection, can be written as

xqm

3
xqm

2 x2
1f(x1)Lq2−q−1

2 (x1, x3) − xqm

1 x2
2f(x2)Lq2−q−1

2 (x2, x3)
L2(x1, x2) 

+

xqm

2 f(x3)x3
x1x

qm

1 Lq2−q−1
2 (x1, x3) − x2x

qm

1 Lq2−q−1
2 (x2, x3)

L2(x1, x2) 
.

By the same argument as in part (4), the first summand is divisible by xqm

3 and the 
second by xqm

2 . �
2.5. The Borel subgroup

In [6], we constructed a basis for the invariant ring of Qm(n) under the action of the 
Borel subgroup for arbitrary m and n. In the case n = 3, the Fq-basis Bm(3) for QB

m

consists of 4 families:

(1) xqm−1
1 xqm−1

2 x
j3(q−1)
3 , j3 ≤ [m]q.

(2) xqm−1
1 x

j2(q−1)
2 Q2,1(x2, x3)j3 , j2 < [m]q, j3 ≤ [m− 1]q.

(3) x
j1(q−1)
1 δ2(Qj2

2,1), j1 < [m]q, j2 ≤ [m− 1]q.
(4) x

j1(q−1)
1 Qj2

2,1Q
j3
3,2, j1 < [m]q, j2 < [m− 1]q, j3 ≤ [m− 2]q.

3. A lower bound on the total dimension of the invariant subspaces

The original Parabolic Conjecture predicted that the Hilbert series of the invariant 
space Qm(n)P (α), where α is a composition of n, is given by the (finite) polynomial 
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Cα,m(t), whose explicit form is stated in Conjecture 1.1. In particular, the value of 
Cα,m(t) when t = 1 is expected to equal the total dimension of the finite-dimensional 
graded Fq-vector space Qm(n)P (α).

In this section, we will show that:

Proposition 3.1. For each m,n ≥ 1 and any composition α of n, the total dimension of 
the graded vector space Qm(n)P (α) is at least Cα,m(1).

This result is already implicit in [9, Section 6] and holds for arbitrary n ≥ 1. This 
relatively simple observation has an important practical consequence: suppose we can 
construct a generating set for the invariant subspace Qm(n)P (α) such that, by dimension 
counting, the associated Hilbert series C ′

m,α(t) does not exceed Cα,m(t) (i.e. f(t) ≤ g(t)
if and only if g(t)− f(t) is a polynomial with non-negative coefficients). Then, since the 
reverse inequality C ′

α,m(1) ≥ Cα,m(1) holds evaluated at t = 1, we may conclude that 
these two series must be identical since both are finite degree polynomials with non
negative coefficients. It follows that our generating set is, in fact, a basis for Qm(n)P (α).

Proof of Proposition 3.1. Consider the following ungraded quotient of the polynomial 
algebra:

R = Fq[x1, . . . , xn]/(xqm

1 − x1, . . . , x
qm

n − xn).

The action of G = GLn on Fq[x1, . . . , xn] descends to this quotient. There is a natural 
filtration:

{0} = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn(qm−1) = R,

where Fi is the image of the set of all polynomials of degree at most i under the canonical 
projection Fq[x1, . . . , xn] ↠ R. Let grF R denote the associated graded vector space ⊕

i≥0 Fi/Fi−1 and equip grF R with a ring structure where the multiplication is induced 
by the product FiFj → Fi+j . The canonical Fq-algebra map

Fq[x1, . . . , xn] → R → grF R, xi �→ x̄i ∈ F1/F0,

induces an isomorphism of G-equivariant Fq-algebras:

Qm(n) ∼ = grF R.

On the other hand, if we apply the functor taking G-invariants on each short exact 
sequence of G-modules

0 → Fi−1 → Fi → Fi/Fi−1 → 0,

and compute the dimension, we obtain an inequality
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dim(Fi)G ≤ dim(Fi−1)G + dim(Fi/Fi−1)G

and so

dimRG ≤ dim(grF R)G = dimQm(n)G.

To compute the Fq-dimension of RG, we extend the field Fq to a field F which contains 
Fqm . Then the evaluation map

f(x1, . . . , xn) �→ [(v1, . . . , vn) ∈ Fn
qm �→ f(v1, . . . , vn) ∈ F ],

induces an isomorphism of F -algebras

F ⊗Fq
R

∼ =  −→ Map
(
Fn
qm ,F

)
.

This isomorphism is also G-equivariant where G acts on the right-hand side via the 
embedding G = GLn(Fq) ⊂ GLn(Fqm). It follows that there is an isomorphism

(F ⊗Fq
R)G ∼ = Map

(
Fn
qm/G,F

)
.

The Fq-dimension of (F⊗Fq
R)G is thus equal to the cardinality of the orbit set Fn

qm/G. Fi

nally this cardinality is equal to the sum 
∑min(m,n)

s=0

[
m
s

]
q

where 
[
m
s

]
q

is the q-binomial 

coefficient which counts the number of s-dimensional subspaces of the Fq-vector space 
Fqm .

In summary, we have shown that

dimFq
RG = dimF (F ⊗Fq

RG) =
min(m,n)∑

s=0 

[
m
s

]
q

= Cm,n(1) ≤ dimQm(n)G.

The argument above clearly is not affected if one uses a parabolic subgroup Pα instead 
of G. The proposition is proved. �

We end this section with the following observation about our proposed basis Bm(α).

Lemma 3.2. For each composition α of n, the Hilbert series for the Fq-space spanned by 
Bm(α) is not greater than Cα,m(t).

Proof. This is almost obvious from the definition of Cα,m(t) and the relationship between 
the subset Δm

s ⊂ Ds and the (multinomial) (q, t)-coe�icient. Recall that

Cα,m(t) =
∑

β≤α,|β|≤m

te(m,α,β)
[

m
β,m− |β|

]
q,t

,
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where e(m,α, β) =
∑

(αi − βi)(qm − qBi). Our conjectural basis explains precisely how 
the summands in the above expression occur. Indeed, for each composition β, with β ≤ α

and |β| ≤ m, e(m,α, β) is exactly the total degree raised by the delta operators in a 
basis element

δα1−β1
B1+1;m

(
f1δ

α2−β2
B2+1;m

(
· · · f�−1δ

α�−β�

B�+1;m(f�)
))

,

and the (q, t)-multinomial coefficient 
[

m
β,m− |β|

]
q,t

corresponds to the number of 

choices of �-tuple (f1, . . . , f�) where fi ∈ ΦBi−1Δm−Bi−1
βi

. Note that according to [12, 
(7.1)], we can write[

m
β,m− |β|

]
q,t

=
[
m
β1

]
q,t

ϕβ1

[
m−B1

β2

]
q,t

ϕβ2

[
m−B2

β3

]
q,t

. . .

where ϕ is the (genuine) Frobenius operator, which reflects how our operator Φ affects 
the degree. �

The results in this section simplify our tasks considerably. Indeed, in order to show 
that Bm(α) is a basis for Qm(n)Pα , it suffices to verify that it is a generating set.

4. Proof of Proposition 1.6

As remarked in the previous section, it suffices to show that Bm(2) is a generating 
set for Qm(2)G. The proof of Proposition 1.6 is done in two steps. Firstly, we use the 
relative transfer from the known invariant ring QB of the Borel subgroup B to show that 
a bigger set B′, consisting of 3 families:

(1) δ2
1(1) = xqm−1

1 xqm−1
2 ,

(2) δ2(Qs
1,0) = ys, 0 ≤ s < [m]q,

(3) D2,

is a generating set for Qm(2)G. Then we show that to generate the invariant ring, it is 
possible to replace the Dickson algebra D2 in the third family by the smaller subspace 
Δm

2 .

Lemma 4.1. The set B′ consisting of 3 families above spans Qm(2)G.

Proof. In [6], we described an Fq-basis Bm(1, 1) for the ring of invariants under the Borel 
subgroup consisting of the following 2 families:

(i) xqm−1
1 x

i(q−1)
2 , i ≤ [m]q,
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(ii) Qi1
1,0Q

i2
2,1, i1 < [m]q, i2 ≤ [m− 1]q.

It is a standard fact about the relative transfer Tr: Qm(2)B → Qm(2)G that it is onto 
since the index of B in G is relatively prime to p (see [14, Section 2.2]), so a generating 
set for Qm(2)G can be obtained from the image of Tr.

In what follows, we adopt Goyal’s notation ys for δ2(Qs
1,0) for the sake of brevity. By 

direct inspection, we have the following identity in Qm(2) for any 0 ≤ s < [m]q:

xqm−1
1 x

s(q−1)
2 = y0x

(s+1)(q−1)
1 − ys+1.

Since ys is already a G2-invariant, this formula allows us to compute the transfer of the 
first family:

Tr(xqm−1
1 x

s(q−1)
2 ) = y0 Tr(x(s+1)(q−1)

1 ) − ys+1.

Note that Tr(x(s+1)(q−1)
1 ) is a Dickson polynomial divisible by Q2,0 because x(s+1)(q−1)

1
is a genuine B-invariant which vanishes when setting x1 = 0. By the first two parts of 
Proposition 2.7, the product of y0 with Q2,0 is trivial in Qm(2). Thus

Tr(xqm−1
1 x

s(q−1)
2 ) = −ys+1.

For the second family, we argue similarly, noting that

Tr(Qi1
1,0Q

i2
2,1) = Tr(Qi1

1,0)Q
i2
2,1 ∈ D2.

The lemma follows. �
The next step is to show that one only needs part of the Dickson algebra. The following 

observation about the Dickson monomials Q
qm−1−qi

q−1 
2,1 Q

qi−1
q−1 

2,0 at the ``edge'' of Δm
2 is crucial.

Proposition 4.2. For each 0 ≤ i ≤ m− 1, we have the following decomposition in S:

Q
qm−1−qi

q−1 
2,1 Q

qi−1
q−1 

2,0 = δ2(Q
qi−1
q−1 

1,0 ) + essential monomials divisible by Q
qi+1−1

q−1 
2,0 .

Proof. It is easy to see, by determinant manipulation, that δ2(Q
qi−1
q−1 

1,0 ) = y qi−1
q−1 

is a gen

uine Dickson polynomial. When i = 0, the Dickson monomial y0 must contain Q
qm−1−1

q−1 
2,1

as a nontrivial summand since both are reduced to xqm−q
1 when setting x2 = 0. Further

more, y0 −Q
qm−1−1

q−1 
2,1 is divisible by Q2,0. Note that in degree qm− q, Q

qm−1−1
q−1 

2,1 is the only 
non-essential Dickson monomial. We have proved that

y0 = Q
qm−1−1

q−1 
2,1 + essential monomials divisible by Q2,0.
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For the general case, we make use of the identity y
m, q

i−1
q−1 

= Q
qi−1
q−1 

2,0 yq
i

m−i,0 where ym,s

stands for δ2;m(Qs
1,0). It follows that

y qi−1
q−1 

= Q
qm−1−qi

q−1 
2,1 Q

qi−1
q−1 

2,0 + (fQ2,0)q
i

Q
qi−1
q−1 

2,0 ,

for some Dickson polynomial f . A Dickson monomial appearing in the second term of 
the sum above has the form Qi1

2,1Q
i2
2,0 where i2 ≥ qi+1−1

q−1 . Comparing the degree, we have 

i1 ≤ qm−1−qi+1

q−1 , hence Qi1
2,1Q

i2
2,0 is essential. �

Remark 4.3. It is easy to check that if i > [m − 1]q, then Qi
2,0 = L

i(q−1)≥qm−1

2 = 0 in 
Qm(2). Also, by induction on m, we have another interesting formula:

Q
2(qm−1−1)

q−1 
2,1 = y qm−q

q−1 = xqm−q
1 xqm−q

2 in Qm(2).

We are now ready to finish the proof of Proposition 1.6.
Consider a Dickson monomial Qi1

2,1Q
i2
2,0 and suppose, by way of contradiction, that it 

is not in the span of Bm(2). Further, assume that it is the smallest monomial in grevlex 
order with this property. Since Qk

2,0 = 0 if k > [m − 1]q, we must have i2 ≤ qm−1−1
q−1 =

[m − 1]q. Let i ≤ m − 1 be the unique integer such that [i]q ≤ i2 < [i + 1]q. Then 

i1 ≥ qm−1−qi

q−1 . It follows from Proposition 4.2 that

Qi1
2,1Q

i2
2,0 −Q

i1− qm−1−qi

q−1 
2,1 Q

i2− qi−1
q−1 

2,0 y qi−1
q−1 

is a sum of Dickson monomials in strictly smaller grevlex order than (i1, i2), and at least 
one of them is again not in the span of Bm(2). We have a contradiction.

5. Proof of Proposition 1.7

It is straightforward to check that all elements in the six families listed in Proposi
tion 1.7 are P (2, 1)-invariants. By results in Section 3, it suffices to show that Bm(2, 1)
is a generating set for Qm(3)P (2,1).

Suppose f is a nonzero polynomial in Qm(3)P (2,1), and we write f as a polynomial in 
x3:

f = x
a(q−1)
3 fa + x

(a−1)(q−1)
3 fa−1 + . . . .

We will prove by downward induction on the highest x3-degree a(q − 1).
Observe that the coefficients fi belong to the space of invariants Qm(2)G in the vari

ables x1 and x2. If fa is a scalar multiple of xqm−1
1 xqm−1

2 , then since xa(q−1)
3 xqm−1

1 xqm−1
2
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is already P (2, 1)-invariant (which is a member of the 5th and 6th family in Bm(2, 1)), 
we can subtract it from f to obtain a new one with strictly smaller x3-degree.

Now let us assume that fa, and hence all fi, for degree reasons, are generated by 
δ2(Δm

1 ) and Δm
2 . In particular, its x1-degree (and hence x2-degree as well, by symmetry) 

is strictly less than qm − 1. We claim that a must be a multiple of q. Indeed, since f is 
a B-invariant, from the list of generators given in 2.5, we see that f must be a linear 
combination of polynomials of the form xj1(q−1)

1 δ2(Qj2
2,1) or xj1(q−1)

1 Qj2
2,1Q

j3
3,2. In both 

cases, the highest x3-degrees are divisible by q.
If fa contains δ2(Qi1

1,0) for some i1 < [m]q, then we can subtract from f an appropriate 
polynomial from the third or fourth family in the list 1.7. So we can assume that fa ∈ Δm

2 . 
In this case, it follows that xa(q−1

3 fa is a nontrivial summand of a B-invariant polynomial 
of the form xj1(q−1)

1 Qj2
2,1Q

j3
3,2. In particular, a must be divisible by q2.

Finally, when a(q − 1) = iq2(q − 1) for some i < [m − 2]q or a(q − 1) = qm − q2, 
by subtracting from f an appropriate linear combination of the first two families of 
Bm(2, 1), we will obtain a P (2, 1)-invariant polynomial of strictly smaller x3-degree. The 
result follows by induction on the highest x3-degree. �
Remark 5.1. We can also prove that Bm(2, 1) is linearly independent as follows. Consider 
these elements of Bm(2, 1) as polynomials in x3. The table below records the coefficient 
of the highest x3-degree.

Bm(2, 1) Highest x3-degree Coefficient 
(1) Qi1

2,1Q
i2
2,0Q

i
3,2 i(q3 − q2) < qm − q2 Qi1

2,1Q
i2
2,0, (i1, i2) ∈ Δm

2

(2) Qi1
2,1Q

i2
2,0δ3(1) qm − q2 Qi1

2,1Q
i2
2,0, (i1, i2) ∈ Δm

2

(3) δ2(Qi1
1,0Q

i
2,1) i(q2 − q) < qm − q δ2(Qi1

1,0), i1 < [m]q
(4) δ2(Qi1

1,0δ2(1)) qm − q δ2(Qi1
1,0), i1 < [m]q

(5) δ1(δ1(Qi
1,0)) i(q − 1) < qm − 1 xqm−1

1 xqm−1
2

(6) δ1(δ1(δ1(1))) qm − 1 xqm−1
1 xqm−1

2

From the table, it is easy to see that the polynomials in Bm(2, 1) are linearly inde
pendent.

6. Proof of Proposition 1.8

It suffices to show that Bm(1, 2) is a generating set, and the proof is by downward 
induction on the lowest x1-degree. Write

f = x
i(q−1)
1 gi(x2, x3) + x

(i+1)(q−1)
1 gi+1(x2, x3) + . . .

Note that all coefficient polynomials gj are G2-invariant in x2 and x3. If i(q−1) = qm−1, 
then xqm−1

1 g(x2, x3) is a linear combination of polynomials from the last three families 
of Bm(1, 2). We can then subtract from f this polynomial and can now assume that 
i(q − 1) ≤ qm − q.
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Since f is a B-invariant, it is a linear combination of polynomials of the form 
x
j1(q−1)
1 δ2(Qj2

2,1) or Qj1
1,0Q

j2
2,1Q

j3
3,2. Their lowest x1-degree summands are 

x
j1(q−1)
1 xqm−q

2 x
j2q(q−1)
3 and xj1(q−1)

1 x
j2q(q−1)
2 Qqj3

2,1 (x2, x3) respectively. In both cases, the 
exponents of x2 and x3 in these summands are divisible by q(q − 1). So the same is 
true for gi(x2, x3). Since gi ∈ Qm(x2, x3)G, it must be a q-th power of a polynomial in 
Qm−1(2) in the variables x2, x3.

On the other hand, the lowest x1-degree summand of the first three families of Bm(1, 2)
are

(1) x
j1(q−1)
1

(
Qi1

2,1(x2, x3)Qi2
2,0(x2, x3)

)q, (i1, i2) ∈ Δm−1
2 ;

(2) x
j1(q−1)
1

(
δ2;m−1(Qj2

1,0)
)q, j2 < [m− 1]q;

(3) x
j1(q−1)
1

(
xqm−1−1

2 xqm−1−1
3

)q.
Hence xi(q−1)

1 gi(x2, x3) is the lowest x1-degree part of a polynomial in the span of 
Bm(1, 2). By subtracting from f an appropriate linear combination of polynomials in 
Bm(1, 2), we obtain another P (1, 2)-invariant polynomial whose lowest x1-degree is 
strictly greater than that of f . By induction, the required result follows. �
Remark 6.1. We can also prove directly that Bm(1, 2) is linearly independent. In fact, the 
generators can be distinguished by looking at the lowest x1-degrees and the corresponding 
coefficients as given in the table below.

Bm(1, 2) Lowest x1-degree Coefficient 
(1) Qj1

1,0Q
i1
3,2Q

i2
3,1 j1(q − 1) < qm − 1 Qqi1

2,1(x2, x3)Qqi2
2,0(x2, x3), (i1, i2) ∈ Δm−1

2

(2) Qj1
1,0δ3(Q

j2
2,1) j1(q − 1) < qm − 1 yq

m−1,j2
(x2, x3), j2 < [m − 1]q

(3) Qj1
1,0δ2(δ2(1)) j1(q − 1) < qm − 1 xqm−q

2 xqm−q
3

(4) δ1(Qi1
2,1Q

i2
2,0) qm − 1 Qi1

2,1(x2, x3)Qi2
2,0(x2, x3), (i1, i2) ∈ Δm

2

(5) δ1(δ2(Qj1
1,0)) qm − 1 yj1 (x2, x3), j1 < [m]q

(6) δ1(δ1(δ1(1))) qm − 1 xqm−1
2 xqm−1

3

7. Proof of Proposition 1.9

We need to prove that Bm(3) is a generating set for Qm(3)G. Our strategy is the same 
as in the rank 2 case, but the details are much more involved. The proof is divided into 
three steps. Using the transfer, we first construct a slightly bigger generating set B′ of 
the required form without restricting the Dickson polynomials:

B′ = δ3
1(Δm

0 )
∐

δ2
2(Δm

1 )
∐

δ3(D2)
∐

D3.

Once this is done, we then show that δ3(D2) is actually contained in the span of

δ3
1(Δm

0 )
∐

δ2
2(Δm

1 )
∐

δ3(Δm
2 ),
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and as a result, D2 can be replaced by the much smaller subset Δm
2 . Finally, we prove 

that when restricted to Qm(3), the rank 3 Dickson algebra belongs to the subspace 
spanned by Bm(3). This is proved by first showing that all the edge monomials of Δm

3
are in this span. Thus the subspace spanned by Bm(3) is a D3-submodule of Qm(3)G. 
Since it contains Δm

3 , it will contain the entirety of D3.

Lemma 7.1. The set B′ consisting of 4 families below is a generating set for Qm(3)G.

(1) xqm−1
1 xqm−1

2 xqm−1
3 .

(2) δ2
2(Δm

1 ) = {am,3,s, 0 ≤ s < [m]q}.
(3) δ3(D2).
(4) D3.

Proof. A generating set for Qm(3)G can be obtained by taking the image of the relative 
transfer

TrGP (2,1) : QP (1,2)
m −→ QG

m

from the parabolic subgroup P (1, 2) to G, applied to the basis of QP (1,2)
m given in Propo

sition 1.8.
First, observe that Qj1

1,0Q
i1
3,2Q

i2
3,1 is a genuine P (1, 2)-invariant, and hence its transfer 

is a genuine G-invariant, i.e., a Dickson polynomial.
Next, consider the second family. Since δ3(Qj2

2,1) is already a G-invariant in Qm(3), 
we have

TrGP (2,1)(Q
j1
1,0δ3(Q

j2
2,1)) = (TrGP (2,1) Q

j1
1,0)δ3(Q

j2
2,1).

On the other hand, the transfer TrGP (2,1)(Q
j1
1,0) is a genuine Dickson polynomial divisible 

by Q3,0 unless j1 = 0. Therefore, if j1 is positive, the whole expression vanishes in Qm(3):

TrGP (2,1)(Q
j1
1,0δ3(Q

j2
2,1)) = 0 in Qm.

A similar argument applies to the third family. Since δ2
2(1) is already a G-invariant and is 

annihilated by Q3,0, its transfer also vanishes. Hence from the second and third families 
in Bm(1, 2), only elements δ3(Qj2

2,1) (for j2 < [m− 1]q) and δ2
2(1) contribute nontrivially.

Now we turn to the fourth family. Recall that

δ1(Qi1
2,1Q

i2
2,0) = xqm−1

1 Qi1
2,1(x2, x3)Qi2

2,0(x2, x3).

We claim that

TrGP (1,2)(δ1(Q
i1
2,1Q

i2
2,0)) = δ3(Qi1

2,1Q
i2+1
2,0 ).
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Indeed, by Proposition 2.3, the right-hand side is G-invariant. Moreover, we use the 
identity:

V3(x2, x1, x3) = V2(V2(x2, x1), V2(x2, x3)) = V2(x2, x3)q − V q−1
2 (x2, x1)V2(x2, x3),

from which it follows that

Lq
2(x2, x3) = xq

2V2(x2, x3)q = xq
2V3(x2, x1, x3) + Q2,0(x1, x2)L2(x2, x3).

Applying the Laplace expansion along the last row of the numerator, we obtain:

δ3(Qi1
2,1Q

i2+1
2,0 ) = Q2,0δ3(Qi1

2,1Q
i2
2,0) − δ2(Q1,0Q

i1
2,1Q

i2
2,0).

Now consider xqm−1
1 Qi1

2,1(x2, x3)Qi2
2,0(x2, x3) as a B3-invariant and take the transfer from 

B3 to P (2, 1). From Section 4, we have

TrG2
B2

(xqm−1
1 x

a(q−1)
2 ) = −ya+1(x1, x2) = −δ2(Qa+1

1,0 ).

Write

Qi1
2,1(x2, x3)Qi2

2,0(x2, x3) =
∑
(a,b)

λ(a, b)xa(q−1)
2 x

b(q−1)
3 , λ(a, b) ∈ Fq,

then

TrP (2,1)
B3

(
xqm−1

1 Qi1
2,1(x2, x3)Qi2

2,0(x2, x3)
)

= −
∑
(a,b)

λ(a, b)δ2(Qa+1
1,0 )xb(q−1)

3

= − δ2
( ∑

(a,b)

λ(a, b)x(a+1)(q−1)
1 x

b(q−1)
2

)
= − δ2(Q1,0Q

i1
2,1Q

i2
2,0)

=δ3(Qi1
2,1Q

i2+1
2,0 ) −Q2,0δ3(Qi1

2,1Q
i2
2,0).

Finally, we observe that

TrGP (2,1)
(
Q2,0δ3(Qi1

2,1Q
i2
2,0)

)
= TrGP (2,1)(Q2,0)δ3(Qi1

2,1Q
i2
2,0) = 0,

which proves the claim for the fourth family.
Now we consider the fifth family (note that the 6th family already consists of G

invariants). A similar argument shows that if j < [m]q, then

TrGP (1,2)(x
qm−1
1 δ2(Qj

1,0)(x2, x3)) = −δ2
2(Qj+1

1,0 ).

Indeed, recall
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TrP (2,1)
B3

(xqm−1
1 yj(x2, x3)) = −

(qm−q)/(q−1)∑
a=j 

ya+1(x1, x2)xqm−q+j(a−1)−a(q−1)
3 .

This sum is exactly −am,3,j+1 = −δ2
2(Qj+1

1,0 ), which is a G3-invariant. The result follows 
by the transitivity of the transfer. The proof is complete. �

The next step is to show that in the third family, one does not need to use all D2. 
The following technical lemma will be used repeatedly.

Lemma 7.2. Let s, t, i be non-negative integers. Then the following equality holds in 
Qm(3):

δ2
(
V

s(q−1)
1 V

t(q−1)
2 δ2(Qi

1,0)
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if t ≥ 1 and s > 1;
xqm−1

1 xqm−1
2 x

(qt+i−1)(q−1)
3 if t ≥ 1 and s = 1;

(t + 1)xqm−1
1 xqm−1

2 x
(qt+i−2)(q−1)
3 if t ≥ 1 and s = 0;

δ2
2(Qi+s

1,0 ) if t = 0, s ≤ 1;
δ2
2(Qi+s

1,0 ) − xqm−1
1 xqm−1

2 x
(s+i−2)(q−1)
3 if t = 0, s ≥ 2.

Proof. Recall that δ2(f) is a polynomial if f is a polynomial (possibly with more than 
one variable), which is G1-invariant. Hence, the expression under consideration is a poly
nomial. If t ≥ 1, unravelling the definition, we see that δ2(V s(q−1)

1 V
t(q−1)
2 δ2(Qi

1,0)) equals

1 
L2(x1, x2)

[
xqm

2 x
s(q−1)
1 V

t(q−1)−1
2 (x1, x3)

∣∣∣∣ x1 x3

xqm

1 x
i(q−1)
3 xqm

3 x
i(q−1)
1

∣∣∣∣−
xqm

1 x
s(q−1)
2 V

t(q−1)−1
2 (x2, x3)

∣∣∣∣ x2 x3

xqm

2 x
i(q−1)
3 xqm

3 x
i(q−1)
2

∣∣∣∣ ]

= xqm

3
xqm

2 x
(s+i)(q−1)+1
1 V

t(q−1)−1
2 (x1, x3) − xqm

1 x
(s+i)(q−1)+1
2 V

t(q−1)−1
2 (x2, x3)

L2(x1, x2) 
−

xqm

1 xqm

2 x
i(q−1)+1
3

x
s(q−1)
1 V

t(q−1)−1
2 (x1, x3) − x

s(q−1)
2 V

t(q−1)−1
2 (x2, x3)

L2(x1, x2) 
.

The first summand is trivial in Qm(3) because the quotient involved is a polynomial. 
Indeed, in this quotient, the numerator is divisible by x1 and vanishes whenever there is 
a linear relation x2 = a1x1.

By a similar argument, the second summand is also trivial if s > 1, and equals 
xqm−1

1 xqm−1
2 x

(qt+i−1)(q−1)
3 if s = 1. If s = 0, it equals

(t(q − 1) − 1)xqm−1
1 xqm−1

2 x
(qt+i−2)(q−1)
3 .
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Now suppose t = 0, we get

1 
L2(x1, x2)

[
xqm

1 x
s(q−1)
2

∣∣∣∣ x2 x3

xqm

2 x
i(q−1)
3 xqm

3 x
i(q−1)
2

∣∣∣∣
V2(x2, x3) 

− xqm

2 x
s(q−1)
1

∣∣∣∣ x1 x3

xqm

1 x
i(q−1)
3 xqm

3 x
i(q−1)
1

∣∣∣∣
V2(x1, x3) 

]

= 1 
L2(x1, x2)

[
xqm

1 x2

∣∣∣∣ x2 x3

xqm

2 x
(s+i)(q−1)
3 xqm

3 x
(s+i)(q−1)
2

∣∣∣∣
L2(x2, x3) 

− xqm

2 x1

∣∣∣∣ x1 x3

xqm

1 x
(s+i)(q−1)
3 xqm

3 x
(s+i)(q−1)
1

∣∣∣∣
L2(x1, x3) 

]
+

xqm

1 xqm

2 x
i(q−1)
3

L2(x1, x2) 

[
x
s(q−1)
2 − x

s(q−1)
3

xq−1
2 − xq−1

3
− x

s(q−1)
1 − x

s(q−1)
3

xq−1
1 − xq−1

3

]
.

The first summand is δ2
2(Qs+i

1,0 ). The second summand is trivial when s ≤ 1 and equals 
−xqm−1

1 xqm−1
2 x

(s−2+i)(q−1)
3 if s ≥ 2. �

Corollary 7.3. If g ∈ D2 and i ≥ 0, then δ3(gδ2(Qi
1,0)) is a linear combination of polyno

mials from the following families:

• δ2
2(Qs

1,0), 0 ≤ s < [m]q.
• xqm−1

1 xqm−1
2 x

s(q−1)
3 , 0 ≤ s ≤ [m]q.

Proof. We first observe that by direct inspection, δ3(gδ2(Qi
1,0)) can be written as a 

quotient of determinants:

δ3(gδ2(Qi
1,0)) =

∣∣∣∣∣∣∣
x
i(q−1)+1
1 x

i(q−1)+1
2 x

i(q−1)+1
3

xqm

1 xqm

2 xqm

3
xqm

1 g(x2, x3) xqm

2 g(x1, x3) xqm

3 g(x1, x2)

∣∣∣∣∣∣∣
L3(x1, x2, x3) 

.

Since

L3(x1, x2, x3) =V3(x1, x2, x3)L2(x1, x2)

=[V2(x2, x3)q−1 − V2(x2, x1)q−1]V2(x2, x3)L2(x1, x2)

=[V2(x1, x3)q−1 − V2(x1, x2)q−1]V2(x1, x3)L2(x1, x2),

the quotient above can be rewritten in the form:
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ϕ(h) :=
1 

L2(x1, x2)

[
xqm

1 x2h(x1, x2, x3)

∣∣∣∣∣xi(q−1)+1
2 x

i(q−1)+1
3

xqm

2 xqm

3

∣∣∣∣∣
L2(x2, x3) 

− xqm

2 x1h(x2, x1, x3)

∣∣∣∣∣xi(q−1)+1
1 x

i(q−1)+1
3

xqm

1 xqm

3

∣∣∣∣∣
L2(x1, x3) 

]

=
1 

L2(x1, x2)
(xqm

1 x2h(x1, x2, x3)δ2(Qi
1,0)(x2, x3) − xqm

2 x1h(x2, x1, x3)δ2(Qi
1,0)(x1, x3)),

where

h(x1, x2, x3) = g(x2, x3) − g(x2, x1) 
V2(x2, x3)q−1 − V2(x2, x1)q−1 .

Since g ∈ D2, it can be written in terms of upper triangular invariants

g =
∑
s,t 

V
s(q−1)
1 V

t(q−1)
2 ,

where the sum is taken over certain subset A ⊂ N2. Then

h(x1, x2, x3) =
∑

(s,t)∈A,t≥1

x
s(q−1)
2

( t−1 ∑
j=0 

V2(x2, x3)(t−1−j)(q−1)V2(x2, x1)j(q−1)
)
.

Observe that if j > 0, then both xqm

1 x2V2(x2, x1)j(q−1)/L2 and xqm

2 x1V2(x1, x2)j(q−1)/L2
are zero in Qm, so the terms in h corresponding to those j do not contribute to ϕ(h). It 
follows that ϕ(h) is reduced to the sum∑

(s,t)∈A,t≥1

ϕ(xs(q−1)
2 V2(x2, x3)(t−1)(q−1)).

On the other hand, we have an equality which is essentially by definition:

ϕ(xs(q−1)
2 V2(x2, x3)(t−1)(q−1)) = δ2(V s(q−1)

1 V
(t−1)(q−1)
2 δ2(Qi

1,0)).

We can now use the computation in Lemma 7.2 of the right-hand side to finish the 
proof. �

We are now ready to replace D2 by Δm
2 in the generating set B′ of Qm(3)G.

Lemma 7.4. The subspace of Qm(3)G spanned by the following three families of elements

(1) δ3
1(Δm

0 ),
(2) δ2

2(Δm
1 ),

(3) δ3(Δm
2 ),



344 L.M. Ha et al. / Journal of Algebra 683 (2025) 319--354 

contains δ3(D2).

Proof. Suppose f is a Dickson monomial in D2 but is not essential. Then it can be 
written in the form

Q
qm−1−qi

q−1 
2,1 Q

qi−1
q−1 

2,0 Qa
2,1Q

b
2,0,

for some 0 ≤ i ≤ m− 1, 0 ≤ a, b. Recall from 4.2 that

Q
qm−1−qi

q−1 
2,1 Q

qi−1
q−1 

2,0 = δ2(Q
qi−1
q−1 

1,0 ) + essential monomials divisible by Q
qi+1−1

q−1 
2,0 .

Repeating this process if necessary, we can write f as a sum of essential monomials and 
Dickson polynomials of the form

δ2(Q
qj−1
q−1 

1,0 )Qaj

2,1Q
bj
2,0, j ≥ i.

Thus it suffices to consider δ3(f) for f = gδ2(Q
qi−1
q−1 

1,0 ), where g ∈ D2 and 0 ≤ i ≤ m− 1.

We know from Corollary 7.3 that δ3(gδ2(Q
qi−1
q−1 

1,0 )) is a linear combination of polynomials 
in the following families:

• δ2
2(Δm

1 ),
• xqm−1

1 xqm−1
2 x

s(q−1)
3 , 0 ≤ s ≤ [m]q.

Since δ2(Q
qi−1
q−1 

1,0 ) is a genuine Dickson polynomial, δ3(gδ2(Q
qi−1
q−1 

1,0 )) is a G3-invariant in 

Qm(3). We conclude that δ3(gδ2(Q
qi−1
q−1 

1,0 )) must belong to the space

Span{δ2
2(Δm

1 ), δ3
1(1)},

because any monomial of the form xqm−1
1 xqm−1

2 x
i(q−1)
3 , 0 ≤ i < [m]q, is not G3-invariant 

in Qm(3). �
The third, and final step is to replace the full Dickson algebra D3 by Δm

3 . We first 
need some preliminary calculations. In the following, δ3 will again stand for δ3;m.

Lemma 7.5. The following equalities hold in S:

(1) δ3(Q
qi−1
q−1 

2,0 ) =
(
δ3;m−i(1)

)qi
Q

qi−1
q−1 

3,0 for all i ≥ 0. In particular,

δ3(Q
qm−2−1

q−1 
2,0 ) = Q

qm−2−1
q−1 

3,0 and δ3(Q
qm−3−1

q−1 
2,0 ) = Qqm−3

3,2 Q
qm−3−1

q−1 
3,0 .
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(2) Qk
3,0 = 0 in Qm for all k > qm−2−1

q−1 .

(3) δ3(Qqm−3

2,1 Q
qm−3−1

q−1 
2,0 ) = Qqm−3

3,1 Q
qm−3−1

q−1 
3,0 .

(4) In general, for λ2 ≥ λ3 ≥ 0, then

δ3
(
Q

qλ2−qλ3
q−1 

2,1 Q
qλ3−1
q−1 

2,0
)

=
(
δ3;m−λ3

(
Q

qλ2−λ3−1
q−1 

2,1
))qλ3

Q
qλ3−1
q−1 

3,0 .

Proof. The proofs of these statements are quite similar and essentially make use of the 
Laplace expansion. We will prove the last statement only. Apply the Laplace expansion 

along the last row of the determinant in the numerator of δ3
(
Q

qλ2−qλ3
q−1 

2,1 Q
qλ3−1
q−1 

2,0
)
, we obtain

xqm

1 Q
qλ2−qλ3

q−1 
2,1 (x2, x3)Lqλ3

2 (x2, x3)

− xqm

2 Q
qλ2−qλ3

q−1 
2,1 (x1, x3)Lqλ3

2 (x1, x3)

+ xqm

3 Q
qλ2−qλ3

q−1 
2,1 (x1, x2)Lqλ3

2 (x1, x3).

After writing this expression as a qλ3 power, the result follows easily. �
Our second technical result is similar to Proposition 4.2 in the case of 3 variables.

Proposition 7.6. Let m ≥ 2 be an integer.

(i) The following equality holds in S:

[0, 1,m− 1]
[0, 1, 2] δ3;m(Q2,1) −

[0, 2,m− 1]
[0, 1, 2] δ3;m(1) = Q

qm−2−1
q−1 

3,1 + other terms,

where the other terms are in the ideal (Q3,0) of D3 generated by Q3,0.
(ii) For 0 ≤ � ≤ m− 2, the following equality holds in S:

[0, 1, � + 1]
[0, 1, 2] δ3;m(Q2,1) −

[0, 2, � + 1]
[0, 1, 2] δ3;m(1) = Q

qm−2−q�

q−1 
3,2 Q

q�−1
q−1 

3,1 + other terms,

where the other terms are in the ideal (Q
q�+1−1

q−1 
3,1 , Q3,0) of D3.

Proof. The key observation is that if two Dickson polynomials coincide after setting one 
of the variables, say x3, to zero, then their difference must be a multiple of Q3,0.

Note that in Dickson’s notation, we can write

δ3;m(Q2,1) = [0, 2,m]
[0, 1, 2] , δ3;m(1) = [0, 1,m]

[0, 1, 2] ,
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so that all the terms in the above equations are genuine Dickson polynomials.

Proof of (i): When x3 = 0, the equation under consideration becomes

[1,m− 1]
[1, 2] · [2,m]

[1, 2] −
[2,m− 1]

[1, 2] · [1,m]
[1, 2] = Q

qm−1−q
q−1 

2,0 .

It is now a simple computation that the two sides are the same.

Proof of (ii): Again, we consider the reduction of the left-hand side when setting x3 = 0. 
The result, after simplification, is

δ2;m−�−1(1)q
�+1

Q
q�+1−q

q−1 
2,0 .

Now setting x2 = 0, δ2;m−�−1(1) is reduced to Q
qm−�−1−q

q−1 
1,0 , which implies that

δ2;m−�−1(1) = Q
qm−�−2−1

q−1 
2,1 + other terms divisible by Q2,0.

It follows that

δ2;m−�−1(1)q
�+1

Q
q�+1−q

q−1 
2,0 = Q

qm−1−q�+1
q−1 

2,1 Q
q�+1−q

q−1 
2,0 + other terms divisible by Q

q�+2−q
q−1 

2,0 .

Thus, we can conclude that the left-hand side equals

Q
qm−2−q�

q−1 
3,2 Q

q�−1
q−1 

3,1 + other terms,

where the other terms consist of Dickson monomials which are divisible by Q
q�+1−1

q−1 
3,1 or 

by Q3,0. �
The following corollary will be useful for induction.

Corollary 7.7. Suppose 0 ≤ � ≤ m−2 and m−3 ≥ λ2 ≥ λ3 ≥ 0. The following equalities 
hold in S:
(1)

δ3;m−�−1(1)q
�

δ3;m(Qq�

2,1Q
q�−1
q−1 

2,0 ) − δ3;m−�−1(Q2,1)q
�

δ3;m(Q
q�−1
q−1 

2,0 )

= Q
qm−2−q�

q−1 
3,1 Q

q�−1
q−1 

3,0 + other terms,

where the other terms are in the ideal (Q
q�+1−1

q−1 
3,0 ).
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(2) More generally,

δ3;λ2−λ3+1(1)q
λ3
δ3;m(Qqλ3

2,1 Q
qλ3−1
q−1 

2,0 ) − δ3;λ2−λ3+1(Q2,1)q
λ3
δ3;m(Q

qλ3−1
q−1 

2,0 ) =

Q
qm−2−qλ2

q−1 
3,2 Q

qλ2−qλ3
q−1 

3,1 Q
qλ3−1
q−1 

3,0 + other terms,

where the other terms are in the ideal (Q
qλ3+1−1

q−1 
3,0 , Q

qλ2+1−qλ3
q−1 

3,1 Q
qλ3−1
q−1 

3,0 ).

Proof. This is just combining Lemma 7.5 and Proposition 7.6.
For the first part, note that

δ3;m(Qq�

2,1Q
q�−1
q−1 

2,0 ) = δ3;m(Q
q�+1−q�

q−1 
2,1 Q

q�−1
q−1 

2,0 ) = δ3;m−�(Q2,1)q
�

Q
q�−1
q−1 

3,0 ,

and similarly

δ3;m(Q
q�−1
q−1 

2,0 ) = δ3;m−�(1)q
�

Q
q�−1
q−1 

3,0 .

The left-hand side of the required formula becomes

(
δ3;m−�−1(1)δ3;m−�(Q2,1) − δ3;m−�−1(Q2,1)δ3;m−�(1)

)q�

Q
q�−1
q−1 

3,0 .

We can then apply 7.6 part (i) to finish the proof.
The second part is proved similarly. �

Corollary 7.8. The Dickson monomials at the edge of Δm
3 listed below are also in the 

span of Bm(3):

(1) Q
qm−2−1

q−1 
3,0 ,

(2) Q
qm−2−qλ3

q−1 
3,1 Q

qλ3−1
q−1 

3,0 , where m− 3 ≥ λ3,

(3) Q
qm−2−qλ2

q−1 
3,2 Q

qλ2−qλ3
q−1 

3,1 Q
qλ3−1
q−1 

3,0 , where m− 3 ≥ λ2 ≥ λ3.

Proof. We have already seen from part (1) of Lemma 7.5 that the monomial Q
qm−2−1

q−1 
3,0

belongs to δ3(Δm
2 ). For the remaining 2 families, we will show that they belong to the 

span of Bm(3) by downward induction on λ3.
When λ3 = m− 3, it follows that λ2 = λ3 = m− 3. The edge monomials

Qqm−3

3,1 Q
qm−3−1

q−1 
3,0 and Qqm−3

3,2 Q
qm−3−1

q−1 
3,0



348 L.M. Ha et al. / Journal of Algebra 683 (2025) 319--354 

belong to the span of Bm(3) by parts (1) and (3) of Lemma 7.5. In addition, by Proposi
tion 2.7, any Dickson monomial divisible by these monomials is also in the image of δ3, 
and thus belongs to the span of Bm(3).

Now suppose, as induction hypothesis, that all edge monomials with Q3,0-exponent 
qλ3+1−1

q−1 as well as their multiples are already in the span of Bm(3). We consider the edge 
monomials corresponding to λ3:

(1) Q
qm−2−qλ3

q−1 
3,1 Q

qλ3−1
q−1 

3,0 ,

(2) Q
qm−2−qλ2

q−1 
3,2 Q

qλ2−qλ3
q−1 

3,1 Q
qλ3−1
q−1 

3,0 .

Part (i) of Corollary 7.7 shows that Q
qm−2−qλ3

q−1 
3,1 Q

qλ3−1
q−1 

3,0 lies in the image of δ3(Δm
2 ) modulo 

terms with strictly higher λ3. By the induction hypothesis, these higher terms are already 
in the span of Bm(3).

For the second monomial, observe that if there exists a monomial with the same Q3,0
exponent q

λ3−1
q−1 but a higher exponent of Q3,1, such that it becomes non-essential, then 

this monomial must be a multiple of

Q
qm−2−qλ3

q−1 
3,1 Q

qλ3−1
q−1 

3,0 ,

which by the previous step, is already in the span of Bm(3). Alternatively, if the 

Q3,0-exponent is strictly greater than qλ3−1
q−1 , the induction hypothesis can be applied 

directly. �
Now we are ready to finish the proof of the claim that Bm(3) is a generating set for 

Qm(3)G. Corollary 7.8 shows that the subspace of Qm(3)G spanned by Bm(3) is closed 
under the action of the Dickson algebra D3. Indeed, we have already computed the action 
of D3 on δ3−s

s+1(Δm
s ) for 0 ≤ s ≤ 2 in 2.7, and the product of Q3,i with a monomial in Δm

3
is clearly an edge monomial, which is in the span of Bm(3) by Corollary 7.8. The proof 
is finished.

8. A filtration of submodules over the Steenrod algebra

In this final section, we investigate the filtration Fn,k of Qm(n)G as defined in the 
Introduction 1.10. Recall that for each positive integer n, 0 ≤ k ≤ min(m,n), Fn,k is the 
Fq-subspace of Qm(n)G:

Fn,k = Span{δn−s
s+1 (f) : f ∈ Δm

s , 0 ≤ s ≤ min(m, k)}.

The aim of this final section is to demonstrate Theorem 1.12. For n ≤ 3, we have shown 
that this increasing filtration of subspaces is exhaustive. We begin with the following 
observation which allows more flexibility in working with Fn,k:



L.M. Ha et al. / Journal of Algebra 683 (2025) 319--354 349

Lemma 8.1. Let n ≤ 3. For each 0 ≤ k ≤ min(m,n), we have

Fn,k = Span{δn−s
s+1 (f) : f ∈ Ds, 0 ≤ s ≤ min(m, k)}.

The point is that this filtration does not depend on the subspace Δm
s .

Proof. For n = 2 this is essentially pointed out in Example 2.4 and the proof of 
Proposition 1.6. For n = 3, this is a combination of Example 2.5 and the proof of 
Proposition 1.9. �
Corollary 8.2. For n ≤ 3, Fn,∗ is a filtration of Dn-submodules of the invariant ring 
Qm(n)G. Moreover, for 0 ≤ k < min(m,n), Fn,k is annihilated by Qn,0, . . . , Qn,n−k−1.

Proof. This is immediate from the above Lemma and Proposition 2.7. �
The calculations in the previous sections demonstrate that our basis Bm(3) for Qm(3)G

is natural in the sense that the resulting filtration is a filtration by D3-submodules. 
Moreover, the action of the Dickson algebra follows a pattern similar to the one discussed 
in [9], where the structure of the cofixed space SG is described as an SG-module. A similar 
pattern also emerges in the case n = 2.

We now turn our attention to the Steenrod algebra. For background on the mod q
Steenrod algebra A and its role in modular invariant theory, we refer to Larry Smith’s 
article [13], which provides a purely algebraic treatment of the Steenrod algebra over a 
general finite field.

Recall that for each i ≥ 0, the ith Steenrod reduced power operation Pi is an Fq-linear 
map satisfying the following conditions:

(1) The unstable condition: Pi(f) = fq if i = deg(f) and Pi(f) = 0 if i > deg(f).
(2) The Cartan formulae: Pi(fg) =

∑
a+b=i Pa(f)Pb(g).

Moreover, P0 acts as the identity. Over the polynomial ring S = Fq[x1, . . . , xn], in which 
each xi is given degree 1, the action of the Steenrod algebra is completely determined 
by the unstable condition and the Cartan formulae. More concretely, we have

Pi(vj) =
(
j

i 

)
vj+i(q−1),

for any linear polynomial v. Here the binomial coefficient is taken modulo p. Thus, if j
is a q-power, then Pi(vj) 
= 0 iff i = 0 (in which case P0 is the identity operator) or 
i = j (in which case Pi(vi) = vqi is the Frobenius operator). It is convenient to make 
the convention that Pk = 0 if k < 0.

The Steenrod algebra action and the group G action on S commute. Moreover, it is 
evident that the Frobenius ideal Im is stable under the action of the Steenrod operations. 
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Consequently, the quotient Qm = S/Im inherits the structure of an A-module. It follows 
that each Steenrod reduced power Pi induces a well-defined endomorphism of QG

m. In 
other words, the subspace of invariants QG

m is closed under the action of the Steenrod 
algebra, and therefore forms an A-module.

The proof of Theorem 1.12 uses several lemmas. We begin with a general formula 
describing how the Steenrod operations interact with the delta operator.

Lemma 8.3. If f is a polynomial which is G1-invariant in the first variable, then for any 
k ≥ 0, the following holds in S:

Pk(δ2f) + Q2,1Pk−q(δ2f) + Q2,0Pk−q−1(δ2f) =

δ2(Q1,0Pk−1f) + δ2(Pkf) + δ2;m+1(Q1,0Pk−1−qmf) + δ2;m+1(Pk−qmf).

Proof. The condition imposed on f assures that δ2(f) as well as the other terms in this 
lemma are polynomial. The equation above is then obtained by applying the Cartan 
formula for the product L2δ2(f) and then dividing both sides by L2. Note that PqL2 =
Q2,1L2, Pq+1L2 = Q2,0L2 and PkL2 = 0 for all other k ≥ 1. �
Corollary 8.4. F2,1 is a submodule of Qm(2)G over the Steenrod algebra.

Proof. We must show that for each 0 ≤ s < [m]q, Pk(δ2Qs
1,0) ∈ F2,1 for all k > 0. If 

k ≥ qm, the degree of Pk(δ2Qs
1,0) is at least

qm(q − 1) + qm − q + s(q − 1) ≥ 2(qm − 1).

So we can assume that k < qm. In this case, when we apply the formula of Lemma 8.3
for f = Qa

1,0, the last two summands on the right-hand side vanish. Thus we have an 
equality in S:

Pk(δ2Qs
1,0) + Q2,1Pk−q(δ2Qs

1,0) + Q2,0Pk−q−1(δ2Qs
1,0)

= δ2(Q1,0Pk−1Qs
1,0) + δ2(PkQs

1,0). (8.1)

Both summands on the right-hand side are evidently of the form δ2(Qs
1,0). Now we can 

proceed by induction on k using the above formula and the calculation in Proposition 2.7
when working in Qm(2). �

Note that F2,0 is spanned by the top class xqm−1
1 xqm−1

2 , and F2,2 = Qm(2)G. Both 
are evidently A-submodules of Qm(2)G.

Proposition 8.5. F3,1 is a submodule of Qm(3)G over the Steenrod algebra.
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Proof. We need to show that for each k ≥ 1 and 0 ≤ a < [m]q, Pk(δ2
2Q

s
1,0) is in the span 

of δ3
1(1) and δ2

2(Δm
1 ). Note that δ3

1(1) spans the one-dimensional space of Qm(3)G in the 
top degree 3(qm − 1).

First of all, if k ≥ qm, then the degree of Pk(δ2
2Q

s
1,0), which is qm(q − 1) + 2(qm −

q) + s(q − 1) is at least 3(qm − 1) unless q = 2 and k = 2m, s = 0. In this range, Qm(3)
is either spanned by δ3

3(1) or zero.
If q = 2, k = 2m, s = 0, then P2m(δ2

2(1)) is in degree 3(2m − 1) − 1. We claim that 
there is no G-invariant polynomial in this degree. Indeed, the only non-zero symmetric 
polynomial in this degree is

x2m−1
1 x2m−1

2 x2m−2
3 + x2m−1

1 x2m−2
2 x2m−1

3 + x2m−2
1 x2m−1

2 x2m−2
3 .

By direct inspection, this polynomial is not invariant under the action of the operation 
mapping x1 �→ x1 + x2 and fixes x2, x3.

Now let us consider the case k < qm. By Lemma 8.3, we have the following equality 
in S:

Pk(δ2f) + Q2,1Pk−q(δ2f) + Q2,0Pk−q−1(δ2f) = δ2(Q1,0Pk−1f) + δ2(Pkf) (8.2)

for all polynomial f which is GL1-invariant in the first variable. Applying this for f =
Qs

1,0, it follows by induction on k that for 0 ≤ k < qm, Pk(δ2Qs
1,0) is a linear combination 

of polynomials of the form

Qa
2,1Q

b
2,0δ2(Qc

1,0).

Now applying (8.2) again but for f = δ2(Qs
1,0), we get

Pk(δ2
2(Qs

1,0)) + Q2,1Pk−q(δ2
2(Qs

1,0)) + Q2,0Pk−q−1(δ2
2(Qs

1,0))

= δ2(Q1,0Pk−1δ2(Qs
1,0)) + δ2(Pkδ2(Qs

1,0)). (8.3)

The right-hand side is then a sum of polynomials of the following forms

• δ2(Q1,0Q
a
2,1Q

b
2,0δ2(Qc

1,0)), or
• δ2(Qa

2,1Q
b
2,0δ2(Qc

1,0)).

Up to this point, we have been working in S. Now we consider the situation in Qm(3). 
From Lemma 7.2, we see that this sum belongs to the subspace of Qm(3) spanned by 
polynomials of the forms

• δ2
2(Qa

1,0), or
• xqm−1

1 xqm−1
2 x

a(q−1)
3 .
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Both sides of Equation (8.3) now are P (2, 1)-invariant. Take the transfer from P (2, 1) to 
G. We have Pi(δ2

2(Qs
1,0)) is G-invariant in Qm(3) and

TrGP (2,1)(Q2,1) = TrGP (2,1)(Q2,0) = TrGP (2,1)(x
qm−1
1 xqm−1

2 x
a(q−1))
3 ) = 0.

The first two terms vanish in S for degree reasons: there are no genuine G-invariants in 
degrees q2−q and q2−1. The third vanishes in Qm(3) because if xqm−1

1 xqm−1
2 x

a(q−1)
3 is a 

nontrivial summand of a G-invariant polynomial in Qm(3), then it is a P (1, 2)-invariant 
as well, but from Remark 6.1, this can only happen at the top degree.

It follows that Pk(δ2
2(Qs

1,0)) must be a scalar multiple of some δ2
2(Qa

1,0), and thus 
belongs to F3,1. �

We now consider the interaction between the Steenrod powers and the operator δ3.

Lemma 8.6. If f is a polynomial which is G2-invariant in the first two variables, then 
for any k ≥ 0, the following holds in S:

Pk(δ3f) + Q3,2Pk−q2
(δ3f) + Q3,1Pk−q2−q(δ3f) + Q3,0Pk−q2−q−1(δ3f) =

δ3

(
Pk(f) + Q2,1Pk−q(f) + Q2,0Pk−q−1(f)

)
+ δ3;m+1

(
Pk−qm(f) + Q2,1Pk−qm−q(f) + Q2,0Pk−qm−q−1(f)

)
. 

Proof. The above equality is again an application of the Cartan formula to Pk(L3δ3f), 
using the formulae for the action of the Steenrod powers on L2 given in the proof of 
Lemma 8.3, and similar formulae for these actions on L3: Pq2

L3 = Q3,2L3, Pq2+qL3 =
Q3,1L3, Pq2+q+1L3 = Q3,0L3 and PkL3 = 0 for all other k ≥ 1. �

The next lemma discusses how to deal with the last term in the above formula.

Lemma 8.7. If h ∈ D2, then the following holds in Qm,

δ3;m+1(h) =

⎧⎪⎪⎨⎪⎪⎩
0 if q > 3 or q = 3 and deg(h) > 0;
δ3;m(Qqm−1

2,1 ) if q = 3 and h = 1;
∈ Span{δ2

2;m(Δm
1 ), δ3

1;m(1)} if q = 2.

Proof. Recall from the fundamental equation that Xq3 −Q3,2X
q2 +Q3,1X

q−Q3,0X = 0
if X is in the span of x1, x2, x3. It follows that

xqm+1

i −Qqm−2

3,2 xqm

i + Qqm−2

3,1 xqm−1

i −Qqm−2

3,0 xqm−2

i = 0, 1 ≤ i ≤ 3,

and we obtain the following identity in S relating δ3 for various m:
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δ3;m+1(h) −Qqm−2

3,2 δ3;m(h) + Qqm−2

3,1 δ3;m−1(h) −Qqm−2

3,0 δ3;m−2(h) = 0.

Note that the degree of δ3;m+1(h) equals qm+1 − q2 + deg(h). If q > 3, this is strictly 
greater than 3(qm − 1), and we can conclude immediately that δ3;m+1(h) = 0 in Qm(3).

Consider now the case q = 3. Observe that, by direct computation, Q3,0 = Q3,1 = 0, 
Q3,2 = (x1x2x3)3

2−31 in Q2(3). Hence Qqm−2

3,1 = Qqm−2

3,0 = 0 in Qm(3) and the above 
equation becomes

δ3;m+1(h) = Qqm−2

3,2 δ3;m(h) = (x1x2x3)3
m−3m−1

δ3;m(h) in Qm(3). (8.4)

On the other hand, for degree reasons, we must have deg(h) ≤ 3(3m−1)−(3m+1−32) = 6. 
In this range, there are (up to a scalar) only two Dickson polynomials, namely h = 1 or 
h = Q2,1. If h = 1, then from Proposition 2.7, we have immediately

δ3;m+1(1) = Q3m−2

3,2 δ3;m(1) = δ3;m(Q3m−1

2,1 ).

If h = Q2,1, we prove by induction on m ≥ 2 that

δ3;m+1(Q2,1) = 0 in Qm(3).

Indeed, the base case can be checked directly since δ3;3(Q2,1) = Q3,1 in S, and the 
induction step follows immediately from Equation (8.4).

The next and final case is q = 2. Using the identity

x2m+1

1 = x2m

1 (x2m

1 + x2m

2 + x2m

3 ) − x2m

1 (x2m

2 + x2m

3 ),

and similarly for x2m+1

2 and x2m+1

3 , we see that δ3;m+1(h) equals in Qm(3) to

1 
L3

∣∣∣∣ x1 x2 x3
x2
1 x2

2 x2
3

x2m
1 h(x2,x3)(x2m

2 +x2m
3 ) x2m

2 h(x1,x3)(x2m
1 +x2m

3 ) x2m
3 h(x1,x2)(x2m

1 +x2m
2 )

∣∣∣∣ .
It is straightforward to verify the following equality in S:

x2m

1 + x2m

2 = Q2,1δ2;m(1) − δ2;m(Q2
1,0).

We then obtain an equality in Qm(3):

δ3;m+1(h) = δ3;m(Q2,1hδ2;m(1)) − δ3;m(hδ2;m(Q2
1,0)).

The conclusion follows from Corollary 7.3. �
Remark 8.8. With a little more work, using 7.2, it can be shown that when q = 2, then 
for h ∈ D2, we have the following explicit formula for δ3;m+1(h) in Qm(3):
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δ3;m+1(h) =
{

0 if h is a multiple of Q2,0;
δ2
2;m(Q2s

1,0) if h = Qs
2,1, s ≥ 0.

We leave the details for the interested reader.

Now we can finish the proof of Theorem 1.12. It remains to show that F3,2 is an 
A-submodule of Qm(3)G. From Lemma 8.7, we see that if f ∈ D2, then

Pk(δ3f) + Q3,2Pk−q2
(δ3f) + Q3,1Pk−q2−q(δ3f) + Q3,0Pk−q2−q−1(δ3f) ∈ F3,2.

We can proceed by induction. If Pi(δ3f) ∈ F3,2 for all i < k, then Q3,jPi(δ3f) also 
belongs to F3,2 by Proposition 2.7. It follows that Pk(δ3f) also belongs to F3,2 and the 
proof is complete.
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