

VIETNAM UNION OF SCIENCE AND TECHNOLOGY ASSOCIATIONS
HANOI UNIVERSITY OF INDUSTRY

PROCEEDINGS
**of the 18th National Conference on Fundamental
and Applied Information Technology Research**
(FAIR'2025)

HA NOI
August 21-22, 2025

PUBLISHING HOUSE FOR SCIENCE AND TECHNOLOGY

EDITORIAL BOARD

- Prof. Dr .Vu Duc Thi - Vietnam National University
- Prof. Dr. Dang Quang A - Vietnam Academy of Science and Technology
- Assoc. Dr. Tran Van Lang - Vietnam Academy of Science and Technology
- Dr. Le Quang Minh - Vietnam National University
- M.Sc. Phan Thi Que Anh - Science and Technology Publishing House

OPENING REMARKS

Fundamental And Applied IT Research (referred to as FAIR) is organized to contribute to promoting fundamental and applied research in Information Technology in Vietnam. This conference is under the chairmanship of the Vietnam Union of Science and Technology Associations, in collaboration with the Vietnam Academy of Science and Technology, Vietnam National University, Hanoi, and leading scientific institutions and researchers from research institutes and universities nationwide.

In 2025, the Conference Steering Committee, in partnership with the Hanoi University of Industry, organized the 18th National Scientific Conference (FAIR'2025) with the theme “Digital Transformation and Future Trends” on August 21–22, 2025, in Hanoi.

This conference serves as a forum for researchers in the field of Information Technology (IT), particularly faculty members from universities and research institutes across the country, to present their latest findings and exchange experiences in IT research and applications.

Currently, Vietnam is advancing its scientific and technological development, innovation, and digital transformation to become a high-income, developed nation. In this process, Information Technology, particularly Artificial Intelligence and communications plays a crucial role. We are building an economy based on high technology, with Vietnam actively undergoing digital transformation across all sectors. This process is unfolding dynamically and vigorously. With the theme “Digital Transformation and Future Trends”, the conference acknowledges the substantial benefits of AI and digital transformation. We recognize that data has become an invaluable resource, yet the world is increasingly flooded with fake data and misinformation, largely generated by AI. As the IT community, we must actively engage in developing measures to mitigate these negative impacts, safeguarding users and ensuring societal safety.

The conference received over 170 submitted scientific reports addressing all current issues in Information Technology and Communications. The Program Committee conducted rigorous peer review and selection, accepting 112 papers for presentation in the conference's specialized sessions, 107 of which were selected for inclusion in the Conference Proceedings.

This year, the conference also hosted the FAIR PhD Forum 2025, attracting numerous doctoral candidates, graduate students, and young researchers. The Program Committee also selected the Best Paper Award for both research groups and young authors.

On behalf of the Organizing Committee and Program Committee, we extend our sincere gratitude to all authors who submitted their work to the conference and to the scientists who provided objective and valuable reviews of the submitted papers. We express our appreciation to the scientists who chaired the sessions in the specialized sessions and to all colleagues who participated in discussions. We are especially grateful to the Publishing House for Science and Technology, Vietnam Academy of Science and Technology, for their support in publishing the Conference Proceedings.

Finally, we extend our deepest gratitude to the Vietnam Union of Science and Technology Associations and the Hanoi University of Industry, the host institution for their significant efforts and time in organizing FAIR'2025. We also thank all sponsors whose multifaceted support and financial contributions were instrumental in ensuring the success of this conference.

EDITORIAL BOARD

STEERING COMMITTEE

Prof. Academician. Dang Vu Minh	Vietnam Union of Science and Technology Associations
DSc. Phan Xuan Dung	Vietnam Union of Science and Technology Associations
Prof. Dr. Vu Duc Thi	Vietnam National University, Hanoi
Prof. Dr. Dang Quang A	Vietnam Academy of Science and Technology
Prof. DSc. Nguyen Khoa Son	Vietnam Academy of Science and Technology
Prof. DSc. Pham The Long	Military Technical Academy
Assoc. Prof. Dr. Le Manh Thanh	Hue University
Assoc. Prof. Dr. Tran Van Lang	Vietnam Academy of Science and Technology
Prof. Dr. Nguyen Thanh Thuy	Vietnam National University, Hanoi
Assoc. Prof. Dr. Tran Dinh Khang	Hanoi University of Science and Technology
Prof. Dr. Tu Minh Phuong	Posts and Telecommunications Institute of Technology

ORGANIZING COMMITTEE

Chairman:

Prof. Dr. Vu Duc Thi

Vietnam National University, Hanoi

Vice Chairman:

Dr. Kieu Xuan Thuc

Hanoi University of Industry

Members:

Prof. Dr. Dang Quang A
Assoc. Prof. Dr. Le Manh Thanh
Assoc. Prof. Dr. Tran Van Lang
Assoc. Prof. Dr. Tran Dinh Khang
Prof. Dr. Tran Xuan Tu
Prof. Dr. Tu Minh Phuong
Dr. Le Quang Minh

Vietnam Academy of Science and Technology
Hue University
Vietnam Academy of Science and Technology
Hanoi University of Science and Technology
Vietnam National University, Hanoi
Posts and Telecommunications Institute of Technology
Vietnam National University, Hanoi

LOCAL ORGANIZING COMMITTEE

Chairman:

Dr. Kieu Xuan Thuc

Hanoi University of Industry

Vice Chairman:

Assoc. Prof. Dr. Pham Van Dong

Hanoi University of Industry

Members:

Dr. Nguyen Van Thien
Assoc. Prof. Dr. Nguyen Hong Son
Dr. Dang Trong Hop
Dr. Nguyen Thi Dieu Linh
Assoc. Prof. Dr. Nguyen Kim Son
Dr. Tran Tien Dung
Assoc. Prof. Dr. Hoang Trong Minh
Dr. Ngo Duc Thien

Hanoi University of Industry

CONFERENCE SECRETARIAT

Chairman:

Dr. Nguyen Thi Dieu Linh

Hanoi University of Industry

Vice Chairman:

Dr. Bui Tien Son

Hanoi University of Industry

Members:

Dr. Luong Thi Hong Lan
Dr. Tran Hung Cuong
Dr. Nguyen Ba Nghien

Hanoi University of Industry
Hanoi University of Industry
Hanoi University of Industry

PROGRAM CHAIR

Core Members of the Program Committee

Chairman:

Assoc. Prof. Dr. Tran Van Lang

Vice Chairman:

Assoc. Prof. Dr. Le Manh Thanh

Committee Member:

Assoc. Prof. Dr. Tran Dinh Khang

Prof. Dr. Tu Minh Phuong

Assoc. Prof. Dr. Tran Dang Hung

Prof. Dr. Dang Quang A

Assoc. Prof. Dr. Dinh Dien

Dr. Le Quang Minh

Assoc. Prof. Dr. Do Thanh Nghi

Assoc. Prof. Dr. Do Nang Toan

Assoc. Prof. Dr. Le Hoang Son

PROGRAM COMMITTEE

Members of the Program Committee

Assoc. Prof. Dr. Nguyen Viet Anh

Institute of Information Technology, VAST

Assoc. Prof. Dr. Pham The Anh

Hong Duc University

Assoc. Prof. Dr. Huynh Thi Thanh Binh

Hanoi University of Science and Technology

Assoc. Prof. Dr. Nguyen Thanh Binh

Vietnam - Korea University of Information and
Communication Technology

Assoc. Prof. Dr. Phan Anh Cang

Vinh Long University Of Technology Education

Assoc. Prof. Dr. Pham Van Cuong

Posts and Telecommunications Institute of

Assoc. Prof. Dr. Nguyen Duc Dung

Technology

Dr. Cao Tien Dung

Institute of Information Technology, VAST

Assoc. Prof. Dr. Le Ba Dung

Tan Tao University

Assoc. Prof. Dr. Hoang Van Dung

Institute of Information Technology, VAST

Assoc. Prof. Dr. Tran Quang Duc

HCMC University of Technology and Education

Dr. Nguyen Huy Duc

Hanoi University of Science and Technology

Assoc. Prof. Dr. Nguyen Long Giang

Thuyloi University

Assoc. Prof. Dr. Pham Thanh Giang

Institute of Information Technology, VAST

Dr. Nguyen Hoang Ha

Institute of Information Technology, VAST

Assoc. Prof. Dr. Tran Manh Ha

Hue University of Sciences

Dr. Pham Van Ha

Viet Nam National University Ho Chi Minh City

Assoc. Prof. Dr. Duong Van Hai

Hanoi University of Industry

Dr. Huynh Phuoc Hai

Dalat University

Assoc. Prof. Dr. Nguyen Duy Ham

An Giang University

Dr. Nguyen Thi Hong Hanh

Saigon University

Dr. Nguyen Cong Hao

Can Tho University of Technology

Dr. Lam Thanh Hien

Information Technology Center, HueUNI

Dr. Duong Van Hieu

Lac Hong University

Prof. Dr. Huynh Xuan Hiep

Tien Giang University

Assoc. Prof. Dr. Vo Dinh Hieu

College of Information and Communication

Technology, CTU

University of Engineering and Technology

Assoc. Prof. Dr. Huynh Trung Hieu	Industrial University of Ho Chi Minh City College of Information and Communication Technology, CTU
Dr. Nguyen Huu Hoa	An Giang University
Dr. Nguyen Van Hoa	HCMC University of Technology
Assoc. Prof. Dr. Tran Van Hoai	VNU University of Science
Dr. Nguyen Thi Minh Huyen	Thuyloi University
Dr. Dinh Phu Hung	UDN University of Technology and Education
Assoc. Prof. Dr. Vo Trung Hung	Thuyloi University
Assoc. Prof. Dr. Le Van Hung	HCMC University of Education
Dr. Nguyen Viet Hung	Tra Vinh University
Dr. Vo Phuoc Hung	College of Information and Communication Technology, CTU
Assoc. Prof. Dr. Pham Nguyen Khang	College of Information and Communication Technology, CTU
Dr. Lam Nhut Khang	Nam Can Tho University
Dr. Ngo Ho Anh Khoi	Da Nang University of Science and Technology
Assoc. Prof. Dr. Nguyen Tan Khoi	Thang Long University
Dr. Vu Nhu Lan	Military Technical Academy
Assoc. Prof. Dr. Ngo Thanh Long	Hanoi Open University
Assoc. Prof. Dr. Duong Thang Long	People's Police University of Technology and Logistics
Assoc. Prof. Dr. Hoang Viet Long	Academy of Cryptography Techniques
Dr. Tran Thi Luong	University of Information Technology, VNUHCM
Assoc. Prof. Dr. Vu Duc Lung	Bac Lieu University
Dr. Ngo Duc Luu	Posts and Telecommunications Institute of Technology
Assoc. Prof. Dr. Hoang Trong Minh	Government Cipher Committee
Prof. Dr. Nguyen Hieu Minh	Electric Power University
Assoc. Prof. Dr. Nguyen Ha Nam	Vietnam - Korea University of Information and Communication Technology
Dr. Le Thi Nga	University of Information Technology, VNUHCM
Assoc. Prof. Dr. Nguyen Luu Thuy Ngan	Can Tho University
Assoc. Prof. Dr. Nguyen Thai Nghe	An Giang University
Assoc. Prof. Dr. Doan Thanh Nghi	Thai Nguyen University of Information and Communication Technology
Assoc. Prof. Dr. Phung Trung Nghia	Institute of Information Technology, VAST
Dr. Tran Duc Nghia	VNU-HCM University of Science
Assoc. Prof. Dr. Ly Quoc Ngoc	Dong Thap University
Dr. Luong Thai Ngoc	Industrial University of Ho Chi Minh City
Assoc. Prof. Dr. Huynh Tuong Nguyen	Hue University
Assoc. Prof. Dr. Vo Viet Minh Nhat	Duy Tan University
Assoc. Prof. Dr. Nguyen Gia Nhu	Vietnam - Korea University of Information and Communication Technology
Assoc. Prof. Dr. Huynh Cong Phap	University of Information Technology, VNUHCM
Prof. Dr. Do Phuc	Ton Duc Thang University
Dr. Tran Thanh Phuoc	VNU University of Science
Assoc. Prof. Dr. Le Hong Phuong	Hue University of Sciences
Assoc. Prof. Dr. Hoang Quang	Can Tho University of Technology
Dr. Truong Minh Nhat Quang	CMC University
Assoc. Prof. Dr. Nguyen Huu Quynh	University of Science and Technology of Hanoi
Assoc. Prof. Dr. Tran Giang Son	Tra Vinh University
Assoc. Prof. Dr. Nguyen Thai Son	Hoa Sen University
Dr. Trang Hong Son	Institute of Information Technology, VAST
Assoc. Prof. Dr. Ngo Quoc Tao	

Dr. Nguyen Van Tao	Thai Nguyen University of Information and Communication Technology
Dr. Tran Minh Tan	Ministry of Information and Communications
Assoc. Prof. Dr. Le Hoang Thai	VNU-HCM University of Science
Dr. Ngo Duc Thanh	University of Information Technology, VNUHCM
Assoc. Prof. Dr. Trinh Dinh Thang	Hanoi Pedagogical University 2
Dr. Pham Thi Thu Thuy	Nha Trang University
Dr. Nguyen Anh Tuan	HCMC University of Foreign Languages - Information Technology
Assoc. Prof. Dr. Nguyen Thanh Tung	CMC University
Prof. Dr. Tran Xuan Tu	Information Technology Institute, VNUHN
Assoc. Prof. Dr. Vo Thanh Tu	Hue University of Sciences
Dr. Thai Minh Tuan	College of Information and Communication Technology, CTU
Dr. Dao Van Tuyet	Saigon International University
Dr. Nguyen Tran Quoc Vinh	University of Danang, University of Science and Education
Prof. Dr. Le Sy Vinh	University of Engineering and Technology
Dr. Le Van Vinh	HCMC University of Technology and Education
Assoc. Prof. Dr. Vu Viet Vu	CMC University

DOCTORAL CONSORTIUM CHAIR

Assoc. Prof. Dr. Huynh Thi Thanh Binh
 Assoc. Prof. Dr. Le Hoang Son
 Assoc. Prof. Dr. Do Nang Toan
 Assoc. Prof. Dr. Ngo Quoc Tao
 Assoc. Prof. Dr. Dinh Dien
 Prof. Dr. Do Phuc
 Prof. Dr. Huynh Xuan Hiep
 Assoc. Prof. Dr. Vo Trung Hung

TECHNICAL AND PUBLICITY CHAIR

Dr. Le Quang Minh
 M.Sc. Phan Thi Que Anh
 B.A. Le Thi Thien Huong
 Dr. Trang Hong Son
 M.Sc. Phan Manh Thuong

CONTENTS

A Distraction Detection Technique Based On Facial Behavior	8
<i>Lam Thanh Hien, Pham Thi Duyen, Vuong Thi Diem Quynh, Ha Manh Toan, Huynh Cao Tuan, Do Nang Toan</i>	
A Fusion Model of Session-Based Graph Neural Network and Matrix Factorization for Sequential Recommendation Systems	13
<i>Mai Thi Cam-Nhung, Nguyen Thai-Nghe</i>	
A Hybrid CNN-LSTM-Transformer Model for Improving Water Dissolved Oxygen Predictions	19
<i>Pham Thi Thu Hieu, Bui Tuan Minh, Nguyen Dinh Han</i>	
A Multi-Objective GA-LSTM Framework for Simultaneous Optimization of Predictive Accuracy and Computational Efficiency in Bitcoin Price Forecasting	26
<i>Hoa Tran Thai, Thanh Manh Le, Nguyen Dang Binh, Nguyen Thanh Nam, Cuong H. Nguyen-Dinh</i>	
A Multimodal Retrieval-Augmented Generation Pipeline for Empathetic Psychological Counseling Chatbots	32
<i>Ngoc Tram Huynh Thi, Minh Dzuy Pham, Duc Dat Pham, Tan Duy Le, Kha-Tu Huynh</i>	
A Multitask, Multilingual Prompting Vision Language Model for Vietnamese Language	38
<i>Vu Dinh Anh, Tran Giang Son, Nghiem Thi Phuong</i>	
A Novel Two Factor Linguistic Time Series Models	45
<i>Mai Van Linh, Dao Van Tuyet, Pham Dinh Phong</i>	
A privacy-enhanced framework for brain MRI classification via federated learning and secure multi-party computation	53
<i>Vu Thi Van, Nguyen Thanh An, Nguyen Thi Hong Ha</i>	
A proposed architecture of AI application for virtual conference secretary	60
<i>Mac Thi Quynh Nhu, Vu Hoang Phuc, Nguyen Duc Son, Nguyen The Hung, Do Van Khanh, Nguyen Trung Dung, Pham Thi Bich Van</i>	
Addressing the Cold-Start Problem in E-Commerce via Interpretable Multi-Modal Learning Architectures	67
<i>Khanh Quoc Bui, Yen Chu Bao Bui</i>	
AdmisBot: Towards Smarter University Admissions Support	74
<i>Tran Hoang Nhat, Nguyen Do Anh Nhu, Nguyen Thi Sang, Nguyen Thi Uyen Nhu</i>	
Adversarial Vulnerabilities in Federated Time Series Forecasting: A Comprehensive Analysis	81
<i>Khanh Nguyen Quoc, Duc Tran Quang, Trang Trinh Huyen, Anh Le Viet</i>	
An Approach Using Retrieval-Augmented Generation and Applying Question Answering to Finance News Dataset	88
<i>Quan Xuan Son, Nguyen Tien Khoi, Luong Tung Bach, Dang Vu Minh Duc, Tran Lam Quan, Tran Hong Viet</i>	
An Enhanced Model for Queue Management Prediction at Internet Routers: DN-dCoD	93
<i>Vuong Xuan Chi, Nguyen Kim Quoc, Phan Thi Tuoi</i>	
An Evaluation of Deep Learning Models Explainability on Rice Leaf Disease Datasets using Eigen-CAM	100
<i>Luyt-Da Quach, Chi-Ngon Nguyen, Nguyen Thai-Nghe</i>	
An Explainable AI-Based Approach for Blood Cell Detection and Classification	107
<i>Nguyen Ngoc Hoang Quyen, Phan Thuong Cang, Phan Anh Cang</i>	

An Extractive Summarization Method for Vietnamese Administrative Documents Combining PhoBERT-v2 and Legal Features	114
<i>Dinh Anh Khoa, Dinh Thi Thu Huong, Cu Trong Tuan</i>	
An Integrated Framework Of Bayesian Networks And Fuzzy Systems In Earned Value Management For Information Technology Project Control	120
<i>Nguyen Ngoc Tuan</i>	
An Integrated YOLO and Confident Learning Model for Enhancing Object Detection in RoboCon126	126
<i>Dang Trong Hop, Luong Thi Hong Lan, Than Ngoc Thien</i>	
An OOV-Aware Evaluation Framework for Source Code Vulnerability Detection Models	133
<i>Nin Ho Le Viet, Tuan Nguyen Kim, Chieu Ta Quang, Son Doan Trung</i>	
Analytical Model of RAN/MEC-NFV Integrated in 5G Networks with uRLLC Traffic	140
<i>Hoa Ly Cuong, Dang Thanh Chuong, Vo Viet Minh Nhat</i>	
Anomaly Classification in Sewer Systems From Inspection Videos Using Transformer Models	147
<i>Viet-Chau Tran, Thi-Cam-Tien Le, Xuan-Hien Pham, Minh-Thu Tran-Nguyen</i>	
Application of ChatGPT and RAG in Regional Specialty E-Commerce	152
<i>Thi Thu Ha Truong, Thanh Dat Ly, Duy Phuong Nguyen, Quang Hung Nguyen</i>	
Applied GIS Technology in BTS Planning: A Case Study of Vietnam Posts and Telecommunications in Quang Tri, Vietnam	158
<i>Le Duc Luu Quang, Le Quoc Hai, Huynh Trieu Vy</i>	
Applying Federated Learning For Encrypted Traffic Classification In Multi-domain Software Defined Network	165
<i>Huy-Hieu Nguyen, Quang-Duy Hoang, Hoang-Hai Dang, Hoang-Viet Tran, Nam-Thanh Hoang, Hai-Anh Tran</i>	
Automatic Meta-path Selection For Drug- Disease Association Prediction	172
<i>Thi Huong Lan Nguyen, Thi Thanh Huyen Nguyen, Dang Hung Tran</i>	
Automatic Presentation Generation using Large Language Model and Vision Language Model	177
<i>Trung Kien Nguyen, Minh Pham Van, Minh Quang Nguyen, Thanh Tuyen Vu, Hoang Long Dang</i>	
Automatic WordNet-Based Semantic Tagging for Vietnamese Nouns Using Large Language Models and Cross-Lingual Semantic Embeddings	183
<i>Do Quoc Tri, Phan Van Ba Hai, Phan Thi My Trang, Dinh Dien</i>	
Autonomous Mall Surveillance Vehicle	188
<i>Nguyen Dang An, Tran Phuong Nhi, Nguyen Van Thi, Nguyen Xuan Duc, Dang Hoang Long</i>	
BCORES: A Specialized IT Conference Recommendation System Leveraging HNSW And Borda Count	194
<i>Thanh-Ma, Tien-Dao Luu, Ngoc-Thai Le, Tri-Phuc Nguyen, Viet Chau Tran</i>	
BoMGene: Integrating BorutamRMR feature selection for enhanced Gene expression classification	201
<i>Bich-Chung Phan, Thanh Ma, Huu-Hoa Nguyen, Thanh-Nghi Do</i>	
Building an Automatic Question Answering System for Ceramics using PhoBERT and RAG	208
<i>Trong Nguyen Van, Phuoc Tran, Khoi Tran</i>	
Colorectal Polyp Segmentation in Colonoscopy Images Using DeepLabV3+	213
<i>Tu Cam Thi Tran, Tran Van Dao, Nguyen Van Hieu, Le Thi Hoang Yen, Hiep Xuan Huynh</i>	
Combining Densenet121Efficientnetb3 and Focal Loss for early detection of Diabetic Retinopathy	220
<i>Duc Hoang Vo</i>	

Comprehensive Analysis of AI-Synthetic Image Detection Architectures	224
<i>Thien-Hoa Hoang-Don, Tien-Dat Nguyen, Nam-Anh Nguyen, Trung-Nghia Le</i>	
Decoding The Metrics: A 5-Year Retrospective on Evaluation AI-Generated Python Code	231
<i>Hue Luong Thi Minh, Vinh Nguyen The, Khanh Nguyen Huu, Son Nguyen Kim, Viet Nguyen Van</i>	
Deep Learning Ensemble with ESD-Net in Breast Cancer Classification on Mammogram	237
<i>Ho Dat Tran, Thuong Cang Phan, Vinh Phong Nguyen, Anh Cang Phan</i>	
Detecting Counterfeit Agricultural Products: An Approach Based on Group Equivariant Few-Shot Learning	244
<i>Dat Tran-Anh, Thang Vu Ba, Thien Le Quang, Tao Ngo Quoc, Quynh Nguyen Huu</i>	
Detecting Image Taking Behaviors To Prevent Disclosure Of State Secrets	250
<i>Tran Nghi Phu, Ngo Tan Dat, Nguyen Duc Tri</i>	
Detecting Vietnamese Multi-label Reactionary Articles Using the Combination of Text and Image	256
<i>Ngoc An Le, Xuan Dau Hoang, Thi Thu Trang Ninh, Huu Dung Le</i>	
Developing a CNN-Based Stardist Tool for Detecting Bubbles in Air-Water Bubbly Two-Phase Flow Images	263
<i>Nguyen Tat Thang</i>	
Developing a Knowledge Graph for The Image Captioning Problem	268
<i>Nguyen Thi Dinh, Tam Khoi Tran, Thanh Manh Le</i>	
Developing Linear Programming-Based Pipeline Scheduling Optimization Model Used to Big Data in Livestream	275
<i>Dang Van Pham, Vinh Cong Phan</i>	
Development of a Seasonal Crop Recommendation System Using Semantic Web and KNN Algorithm	282
<i>Anh Tuan Ly, Thi Minh Hoan Tran</i>	
Drug Repositioning by LightGBM for Meta-Paths in Heterogeneous Networks	289
<i>Hung Le Manh, Anh Dao Nam, Tho Dang Xuan</i>	
EN-U-SAMNET: An Ensemble Deep Learning Model For Gastrointestinal Organ Segmentation	296
<i>Phan Anh Cang, Ho Minh Quang</i>	
Enhanced Graphomer with Image Structural Encoding for Image Classification	302
<i>Thi Phuong Thao Nguyen, Huu Quynh Nguyen, Tho Thong Nguyen, Minh Huong Ngo, Thi Thu Hieu Pham</i>	
Enhancing Automated Penetration Testing Using Reasoning Large Language Model	308
<i>Dong Le, Anh Nguyen, Hung Nguyen, Duc Tran, Giang Nguyen, Van Tong</i>	
Enhancing Gas Sensing through Data Preprocessing and Deep Learning: Accurate Prediction of Ammonia Concentration from WO ₃ Sensor Signals	315
<i>Dao Sy Nhien, Do Quang Dat, Bui Thi Tuyet, Nguyen Thi Thu Ha, Hoang Cao Minh</i>	
Enhancing Network Access Security for Users on Embedded Devices	322
<i>Chuyen Nguyen Anh, Hang Dao Thi</i>	
Ensemble Learning Using Fuzzy Sugeno Integral for Brain Tumor Classification	328
<i>Phan Anh Cang, Ho Chan Khoa</i>	
Explainable AI for Alzheimer's Diagnosis: A Digital Transformation Approach in Healthcare	335
<i>Nguyen Khac Tuong, Phan Anh Cang</i>	

Exploiting Temporal Sentiment From Tripadvisor Platform To Enhance Time Series Forecasting Using MLP	342
<i>Ngo Van Son, Thai Thi Phuong, Nguyen Le Trung Thanh, Vo Viet Minh Nhat</i>	
Feature-Wise CNN-LSTM with Self-Attention for Short-Term Aeronautical Weather Forecasting	349
<i>Cong Thinh Luong, Nguyen Nang Hung Van, Phuc Hao Do</i>	
Finetuning Approach For Sino-Nm Text Recognition	355
<i>Kim-Phat Tran, Khanh-Duy Ho, Long Nguyen</i>	
Flexible Vietnamese Typing with Dual Keystrokes	360
<i>Le Phuoc Loc, Dao Van Tuyet, Nguyen Huu The, Ngo Hoang Huy, Ta Yen Thai, Hoang Xuan Trung, Can Duc Diep, Pham Dinh Phong, Nguyen Van Quyen</i>	
Fuzzy Deep Learning Model 3DMFV-Net Combined with XAI for Cardiac Structure Segmentation on 3D MRI Images	366
<i>Phan Anh-Cang, Nguyen Van-Hung, Nguyen Thi My-Nga</i>	
Graphsage In Skin Lesion Detection And Classification From Images	373
<i>Tu Cam Thi Tran, Anh Kim Nguyen, Hung Chi Ho, Nga Ngoc Nguyen, Hiep Xuan Huynh</i>	
Grouping Research Submissions by Topic for Peer-Reviewed Venus	380
<i>Tran Hong Diep, Tran Huu Hieu, Nguyen Tran Gia Khanh</i>	
Hallucination Detection Model in Generative Outputs of Large Language Models	387
<i>Nguyen Phuong Nam, Nguyen Gia Phuc, Le Thanh Tung, Nguyen Tien Huy</i>	
Hand Gesture Recognition by MIMO FMCW Radar using Binarized Neural Network	394
<i>Nguyen Van Khai, Tuan The Trinh, Minh-Huy Le, Xuanque Nguyen</i>	
HERBVIS: Herbal Formula Recognition through GNN and Image-based Ingredient Analysis	399
<i>Gia-Khuong Huynh, Truong-Thanh Ma, Nhut-Nam Ho, Thanh-Phuoc Le, Nguyen-Khang Pham, Thanh-Nghi Do</i>	
Image similarity measurement using machine learning: A novel approach for Content-based image retrieval	406
<i>Tran Van Khanh, Nguyen Ngoc Thuy, Le Manh Thanh</i>	
Image-based Product Recommendation System Using Graph Neural Networks	412
<i>Le Huynh Quoc Bao, Nguyen Minh Khiem, Tran Cong An, Nguyen Thai-Nghe</i>	
Improving Fuzzy Clustering Using Football Team Training Algorithm and Kepler Optimization for Classifying Respiratory Diseases: Influenza, COVID-19 and Pneumonia	419
<i>Nguyen The Huu, Dinh Nguyen Trong Nghia, Tran Dinh Hai Nguyen, Le Thi Nhu Quynh, Nguyen Dinh Duc, Huynh Thi Bich Ngoc</i>	
Improving Pneumonia Diagnosis through Convex Hull-based Lung Segmentation with R2U-Net	426
<i>Sy-Toan Le, Van-Thanh Vo, Manh-Thanh Le, Ngoc-Thuy Nguyen, Hoang-Ha Nguyen</i>	
Improving Survival Prediction of HIV Treatment Dropout with Group-Wise Self-Attention Network	431
<i>Pham Thanh Dat, Nguyen Van Duong, Tran Tan Thanh, Vu Tuan Anh, Nguyen Truong Thang</i>	
Improving Text-To-Image Retrieval By Integrating Clip With Query-Guided Cross-Modal Attention	438
<i>Tam Khoi Tran, Thanh The Van, Thanh Phuoc Tran, Nguyen Thi Dinh</i>	
Improving User Interest Matching On Social Networks Through Deep Learning And Statistical Text Representation Techniques	445
<i>Pham Thi Thu Thuy, Bui Chi Thanh, Tran Trong Hoa, Nguyen Hong Giang</i>	

Integrating Fuzzy Logic and Parallel Computing to Enhance the Performance of Recurrent Neural Networks in Dynamic Sequence Processing	451
<i>Dang Nhu Phu, Nguyen Kim Quoc, Pham Quoc Cuong</i>	
Integrating Smart Automatic Decision-Making Features into a Closed System: A Feasible and Cost-Effective Solution	457
<i>Hao Vu Le, Hieu Trung Huynh</i>	
Interactive Machine Learning for Real-Time Edge Detection in Point Clouds from 2D Gaussian Splatting	463
<i>Le Chi Thanh, Loic Barthe, Nicolas Mellado, Marcos Serrano, Nguyen Hoang Ha</i>	
Intergrated System and End-to-End Monitoring Alerting to Enable ProActive Management and Operational Support	470
<i>Thanh-Hai Pham, Thanh-Tung Tran, Trung-Tam Nguyen</i>	
Knowledge Forgetting in Language Models: A Neuron-Based Approach	477
<i>Le Hoang Thai, Vo Thanh Lam</i>	
Machine Learning Methods For Predicting Automobile Insurance Pricing	483
<i>Hoang Van Nhan, Trang Hong Son, Do Si Truong</i>	
Necessary and sufficient conditions for a split tournament graphs to have no disjoint cycle of different lengths	491
<i>Le Nhu Hien, Mai Thanh Hong, Vu Thi Tuyet Mai, Chu Thi Quygen, Tran Hung Cuong, Le Xuan Hung</i>	
One-vs-All Texture Image Classification Using EfficientNet and ConvNeXt	495
<i>Thanh Hung Tran</i>	
Optimizing the K-Anonymity Model Using a Hybrid Arctic Puffin Optimization and Artificial Rabbits Optimization to Enhance Data Utility Post-Anonymization	500
<i>Dinh Nguyen Trong Nghia, Le Hoang Minh Nhat, Bach Ngoc Vy, Phung Thi Ly, Nguyen The Huu</i>	
Outage Performance of Power Beacon Based Symbiotic Radio System With SWIPT	507
<i>Vu Duc Hiep, Dang The Hung, Nguyen Duy Chuong</i>	
PATE-ASS: A Novel Private Semi-Supervised Learning Framework from Unlabeled Data	515
<i>Anh Tu Tran, Tran Thi Hoa</i>	
Performance of Full-Duplex Relaying Wireless System With SWIPT Exploiting Fountain Codes	521
<i>Ngo Thanh Tung, Dang The Hung, Le Trong Trung, Ly Hong Quan</i>	
Performance of Power Beacon Based SWIPT Dual-Hop Relay System With Time Switching Protocol	528
<i>Le Trong Trung, Dang The Hung, Pham Van Tuan, Nguyen Nhat Trinh</i>	
Post-Processing Watermarking vs Direct Integration into Generative Models	535
<i>Dang Nguyen Huu Duc, Tran Viet Hung, Truong Le Vu</i>	
QR-IEE: A Q-Learning-Based Routing Protocol For MANET Using Exploitation Strategy Based On Neighbor Information	540
<i>Nguyen Quoc Cuong, Mai Cuong Tho, Vo Thanh Tu, Le Huu Binh</i>	
Research On Application Of Retrieval Augmented Generation For Building Chatbot In Financial Domain	546
<i>Nguyen Viet Tuan Anh, Do Thi Thanh Tam, Pham Khac Tiep, Nguyen Ngoc Khai, Tran Hong Viet</i>	
Research On Improving Resource Placement Algorithm For NFV Networks	553
<i>Vu Ngoc Hoa, Le Trong Vinh, Ngo Hai Anh</i>	

Research on the capability of traditional radar and quantum radar to detect small and micro UAVs	558
Trieu Le Hai, Linh Le Thi Trang, Thang Nguyen Toan	
Reversible Data Hiding in Dual-Image using Averaging Technique and Base-7 Digit Sequence Embedding Strategy	565
Hieu Cuong Nguyen, Thi Tuyet Nguyen, Minh Thai Pham, Van At Pham	
SATUN: Saliency-Guided Parameter-Space Unlearning for Generative Adversarial Networks	571
Le Hoang Thai, Nguyen Gia Hung, Tong Gia Huy, Tran Duc Thang	
Smart Wearable for Fall Detection using Inertial Sensing and Edge Machine Learning	578
Nguyen Tat Thang, Cao Viet Anh	
Solving a Fuzzy Linear Programming Problem with Bounded Fuzzy Variables	585
The Long Pham	
SSN-VF: A Majority Voting Ensemble Using Large Language Models for Sino-Nom Scene Text Recognition	591
Mai Khoi Le, Nguyen Khoa Luong, Minh Luan Nguyen, Bach Truong Giang Nguyen, Thi Cam Thi Le, Dien Dinh	
Stability Of Touchscreen Swipe Behavior: A Statistical Perspective From Real-World Data	597
Doan Khuyen Nguyen, Phuc Hau Nguyen, Dang Khoa Vo, Tuong Nguyen Huynh	
Survey of the Main Current Research Directions in the Dissemination and Prevention of Disinformation	603
Duc Thi Vu, Duc Nghia Vu, Nam Anh Nguyen-Ho	
Test Smell Prediction Via Automated Machine Learning	609
Huynh Ngoc Khoa, Dang Thien Binh, Nguyen Thanh Binh	
The Problem Of Mining Top-K Frequent Pattern Over Dynamic Quantitative Data Stream	615
Le Hoang Binh Nguyen, Bui Danh Huong, Nguyen Duy Ham, Nguyen Thi Hong Minh	
TOMATOLEAF-AHA: A Lightweight Model With Adaptive Hybrid Attention For Tomato Leaf Disease Classification	622
Hoang-Tu Vo, Nhon Nguyen Thien, Kheo Chau Mui, Phuc Pham Tien, Huan Lam Le	
Toward Orchestration in Smart Agriculture Monitoring: A System Architecture and Research Directions	628
Khanh Duy Truong, Tuong Tri Nguyen, Dang Tri Nguyen, Xuan Van Mai, Manh Thanh Le	
Traffic Sign Detection in Vietnam: An Experimental Study	632
Dung Nguyen, Van-Dung Hoang, Van-Tuong-Lan Le, Truong Doan, Nguyen-Thuy-Nhi Le, Hoai-Nam Dinh	
TraMedVi: The First Chinese Script To Vietnamese Dataset For Traditional Medicine Domain With Large Language Model Capability Evaluation	638
Uyen Phuc Bao Nguyen, Nhu Vo Quynh Pham, Long Hong Buu Nguyen, Dien Dinh	
Uncertainty-aware Deep Learning for Crack Detection Using Pulsed Eddy Current Testing	645
TungDuong Ngo, Quang Vuong Pham, Minhhuy Le	
Vid2Srs - From Video to Requirements: Leveraging Large Language Models for Automated Software Specification	650
Duy-Quang Tran, Anh-Tuan Mai, Minh-Triet Tran	
ViMeLeafID: A System for Identifying Medicinal Plants in Vietnam	657
Nguyen Tuan Kiet, Luong Thai Ngoc, Luu Hoang Trung, Nguyen Thi Uyen Nghi	
VMAR: Multi-modal Approach of Text and Audio Understanding for Vietnamese Music Author Recognition	663

Nguyen Tien Huy, Pham Van Nam, Nguyen Minh Long, Le Thanh Tung

Wavesegdiff: A diffusion-based model for liver cirrhosis segmentation using wavelet transform 669
Tran Dinh Toan, Nguyen Duc Toan, Le Minh Hung

Applying ε -MOEA to Optimize Stakeholder Financial Benefits In Flood Risk Management 675
Trinh Bao Ngoc, Do Thi Ngoc Anh, Dong Trung Anh, Vu Quoc Huy

Optimized YamNet Model for Early Detection of Emergency Situations in Smart Safety Systems 682
Trinh Bao Ngoc, Le Phuong Thao, Le Manh Toan, Nguyen Tien Thanh, Nguyen Nhat Trang, Luong Hong Duc

Traffic Sign Detection in Vietnam: An Experimental Study

Dung Nguyen

University of Sciences, Hue University

Hue City, Vietnam

nguyendung@hueuni.edu.vn

Van-Dung Hoang*

HCMC University of

Technology and Education

Ho Chi Minh City, Vietnam

dunghv@hcmute.edu.vn

Van-Tuong-Lan Le

Hue University

Hue City, Vietnam

lvtlan@hueuni.edu.vn

Truong Doan

University of Sciences, Hue University

Hue City, Vietnam

doan201203@gmail.com

Nguyen-Thuy-Nhi Le

University of Sciences, Hue University

Hue City, Vietnam

lntnhi.husc@hueuni.edu.vn

Hoai-Nam Dinh

DakLak Polytechnic College

DakLak City, Vietnam

phuongnamdl@yahoo.com

Abstract—Traffic Sign Recognition (TSR) is an important problem in the field of computer vision, particularly in the context of intelligent driving assistance and improving traffic safety. In this study, we apply YOLOv10—a novel real-time object detection architecture—to address the task of traffic sign recognition in Vietnam. The model was trained on a dataset of over 57,000 images, which were carefully preprocessed using sliding window and ROI cropping techniques to enhance the detection of small objects. Experimental results show that YOLOv10 achieved $mAP@0.5 = 88.2\%$, outperforming YOLOv8 and YOLOv5 under the same training conditions, while maintaining an average inference speed of 48 FPS on an RTX 3090 GPU. These findings demonstrate the practical effectiveness of YOLOv10 in intelligent driving assistance systems and smart traffic monitoring.

Index Terms—Traffic Sign Recognition (TSR), Computer Vision, Real-time Object Detection, YOLO

I. INTRODUCTION

In Vietnam, road transport plays a crucial role in the national transportation system, with the number of vehicles increasing rapidly. As of 2024, approximately 82 million vehicles, including cars and motorcycles, had been registered nationwide [1]. Alongside the socio-economic benefits, the current traffic situation also reveals many concerning issues, particularly frequent violations of traffic safety regulations and accidents caused by driver errors.

One of the common causes is drivers failing to recognize or ignoring traffic signs in time due to adverse environmental conditions (poor lighting, backlight, rain), obstructed or damaged signs, or driver distraction. Therefore, driver assistance systems, especially those enabling **real-time automatic traffic sign recognition**, are increasingly being emphasized to reduce risks and enhance vehicle safety.

The **Traffic Sign Recognition (TSR)** problem is a highly applicable task in computer vision, typically consisting of two main steps:

- **Detection:** Locating the position of traffic signs in images through bounding boxes.
- **Classification:** Assigning the correct label to the corresponding sign.

This task poses numerous challenges in real-world environments: small or deformed signs, non-fixed positions, partial occlusions, and influences from lighting and weather conditions. Moreover, for practical deployment, the system must ensure **real-time processing with low latency**.

Traditional approaches such as **HOG + SVM** [2], [3] or classifiers based on handcrafted features (**SIFT**, **KNN**,...) [4] are no longer effective in complex environments. The advancement of deep learning, particularly **Convolutional Neural Networks (CNNs)** [5], has significantly transformed the problem-solving approach. Among these, the **YOLO (You Only Look Once)** family of models [6]–[15] stands out for its ability to achieve fast and accurate object detection in a single forward pass. The latest version, **YOLOv10** [15], introduced in 2024, inherits and improves both efficiency and architecture by eliminating the **Non-Maximum Suppression (NMS)** step while maintaining high accuracy, making it highly suitable for real-time object detection tasks.

This paper aims to achieve the following objectives:

- Conduct an in-depth study of the **YOLOv10 architecture**, including its working principles, key components, and training strategies such as *Dual Label Assignment*, *Partial Self-Attention*, and *Compact Inverted Block*.
- Build a high-quality dataset of Vietnamese traffic signs through collection, analysis, preprocessing, and annotation.
- Design and implement a training and evaluation pipeline for YOLOv10 on real-world data, thereby assessing its effectiveness in practical applications within the Vietnamese context.

The scope of this research focuses on recognizing a subset of common traffic signs in Vietnam's traffic environment. The experimental application is limited to image-based recognition (without integration with mapping or vehicle control). Extensions such as dataset expansion or deployment on embedded devices will be considered in future developments.

The remainder of this paper is organized as follows:

- Section 2 presents a review of related studies in object detection and traffic sign recognition.
- Section 3 describes the dataset, preprocessing strategies, and model training setup.

*Corresponding Author

- Section 4 reports the experimental results and evaluates model performance.
- Section 5 provides conclusions and directions for future work.

II. RELATED WORK

A. Object Detection and Approaches

Object detection is one of the fundamental tasks in computer vision, aiming to localize and classify objects appearing in an image. This task serves as a foundation for various applications such as security surveillance, autonomous driving, behavior analysis, and especially intelligent driving assistance.

The main approaches include:

- **Two-stage detectors:** A representative example is Faster R-CNN [16], in which the first stage generates region proposals and the second stage performs classification and bounding box regression. While achieving high accuracy, this approach is slower and less suitable for real-time applications.
- **One-stage detectors:** Models such as SSD [17], RetinaNet [18], and especially the YOLO family [6]–[15] perform detection and classification in a single forward pass, significantly improving speed. From YOLOv1 to YOLOv10, continuous improvements in speed and accuracy have made YOLO one of the most popular choices for real-time applications.

B. Traffic Sign Detection

1) *Previous Studies:* The traffic sign recognition (TSR) problem has been extensively studied for many years. Models are often trained on benchmark datasets such as GTSRB [19], TT100K [20], and CCTSDB [21]. YOLO models, ranging from YOLOv3 to YOLOv8 [8]–[13], have been widely applied due to their fast and accurate performance.

According to Flores-Calero et al. (2024) [?], in a survey of multiple YOLO-based TSR systems, most achieved mean average precision (mAP) above 90%. However, challenges remain in detecting small signs, partially occluded signs, and signs under poor lighting conditions. Recently, improved models such as MSGC-YOLOv8 [22] and LLE-STD [23] have integrated attention mechanisms or low-light image enhancement modules to improve detection capability.

Nevertheless, most studies rely on international benchmark datasets, paying little attention to the unique characteristics of traffic signs in countries with complex traffic systems such as Vietnam.

2) *Proposed Study:* Unlike the aforementioned works, this study focuses on:

- Applying **YOLOv10**, one of the latest versions of the YOLO family, with architectural innovations such as the elimination of NMS, the use of *Dual Label Assignment*, *Partial Self-Attention*, and *Compact Inverted Blocks (CIB)*.
- Constructing a large-scale dataset of over 57,000 Vietnamese traffic sign images collected from various real-world locations, diverse in size, viewpoint, lighting, and context.

- Employing *ROI cropping* and *sliding window* techniques to improve detection of small or occluded traffic signs.
- Ultimately, evaluating the effectiveness of YOLOv10 in the TSR problem in Vietnam, aiming for real-time applications in driver assistance systems.

III. PROPOSED METHOD

A. System Overview

The traffic sign recognition system in this study is designed with a modular architecture to ensure flexible, efficient training, testing, and deployment of the YOLOv10 model. The overall system consists of the following main components:

1) Data Preprocessing Module

- Input: raw images from dashcams, surveillance videos, or captured photos.
- Applied techniques: ROI cropping, sliding window, and various augmentations (Mosaic, rotation, blurring, color adjustment, etc.).
- Output: normalized input images ready for training or inference.

2) Traffic Sign Detection Model

- Input: preprocessed images.
- Detection performed directly using the YOLOv10n model.
- Output: bounding boxes, traffic sign class labels, and confidence scores.

3) Post-processing and Visualization Module

- Filtering detections below the configured confidence threshold.
- Displaying detection results directly on the output image or video.
- Sending warning notifications (if integrated with driver assistance systems).

The overall system architecture is illustrated in Fig. 1.

B. Dataset

To train and evaluate YOLOv10, we constructed a dataset of Vietnamese traffic sign images. The data were collected from multiple sources: field photographs, dashcams, surveillance cameras, and open datasets with labels reformatted to match local traffic signs. The distribution of object instances for each class is shown in Fig. 2.

Traffic signs are categorized into three main groups: *prohibitory signs*, *mandatory signs*, and *warning signs*. All images were annotated in the COCO format, including bounding boxes and class labels.

A spatial heatmap analysis (Fig. 3) shows that traffic signs tend to appear at the top and sides of images, usually small in size, and easily affected by environmental noise such as trees, vehicles, strong light, or rainy weather. Brighter regions on the heatmap indicate higher densities of occurrence.

The bounding box width-height distribution (Fig. 3) indicates that most bounding boxes concentrate within the width range of 70–130 pixels and height range of 80–160 pixels. This reflects the fact that most traffic signs in the dataset are of medium size and do not occupy a large portion of the image frame.

Example images from the dataset are shown in Fig. 4.

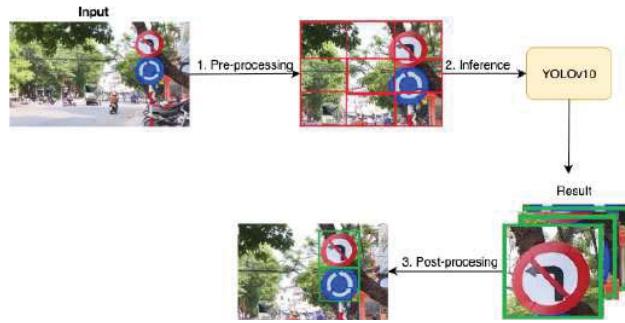


Fig. 1: Overall system architecture for traffic sign recognition.

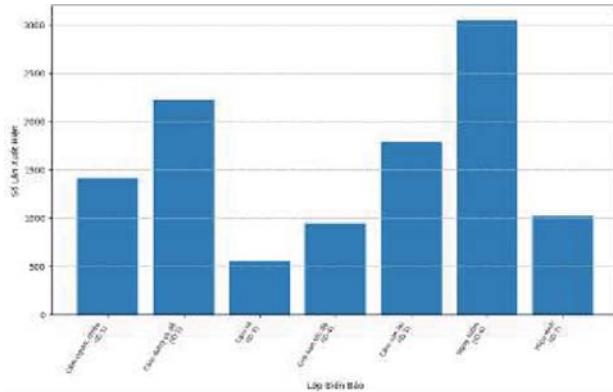


Fig. 2: Class-wise distribution of traffic signs in the dataset.

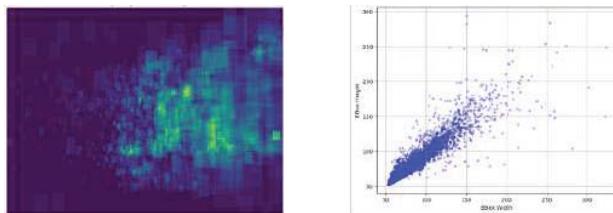


Fig. 3: Overview of spatial heatmap and bounding box size distribution

Fig. 4: Sample images from the dataset.

C. Data Preprocessing Strategy

To improve the detection capability for small objects and enhance input quality for the model, we designed a three-step preprocessing pipeline, illustrated in Fig. 5:

- 1) **ROI Cropping:** Based on the spatial analysis of common traffic sign locations, the input image is cropped to the region of interest (ROI). Most target traffic signs appear within approximately 70% of the image width (from the right edge) and 70% of the image height (from the top). This region is selected as the ROI.
- 2) **Sliding Window:** The cropped image is divided into tiles using a sliding window with a stride of 80 pixels. Each tile has a size of 320×320 pixels and is resized to 640×640 pixels to match the YOLOv10 model input.
- 3) **Data Augmentation:** Several augmentation techniques are applied to increase dataset diversity and model robustness under varying conditions of lighting and weather. These include Mosaic, Rotation, HSV Adjustment, Contrast/Brightness modification, and Blur.

D. Training Configuration

After preprocessing, we obtained a refined dataset consisting of 57,240 images. We split the dataset with an 80:20 ratio for training and validation, respectively. We selected the YOLOv10n model — the lightest variant of YOLOv10 — as it is suitable for real-time tasks and deployment on resource-constrained devices. The training parameters are summarized in Table I.

TABLE I: Training Configuration

Parameter	Value
Epoch	50
Batch size	16
Image size	640×640
Optimizer	SGD
Learning rate	0.001
Environment	NVIDIA RTX 3090, CUDA 12.1

E. YOLOv10 Architecture

YOLOv10 is the first YOLO architecture that completely removes the Non-Maximum Suppression (NMS) post-processing step by adopting a dual label assignment training strategy, while maintaining high accuracy. The model is optimized for real-time applications, with several key improvements in its main components:

- **Backbone:** Utilizes the Compact Inverted Bottleneck (CIB) block, inspired by [24], [25], which reduces the number of parameters, accelerates inference, and preserves strong feature extraction capability.
- **Neck:** Integrates Partial Self-Attention (PSA) at deeper layers, allowing the model to focus on critical regions, especially small traffic signs in complex backgrounds.
- **Head:** Enables NMS-free inference through an optimized one-to-one matching structure, reducing duplication and system latency.

Additional improvements of YOLOv10 are summarized in Table II.

With these characteristics, YOLOv10 fully meets the requirements of traffic sign recognition in Vietnam, particularly

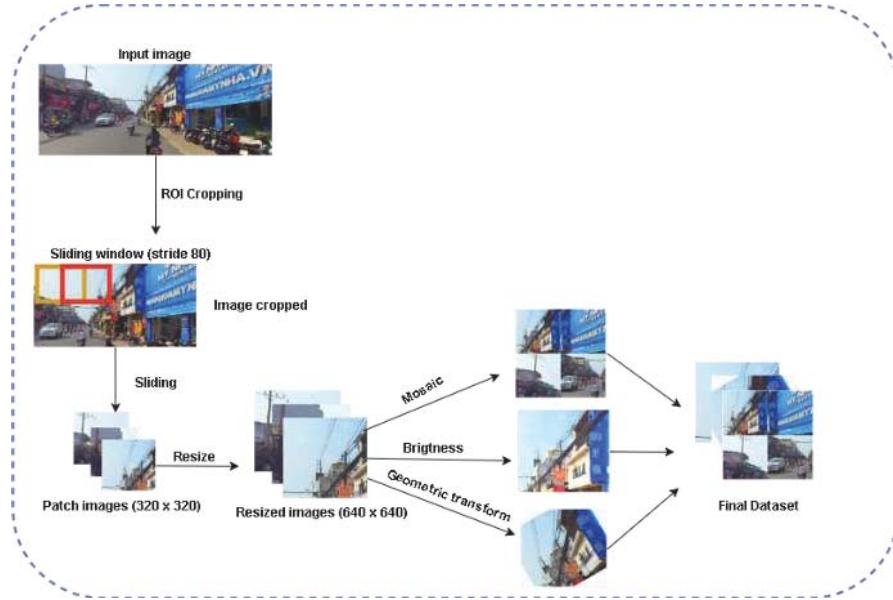


Fig. 5: Illustration of the three-step data preprocessing strategy

TABLE II: Key Improvements in YOLOv10

Component	Role
CIB (Compact Inverted Block)	Reduces parameters while maintaining feature extraction efficiency
Large Kernel Depthwise Conv	Expands receptive field, improving detection of small signs
Partial Self-Attention (PSA)	Enhances focus on informative regions
Dual Label Assignment	Combines one-to-many and one-to-one strategies for stable training and eliminates NMS
Anchor-Free Detection	Simplifies pipeline and increases flexibility for multi-scale objects

in terms of handling small objects, achieving fast inference speed, and enabling deployment on embedded systems.

IV. RESULTS AND EVALUATION

A. Training and Evaluation Results

After 50 training epochs, the YOLOv10n model achieved promising results on the test dataset. Table III presents the performance metrics obtained after training. Fig. 6 illustrates the training metrics across epochs.

TABLE III: Training results at Epoch 50

Metric	Value
mAP@0.5	88.2%
Precision	90.4%
Recall	86.7%
F1-score	88.5%
FPS (RTX 3090)	~48

Key observations:

- **Precision (90.4%):** The model correctly predicted most detected objects as traffic signs.
- **Recall (86.7%):** Demonstrates strong capability in detecting the majority of signs present in images, including small-scale ones.

- **F1-score (88.5%):** Indicates a well-balanced trade-off between precision and recall.

The Precision–Recall (P–R) curve shown in Fig. 7 highlights the model’s stable performance across various confidence thresholds, with a high Area Under Curve (AUC) and low fluctuation, reflecting robust feature learning ability.

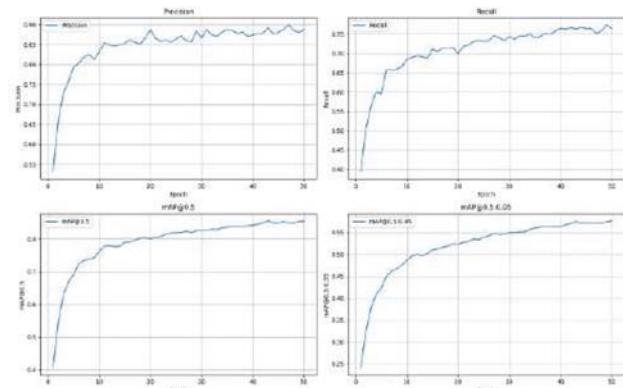


Fig. 6: Training metrics of YOLOv10n across 50 epochs

B. Comparison with Other Models

We conducted a comparison between YOLOv10n and other YOLO versions trained on the same dataset and with equivalent configurations. The results are summarized in Table IV.

TABLE IV: Comparison of YOLO models on the traffic sign dataset

Model	mAP@0.5	FPS	Parameters
YOLOv5s	84.6%	42	7.2M
YOLOv8n	86.9%	45	3.2M
YOLOv10n	88.2%	48	2.3M

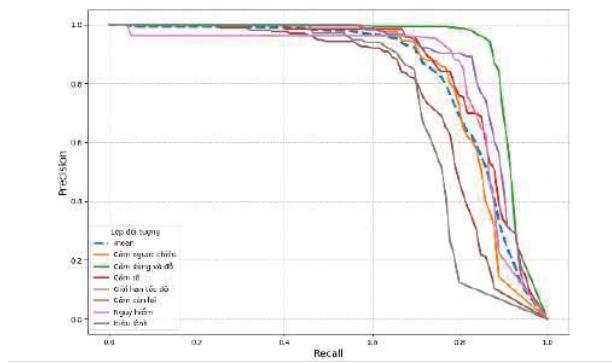


Fig. 7: Precision–Recall (P–R) curve of YOLOv10n on test dataset

YOLOv10n not only achieves superior accuracy but also improves inference speed while reducing the number of parameters, making it well-suited for real-world deployment.

Fig. 8 illustrates the mAP@0.5 progression of the models across training epochs.

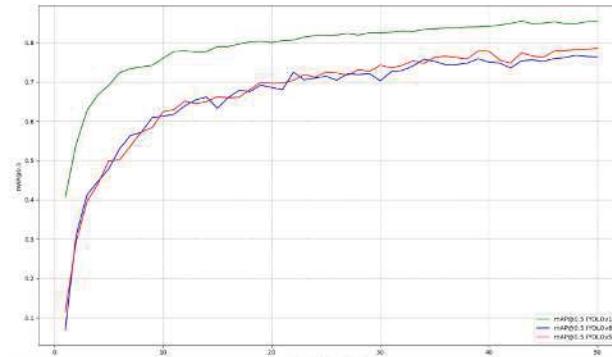


Fig. 8: mAP@0.5 comparison of YOLOv5s, YOLOv8n, and YOLOv10n across epochs

C. Error Analysis

We further analyzed the failure cases of the model, which can be grouped into the following categories:

- **False Negatives (missed detections):**

- Frequently observed in images where traffic signs are very small ($< 20 \times 20$ pixels) or located near the image boundary.
- Signs that are partially occluded by trees, vehicles, or degraded/faded signs also posed challenges for the model.

- **False Positives (incorrect detections):**

- The model occasionally confuses visually similar traffic signs, such as “No Left Turn” and “No U-Turn” signs.

The use of sliding window and Region of Interest (ROI) cropping significantly improved the detection of small signs, which previous YOLO versions struggled with. The remaining errors mainly stem from dataset quality or extreme environmental conditions.

Representative examples of common failure cases are illustrated in Fig. 9.

Fig. 9: Examples of frequent error cases in YOLOv10n predictions

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a traffic sign detection approach for Vietnam using YOLOv10, the latest model in the YOLO family. With its lightweight architecture, Non-Maximum Suppression (NMS)-free inference, and Dual Label Assignment training strategy, YOLOv10n demonstrated effective detection performance under real-world conditions.

We also proposed a preprocessing pipeline that integrates Region of Interest (ROI) cropping and sliding window to improve the detection of small traffic signs — a common challenge in the Vietnamese traffic environment. The real-world dataset, consisting of over 57,000 traffic sign images, allowed the model to learn rich features and better reflect deployment conditions.

Experimental results showed that the model achieved an mAP@0.5 of 88.2% and a processing speed of ~ 48 FPS, outperforming YOLOv5s and YOLOv8n under the same dataset and training configuration. The model not only achieved high accuracy but also satisfied real-time requirements, making it suitable for applications in driver assistance systems or intelligent traffic monitoring.

For future work, we plan to focus on:

- 1) Expanding the dataset with rare traffic signs, damaged signs, and challenging weather conditions such as rain and fog.
- 2) Integrating the model into real-time driver assistance systems with direct feedback, e.g., audio alerts or Head-Up Display (HUD) visualization.
- 3) Deploying and evaluating the model on embedded platforms such as Jetson Nano and Raspberry Pi to assess performance under resource-constrained environments.
- 4) Combining detection with object tracking or segmentation for continuous video-based traffic sign recognition and enhanced stability.

ACKNOWLEDGMENT

This research is funded by Hue University under the grant number DHH2025-01-226. We sincerely thank Hue University for supporting this research.

REFERENCES

[1] B Giao thông Vn ti. (2025) Hn 450 nghìn lt phng tin trt äng kim trong 6 thng. [Online]. Available: <https://mt.gov.vn/vn/tin-tuc/92991/hon-450-nghin-luot-phuong-tien-truot-dang-kiem-trong-6-thang.aspx>. [Online]. Available: <https://mt.gov.vn/vn/tin-tuc/92991/hon-450-nghin-luot-phuong-tien-truot-dang-kiem-trong-6-thang.aspx>

[2] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in *2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05)*, vol. 1. Ieee, 2005, pp. 886–893.

[3] C. Cortes, "Support-vector networks," *Machine Learning*, 1995.

[4] T. Lindeberg, *Scale Invariant Feature Transform*, 05 2012, vol. 7.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," *Proceedings of the IEEE*, vol. 86, no. 11, pp. 2278–2324, 1998.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," in *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016, pp. 779–788.

[7] J. Redmon and A. Farhadi, "Yolo9000: Better, faster, stronger," in *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017, pp. 6517–6525.

[8] J. Redmon, "Yolov3: An incremental improvement," *arXiv preprint arXiv:1804.02767*, 2018.

[9] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "Yolov4: Optimal speed and accuracy of object detection," *arXiv preprint arXiv:2004.10934*, 2020.

[10] G. Jocher, "Ultralytics yolov5," 2020. [Online]. Available: <https://github.com/ultralytics/yolov5>

[11] C. Li, L. Li, Y. Geng, H. Jiang, M. Cheng, B. Zhang, Z. Ke, X. Xu, and X. Chu, "Yolov6 v3.0: A full-scale reloading," 2023.

[12] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, "Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors," in *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023, pp. 7464–7475.

[13] G. Jocher, A. Chaurasia, and J. Qiu, "Ultralytics yolov8," 2023. [Online]. Available: <https://github.com/ultralytics/ultralytics>

[14] C.-Y. Wang and H.-Y. M. Liao, "Yolov9: Learning what you want to learn using programmable gradient information," 2024.

[15] L. L. e. a. Ao Wang, Hui Chen, "Yolov10: Real-time end-to-end object detection," *arXiv preprint arXiv:2405.14458*, 2024.

[16] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 39, no. 06, pp. 1137–1149, June 2017.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, "Ssd: Single shot multibox detector," in *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14*. Springer, 2016, pp. 21–37.

[18] T.-Y. Ross and G. Dollár, "Focal loss for dense object detection," in *proceedings of the IEEE conference on computer vision and pattern recognition*, 2017, pp. 2980–2988.

[19] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, "Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition," *Neural networks*, vol. 32, pp. 323–332, 2012.

[20] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, "Traffic-sign detection and classification in the wild," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 2110–2118.

[21] J. Zhang, X. Zou, L.-D. Kuang, J. Wang, R. S. Sherratt, and X. Yu, "Cctsdb 2021: a more comprehensive traffic sign detection benchmark," *Human-centric Computing and Information Sciences*, vol. 12, 2022.

[22] B. Chen and X. Fan, "Msgc-yolo: An improved lightweight traffic sign detection model under snow conditions," *Mathematics*, vol. 12, no. 10, p. 1539, 2024.

[23] T. Wang, H. Qu, C. Liu, T. Zheng, and Z. Lyu, "Lle-std: Traffic sign detection method based on low-light image enhancement and small target detection," *Mathematics*, vol. 12, no. 19, p. 3125, 2024.

[24] A. G. Howard, "Mobilennets: Efficient convolutional neural networks for mobile vision applications," *arXiv preprint arXiv:1704.04861*, 2017.

[25] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "Mobilennetv2: Inverted residuals and linear bottlenecks," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2018, pp. 4510–4520.