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Abstract The volatility of cryptocurrency markets has
sparked significant interest in developing predictive models
capable of accurately forecasting price movements. Address-
ing the complexities posed by the non-linear and dynamic
nature of cryptocurrency price data, this study introduces a
hybrid model that combines one-dimensional convolutional
neural networks (1D-CNN) and long short-term memory
(LSTM) networks to forecast Ethereum’s closing prices. The
1D-CNN component captures localized patterns within the
time-series data, while the LSTM component effectively
models long-term dependencies and sequential trends. A
sliding window technique is applied to preprocess Ethereum
trading data, enabling the model to manage temporal struc-
tures and enhance predictive accuracy. Experiments were
performed to assess the hybrid model’s performance under
various configurations, benchmarking it against standalone
1D-CNN and LSTM models. Experimental results demon-
strated that the hybrid model significantly outperforms these
baseline models, promising its potential for improving fore-
casting accuracy in cryptocurrency markets.
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1 Introduction

The rapid rise of cryptocurrencies, particularly Ethereum,
has attracted widespread attention from investors, research-
ers, and financial analysts [1]. Unlike traditional financial
markets, cryptocurrency markets exhibit unique character-
istics, including high volatility, non-stationary trends, and
intricate temporal dependencies, making them challenging
to predict accurately [2, 3]. In this context, effective fore-
casting models play a pivotal role in aiding investors and
decision-makers to navigate the uncertain landscape of
cryptocurrency trading. Deep learning advancements drive
novel predictive methods in volatile markets [1], as seen in
healthcare [4], traffic [5], and e-commerce [6] applications.
This study examines the potential of a hybrid model, com-
bining 1D-CNN and LSTM networks, to forecast the closing
prices of Ethereum.

The hybrid model leverages the strengths of both LSTM
and 1D-CNN architectures to address the limitations of
traditional statistical and machine learning methods in
forecasting cryptocurrency prices. 1D-CNN is particularly
advantageous in extracting meaningful patterns from local
sequences, allowing the model to identify significant fea-
tures within smaller time frames. When paired with LSTM
network, which excels at capturing long-term dependencies
in time-series data, the hybrid model gains a powerful capa-
bility to address temporal dependencies in cryptocurrency
price data. This hybrid approach is anticipated to improve
model robustness, enabling a more comprehensive analysis
of cryptocurrency price fluctuations.

The contributions of this paper are threefold. First, it
introduces a novel hybrid model architecture that combines
the strengths of 1D-CNN and LSTM networks to enhance
predictive accuracy. Second, the model is applied to tem-
poral data processed through a sliding window technique,
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capturing sequential patterns and dependencies in crypto-
currency trading data. Third, experimental results demon-
strate that the hybrid model significantly outperformed other
baseline models, including standalone 1D-CNN and LSTM
architectures, in most experiments conducted on Ethereum
price data. This study provides a robust framework for
improving forecasting precision in the cryptocurrency mar-
ket, with potential applications extending to other volatile
financial assets.

The rest of this paper is organized as follows: Sect. 2
reviews current state-of-the-art research on deep learning
approaches for predicting cryptocurrency trading move-
ments. Section 3 describes the architecture of the proposed
hybrid model, and Sect. 4 presents the experimental results.
Finally, Sect. 5 summarizes the key contributions and out-
lines potential directions for future work.

2 Related work

The dynamic and volatile nature of financial markets has
driven the adoption of various computational techniques to
enhance the accuracy of price prediction. Traditional statisti-
cal methods [1] have long been employed for modeling and
forecasting; however, their limitations in capturing complex,
nonlinear patterns have shifted attention towards machine
learning and deep learning approaches. These advanced
methodologies, leveraging their ability to model intricate
dependencies and relationships in large datasets, have shown
significant promise in financial market prediction [1, 7].
Within the scope of this section, we focus on highlighting
the state-of-the-art applications of CNN models, LSTM net-
works, and hybrid models that combine these architectures.
These approaches have been extensively explored in the
financial domain in general and in cryptocurrency price fore-
casting in particular. For a comprehensive review of deep
learning applications in this field, readers are referred to
these valuable surveys [1, 7-9] that provide detailed insights
and broader perspectives.

CNN networks have proven to be powerful tools for pre-
dicting financial market trends, including stock prices and
cryptocurrency prices, due to their ability to capture spatial
dependencies and patterns in sequential data. Cavalli and
Amoretti [10] introduced a novel approach for predicting
Bitcoin trends using 1D-CNN network. The authors devel-
oped a methodology for constructing datasets that integrate
social media data, blockchain transaction history, and finan-
cial indicators, utilizing a cloud-based distributed architec-
ture to collect and analyze extensive datasets. Their results
demonstrated that the 1D-CNN model outperformed LSTM
models in accuracy, attributed to its compact and computa-
tionally efficient architecture. Additionally, the study pro-
posed a trading strategy based on the 1D-CNN predictions,
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showing profitability in bullish trends and minimized losses
in bearish markets. Our proposed approach differs from this
study in the architecture of the deep learning model and the
use of a dataset that does not incorporate external sources.

Further demonstrating the utility of CNN in financial
forecasting, Alonso-Monsalve et al. [11] evaluated the per-
formance of CNN-based architectures for trend classifica-
tion in high-frequency cryptocurrency exchange rates. The
study highlighted the ability of CNNs to efficiently cap-
ture spatial patterns in technical indicators, making them a
promising alternative to traditional multilayer perceptrons.
Four architectures—CNN, hybrid CNN-LSTM, multilayer
perceptron (MLP), and radial basis function (RBF) neural
networks—were compared using 18 technical indicators
derived from one-minute resolution data over a one-year
period. Results indicated that CNNs performed well, par-
ticularly for Bitcoin, Ether, and Litecoin, demonstrating
their effectiveness in cryptocurrency prediction. Zhang
[12] addressed the challenges of forecasting cryptocurrency
prices, which are influenced by non-stationary behavior and
stochastic market effects. To improve prediction accuracy,
the authors proposed the Weighted & Attentive Memory
Channels model, leveraging deep learning to capture inter-
dependencies among cryptocurrencies and extract temporal
features. The model integrates three modules: an Attentive
Memory module combining GRUs with self-attention, a
Channel-wise Weighting module to recalibrate interdepend-
encies among cryptocurrency prices, and a Convolution and
Pooling module for local feature extraction. Experimental
results demonstrated that the model achieved state-of-the-art
performance, surpassing baseline models in accuracy, pre-
diction error, and profitability. In contrast to these studies,
our research focuses on a specific model within the CNN
family, known as 1D-CNN, and a hybrid model combining
1D-CNN and LSTM.

Besides the effectiveness of CNN models in capturing
spatial patterns for cryptocurrency price prediction, LSTM
networks play a crucial role in modeling temporal depend-
encies and sequential patterns inherent in financial time
series data. For example, Kadhim et al. [13] introduced a
multi-modal hybrid model based on deep learning to predict
Bitcoin values by integrating sentiment analysis from social
media with on-chain and market data. The analysis utilized
tools such as Twitter-RoBERTa and VADER on datasets col-
lected from 2014 to 2022, achieving notable accuracy with
low error rates (MAPE of 4.37% and RMSE of 6.55%). By
combining LSTM neural networks with sentiment and finan-
cial data, the study underscored the importance of social
media sentiment in forecasting market trends, providing val-
uable guidance for economic prediction and decision-mak-
ing. Similarly, B. A. Pai et al. [14] addressed the challenges
of cryptocurrency volatility and complexity by proposing a
deep learning-based model to forecast cryptocurrency prices
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as a time series. The authors utilized LSTM networks to
overcome the limitations of traditional neural networks in
handling long sequences of data, focusing on predicting the
open prices of cryptocurrencies such as Bitcoin, Ethereum,
Litecoin, and Bitcoin Cash. The approach demonstrated
accurate predictions with minimal errors and showcased
scalability and automation capabilities through deployment
via APIs and web applications.

In another study, Kim et al. [15] proposed a novel frame-
work for predicting Bitcoin prices. The framework utilized
change point detection to segment time-series data, enabling
effective normalization and incorporating on-chain data as
input features for prediction. A self-attention-based multi-
ple LSTM (SAM-LSTM) model was developed, combin-
ing multiple LSTM modules for different on-chain variable
groups with an attention mechanism. Experimental results
demonstrated the framework’s effectiveness, achieving
promising accuracy metrics, including MAE of 0.3462 and
RMSE of 0.5035. In general, while these studies used only
LSTM networks, our proposed approach employs a hybrid
model combining 1D-CNN and LSTM.

Specifically, variations of artificial neural networks
(ANN) were also applied to predict cryptocurrency prices
in the study by S. Behera et al. [16]. The authors applied the
geometric mean optimization (GMO) algorithm to adjust
the hidden layer input weights and biases of six ANN vari-
ants, creating hybrid models for predicting the closing prices
of four major cryptocurrencies. For comparison, traditional
gradient descent was also used to train the same ANN vari-
ants, resulting in alternate models. The models were evalu-
ated using MSE, RMSE, and MAPE metrics, with results
showing that the GMO-based PSNN outperformed the oth-
ers. Additionally, the performance of the GMO-based PSNN
was compared to existing hybrid models, further demonstrat-
ing its effectiveness. In a similar effort, R.M Aziz et al. [17]
tried to improve the performance of machine learning mod-
els by using the Light Gradient Boosting Machine (LGBM)
approach. By comparing various machine learning mod-
els, including Random Forest and Multi-Layer Perceptron,
LGBM demonstrated superior accuracy (98.60%), which
was further improved to 99.03% through hyper-parameter
tuning, proving its effectiveness for Ethereum datasets with
limited attributes. The most significant differences between
these studies and our proposed research lie in the use of tra-
ditional machine learning model structures and the hybrid
architecture of deep learning models.

The research trend of using a single model for price pre-
diction is not limited to traditional machine learning models,
CNNSs, or LSTMs but also includes the introduction of novel
deep learning models. For example, Gajjar et al. [18] pre-
sented a novel deep-learning pipeline to predict NSE stock

prices for companies like Adani Ports, Reliance, and Tata
Steel. They introduced Liquid Time-Constant Networks
(LTCs) as a core component of an enhanced computing
paradigm, evaluating their performance against traditional
architectures such as RNNs, GRUs, LSTMs, and BiLSTM:s.
The research highlighted the potential of LTCs as a supe-
rior alternative to LSTMs for stock market trend prediction,
offering an effective balance between computational effi-
ciency and prediction accuracy. While this study focused on
the stock market, its potential application to the cryptocur-
rency market is promising.

Building on the strengths of individual deep learning
models, the emergence of hybrid architectures, particularly
the combination of CNN and LSTM, has gained significant
attention for improving the accuracy and robustness of cryp-
tocurrency price prediction. For example, Peng et al. [19]
introduced an attention-based CNN-LSTM model (ACLMC)
capable of multi-currency predictions by leveraging correla-
tions across frequencies and currencies. Experiments dem-
onstrated that this approach outperformed traditional base-
lines, achieving better financial metrics and reducing the
number of transactions, thereby mitigating investment risks.
Similarly, Zhong et al. [20] also explored the combination of
relationwise graph attention network (ReGAT) with LSTM
network. Experimental results with real-world data dem-
onstrated that LSTM-ReGAT achieved superior predictive
performance and profitability, offering valuable insights for
investment decision-making in the cryptocurrency market.

In another study, Garcia-Medina and Aguayo-Moreno
[21] analyzed cryptocurrency volatility using GARCH
models, MLP, LSTM, and hybrid LSTM-GARCH models,
incorporating GARCH parameters as features for LSTM.
Covering the period around the March 2020 pandemic decla-
ration, results showed that deep learning models, particularly
MLP, outperformed GARCH models in terms of heterosce-
dastic, absolute, and squared errors. While MLP achieved
the best predictive results with lower computational cost, it
performed similarly to LSTM and LSTM-GARCH under
statistical tests. Our proposed approach differs from these
hybrid models in terms of the use of 1D-CNN instead of
graph attention networks.

Khattak et al. [22] explored the use of Fibonacci technical
indicators (TI) and multi-class classification based on trend
and price strength (trend-strength) to enhance the accuracy
and profitability of AI models, particularly hybrid CNN-
LSTM architectures. The research introduced a six-stage
predictive system, including data collection, preprocessing,
and evaluation, and demonstrated that incorporating Fibo-
nacci TI improved model performance in 44% of configura-
tions and profitability in 68%. Empirical results showed that
hybrid CNNs, especially C-LSTM models, performed best
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for trend-strength predictions in 4-class and 6-class settings,
achieving significant gains in return on investment (ROI) and
showcasing their potential for accurate and profitable cryp-
tocurrency trading. The key difference in model architecture
between this study and our research lies in the incorporation
of 1D-CNN as a core component in our proposed hybrid
model.

In cryptocurrency price prediction, models are often
trained not only on financial data but also on sentiment
analysis of textual information, such as social media posts
and news, to capture market sentiment and its influence on
price movements. For example, Rateb et al. [23] proposed
a method for predicting cryptocurrency prices and trends
by integrating sentiment analysis with time series forecast-
ing. Using over one million tweets about Bitcoin, Ethereum,
and Binance Coin during the Russian—Ukrainian War, the
authors compared three models: CNN-LSTM, SVM with
GloVe and TF-IDF features, and Pysentimento for sentiment
classification, with Pysentimento achieving the highest accu-
racy. Combining sentiment analysis results, Google Trends,
and cryptocurrency market data, the SARIMA model was
applied for price prediction, providing valuable insights
into investor preferences and market behavior amid geopo-
litical uncertainties. Similarly, Huang et al. [24] focused on
predicting cryptocurrency price fluctuations by analyzing
sentiment from social media, specifically Chinese posts on
Sina-Weibo, a popular Chinese platform. The researchers
developed a crypto-specific sentiment dictionary and an
LSTM-based recurrent neural network, incorporating histor-
ical price data to forecast future trends. Experimental results
showed that the proposed approach outperformed traditional
autoregressive models. In short, our method does not utilize
textual information to train the model like these studies.
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3 Hybrid model design for Ethereum price
forecasting

This section first introduces the architecture of the proposed
hybrid model, which combines 1D-CNN and LSTM for
advanced forecasting of cryptocurrency price movements.
Next, the sliding window technique, applied to generate
window-based time series data for the hybrid model, is
discussed. Then, each component of the hybrid model is
elaborated in detail. Finally, the algorithm that utilize the
proposed model is presented.

Figure 1 illustrates the architecture of the proposed hybrid
model combining 1D-CNN and LSTM for forecasting cryp-
tocurrency price movements. The process begins with his-
torical time-series data, where a sliding window technique
is applied to generate window-based time series segments.
These segments are fed into the input layer, which serves as
the starting point for the convolutional network. The data
passes through three convolutional layers, each followed by
pooling operations, to extract hierarchical spatial features.
The output of the final convolutional layer is passed to the
LSTM layer, which captures sequential dependencies and
temporal patterns in the data. Finally, the LSTM output is
connected to a fully connected layer, which aggregates the
learned features, and an output layer produces the final pre-
diction. This design integrates the feature extraction capa-
bilities of 1D-CNN with the temporal modeling strength of
LSTM for enhanced prediction performance.

3.1 Sliding-Window technique for time series data
processing

Given the transactional dataset of crypto-currency as
X = {x,lx, eERYt=0,+1,+2, } This time series dataset
(X € R™") requires the chronological order of every data
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Fig. 1 The architecture of the proposed hybrid model
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item, which also means that the data items are immutable.
In which, x, € R" specifies the prices of a cryptocurrency
at the time ¢. In order to make use of this transactional time
series data set, the sliding window method is applied to pick
up data windows throughout the original dataset.

The sliding window method is mathematically described
in Eq. (1).

(p(x,, w) :R" - RV, Vx, €X (D

where X € R™"_w is the window size and w < m.

In other words, the function (p(x,, w) maps the original
dataset from a tensor with rank 2 (R"™") to a tensor with rank
3 (RPwxmy_ This result dataset is convenient for facilitating
model training and feature engineering, reducing computa-
tion, and capturing short-term trends. Algorithm 1 presents
the pseudocode of the operation of sliding window over
transactional time series data.

Algorithm 1: Sliding window technique

where * denotes the convolution operation, x(7+ i) is the
t+i-th input element, and w(i) is the i-th element of the
kernel.

The activation function used in this hybrid model is the
Rectified Linear Unit (ReLLU) function. Its formula is defined
in Eq. (3).

ReLU(z) = max(0, z) 3)

The max pooling, which is applied for the hybrid model,
is defined in Eq. (4).

y(#) = max(x(t), x(z + 1), -+, x(t +p — 1)) 4)

During the training phase, 1D-CNN uses backpropaga-
tion to adjust the weights of the filters based on the continu-
ous update of the errors. The loss function calculates the
error based on the difference between the actual output and
the predicted output. This error value is then propagated

function slidingWindow(data, window, forecast)

data_size < |datal
X <[]
yell

for i from window to data_size — window — forecast:
X <X Udata[i —window — forecast :i — forecast, : |

y <y Udatali— forcast i, : |
return X,y
end function

3.2 Architecture of the 1D-CNN layer

1D-CNN is a special type of convolutional neural network
that focuses on temporal data or sequential structures like
time series data or natural language. A typical 1D-CNN
is composed of several important layers and components.
The convolutional layers are responsible for extracting fea-
tures. The activation function, which is used by layers, can
capture complex patterns. The Pooling layers are applied
to reduce the data dimension. In this research, 1D-CNN is
connected to LSTM. Hence, the fully connected layers are
moved to the end of the hybrid model and are discussed in
the sub-Sect. 3.3.

Theoretically, a convolutional operation at the timestep ¢,
which takes the input x and uses the kernel w of size k, yields
the output y at the same timestep as in Eq. (2).

k—1

y(@) = (x * w)(1) = Zx(t + 1) s w(i) @)
i=0

back through the network using gradient descent in order
to update the weights. Equation (5) defines the gradient of
convolution.

oL _ 5 oL . ..
o) Z‘ oy "X ©)

where y(t) = Zf:_ol x(t + i) e w(i) and % is the gradient of

the loss with respect to the output.

3.3 Architecture of the Long-Short-Term Memory
layer

In this hybrid model, the LSTM layer, which contains a
number of LSTM cells, is designed with the purpose of cap-
turing information over long periods in sequences of crypto
trading and overcoming the traditional vanishing gradient
problem. Specifically, the structure of the LSTM cell is visu-
alized in Fig. 2.

@ Springer



Int. j. inf. tecnol.

Output

Forget Gate Input Gate Output Gate

, == —®
Cell State l Next Cell State
b

Sigmoid Sigmoid Sigmoid X

A A ﬁ
K L 1 L L1
Hiden State 4 4 ‘é Aé Aé Next Hiden State

Input
Inputs: Outputs:
New Update
Current Input Memory
Memory from last
LSTM unit . Currnet Output

Fig. 2 The structure of a LSTM cell

The core components of a LSTM cell include the forget
gate, input gate and output gate. The forget gate decides

as

which information from the previous cell state should be dis-
carded, while the input gate decides which new information

should be added to the cell state. The output gate determines

the next hidden state, which also serves as output for that

time step. Mathematically, a LSTM cell can be described
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atuple £, = i, 00, ¢, C,h,) where each component is

explained in Table 1.

3.4 Forecasting short-term Ethereum price

Algorithm 2 outlines a systematic approach to forecast

future Ethereum price movements using a hybrid model that
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Table 1 Mathematical

S Math symbols
description of the components

Meaning

of LSTM cell unit x,
Wy
U,
by

o

[ =o(Wpx, + Ushy_y + by)
i =0(Wx, +Uh,_, +b,;)
of = G(Wux, +U,h,_, + ba)
& =t(Wax,+Uh,_ +b,)
¢ =f0c_ +i0OT
h,=0{ © T(Ct)

©

The input vector to the LSTM unit

The input-weight matrix where d can be f, i, o, or ¢
The matrix of the recurrent connections where d can be f, i, o or ¢
The bias vector where d can be f; i, o, or ¢

The sigmoid function

The hyperbolic tangent function

The forget gate of the memory cell ¢ at the time ¢
The input gate of the memory cell ¢ at the time ¢
The output gate of the memory cell ¢ at the time ¢
The cell input activation vector at the time step ¢
The cell state vector at the time step ¢

The output vector of the LSTM unit (or the hidden state vector)
at the time step ¢

This operator denotes the element-wise product

combines 1D-CNN and LSTM. This algorithm is designed
to process historical time-series data, transform it into win-
dow-based segments, and utilize the hybrid model to predict
Ethereum prices over a specified forecast horizon. It lever-
ages key preprocessing techniques such as sliding windows
and integrates a robust model initialization and prediction
pipeline.

Algorithm 2: Predict next n-day Ethereum prices

4 Experiment

In this study, we conduct experiments to forecast Ethereum
closing prices using a hybrid model that integrates 1D-CNN
and LSTM networks. Ethereum trading data, including daily
closing prices, was collected from Yahoo Finance,! cover-

ing the period from September 2014 to October 2024. To

function PREDICT NEXT PRICES(file, window_size, forecast_size)

timeseries_data < read_data(file)

tensors_data < slidingWindow(timeseries_data, window _size, forecast_size)

model < initialize_hybrid_model()

results < model.predict(tensors_data.X)

return results
end function

To be more specific, Algorithm 2 begins by reading the
historical Ethereum price data. The data is then transformed
into a series of tensor inputs using the sliding Window func-
tion, which segments the data based on specified window_
size and forecast_size parameters. Next, the hybrid model is
initialized, which sets up the combined 1D-CNN and LSTM
architecture. The prepared tensor data is fed into the model’s
predict method to generate the predicted price values for
the next n days. Finally, the predicted results are returned,
providing a comprehensive forecast for the Ethereum prices.
This algorithm efficiently combines preprocessing, model
initialization, and prediction in a streamlined manner.

capture temporal dependencies effectively, we applied a
sliding window technique on the dataset with three differ-
ent configurations: (i) a window size of 5 and a step size of
1, (ii) a window size of 10 and a step size of 3, and (iii) a
window size of 15 and a step size of 5. These varied win-
dow and step sizes were chosen to evaluate the impact of
different temporal contexts on model performance. These
sliding window time series datasets were split into training,
validation, and test sets with proportions of 70%, 15%, and
15%, respectively.

! https:/finance.yahoo.com/
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Fig. 3 Loss Curves for Window Size 5 and Step Size 1
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Fig. 4 Loss Curves for Window Size 10 and Step Size 3

For model development and training, we utilized the
TensorFlow” framework, leveraging Google Colab® for effi-
cient computational resources and GPU support. The hybrid
1D-CNN-LSTM model and baseline models of standalone
I1D-CNN and LSTM were trained under these settings to
assess performance improvements introduced by the hybrid
approach in capturing Ethereum price trends. The training
results of three different sliding window configurations are
illustrated in Figs. 3, 4, and 5.

2 https://www.tensorflow.org/

3 https://colab.google/
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The three images illustrate the training and validation loss
curves for the hybrid 1D-CNN-LSTM model, the standalone
1D-CNN model, and the standalone LSTM model, each
trained with different sliding window configurations. In each
set of plots, the hybrid model, 1D-CNN model, and LSTM
model show a significant decrease in training loss during
the initial epochs, followed by a stabilization phase as the
models approach convergence. The validation loss remains
relatively low throughout, indicating that each model gen-
eralizes well without substantial overfitting.
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Hybrid Model Loss
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In order to evaluate the trained models, the MSE, MAE, 1 N-1
RMSE, and R? metrics, with formulas listed in Egs. (6), (7), ~ MSE (y,y) =N

1D-CNN Model Loss

(8), and (9), were applied. The predicted values of the trained i=0
models over three test sets are visualized in Fig. 6,Fig. 7, and
Fig. 8, while the evaluation results are presented in Table 2.
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Fig. 7 Model Predictions vs.
true values for 10-day window
size and 3-day step size con-
figuration
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Table 2 Evaluation of model

Sliding window configurations Model MSE MAE RMSE R?
performances
Configuration 1: Hybrid 0.000474  0.015617 0.021764  0.975942
Window size (5 days) ID-CNN  0.000493 0.015234 0.022201 0.974966
Step size (1 day) LSTM 0.000519  0.017079  0.022780  0.973643
Configuration 2: Hybrid 0.000919  0.022381 0.030307  0.953374
Window size (10 days) ID-CNN 0.001510 0.029470 0.038856 0.923370
Step size (3 days) LSTM 0.000953  0.023013  0.030865  0.951683
Configuration 3: Hybrid 0.002202  0.037596  0.046921 0.887864
Window size (15 days) 1D-CNN 0.002081 0.036826 0.045618 0.893961
Step size (5 days) LSTM 0.001442  0.028632  0.037974  0.926428
1 N-1 maintained an advantage across varying temporal contexts
MAE(y,j)\) =N Z [vi = 3] (7)  in the test sets.
=0

RMSE(y,5) = \/MSE(y.5) (8)

Z?i:)l (}’i - 3’\1')2
-3

where N is the total samples; y and y are true and predicted

values, respectively; and y = 1%/ Zf;l Vi

R (y9)=1- )

Table 2 shows the experimental results in terms of Mean
Squared Error (MSE), Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and R? scores. These scores
allow us to compare the performance of the proposed hybrid
model, standalone 1D-CNN, and standalone LSTM mod-
els across different sliding window configurations. For the
first configuration, the hybrid model achieved the lowest
MSE (0.000474) and RMSE (0.021764), with a R? score
of 0.9759, indicating a strong predictive performance and
alignment with the true values. The standalone 1D-CNN
model performed similarly, with a slightly higher MSE
(0.000493) and a slightly lower MAE (0.015234) but with a
lower R? score of 0.9749. The LSTM model, while still accu-
rate, had a higher MSE (0.000519) and the highest MAE
(0.017079) among the three, reflecting a marginally lower
predictive capability for this configuration.

For the second configuration, the hybrid model continued
to outperform the standalone models, achieving an MSE of
0.000919 and an RMSE of 0.030307, alongside an R? score
of 0.9534. These metrics showed that the hybrid model
better captured the temporal structure with this configura-
tion. Finally, for the third configuration, the hybrid model
achieved the relatively lower scores of MSE, MAE, RMSE,
and R? in comparison with those of the runner-up model
(1D-CNN). However, all of the three models increased error
metrics. These results indicated that the hybrid approach

@ Springer

In summary, the hybrid model consistently achieved the
best performance in most of the configurations, reflected in
its lower error metrics and higher R? scores. This suggested
that combining the strengths of 1D-CNN in feature extrac-
tion and LSTM in handling sequential dependencies results
in a robust model for time series forecasting tasks.

5 Conclusion

This study introduces a hybrid 1D-CNN-LSTM model
designed to enhance the accuracy of cryptocurrency price
forecasting by capturing both local and temporal depend-
encies in Ethereum price data. Experimental results reveal
that the hybrid model consistently outperforms standalone
1D-CNN and LSTM models across various configurations,
as indicated by lower MSE, MAE, and RMSE values. These
findings highlight the efficacy of combining convolutional
layers for feature extraction with LSTM layers for sequence
modeling, creating a robust approach to time series forecast-
ing in highly volatile cryptocurrency markets. The sliding
window technique further contributed to capturing short-
term trends within the temporal data, improving model
robustness. Future research plans aim to optimize the hybrid
model with other deep learning architectures or extend this
framework to other financial assets, enhancing predictive
capabilities in dynamic and complex markets.
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