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H I G H L I G H T S

� Absorption power is calculated taking into account the phonon confinement effect.
� Optically detected electrophonon resonance line-width (ODEPRLW) as profiles of curves is determined.
� The ODEPRLW increases with increasing temperature and decreases with increasing wire's radius.
� The ODEPRLW in the case of confined phonons is greater than it is in the case of bulk phonons.
� The influence of phonon confinement is very small and can be neglected for wires with large radii.
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a b s t r a c t

We investigate the effect of phonon confinement on the optically-detected electrophonon resonance
(ODEPR) effect and ODEPR line-width in cylindrical quantumwires. The ODEPR conditions as functions of
the wire's radius and the photon energy are also obtained. The shifts of ODEPR peaks caused by the
confined phonon are discussed. The numerical result for the GaAs/AlAs cylindrical quantum wire shows
that in the two cases of confined and bulk phonons, the line-width (LW) decreases with increasing wire's
radius and increases with increasing temperature. Furthermore, in the small range of the wire's radius
ðRr30 nmÞ the influence of phonon confinement plays an important role and cannot be neglected in
reaching the ODEPR line-width.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The absorption line-width (LW) is well-known as a good tool
for investigating the scattering mechanisms of carriers and, hence,
can be used to probe electron–phonon scattering processes. To
investigate the effects of various scattering processes, absorption
line-widths (LWs) have been measured in various kinds of semi-
conductors, such as quantum wells [1–6], quantum wires [7–10],
and quantum dots [11–15]. These results show that the absorption
LW has a weak dependence on temperature and has a strong
dependence on system size. However, in those articles, the
absorption LW was investigated based on the interaction of
electrons and bulk phonons, the absorption LW in cylindrical

quantum wires (CQWs) due to the confined-LO-phonon–electron
interaction is still open for study.

A CQW is formed by a cylindrical wire of material one (such as
GaAs) whose length is very much larger than radius, embedded in
material two where the band-gap is much larger than it is in
material one (such as AlGaAs). Carriers are confined in material
one where the potential well develops by the band-gap difference
between two materials. In this structure, phonon confinement is
an essential part of the description of electron–phonon interac-
tions [16]. It causes the increase of electron–phonon scattering
rates [17–19] and significant nonlinearities in the dispersion
relations of acoustic-phonon modes, and modifies the phonon
density of states [20]. The polaronic states may be affected by
changes in the Frohlich Hamiltonian caused by phonon confine-
ment [21]. Since the early experimental observations of confined
phonons [22,23], phonon modes in low-dimensional structures
have been attracting much attention [16,24]. There have been
many models dealing theoretically with phonon modes, such as
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the hybridization theory, the Huang-Zhu model, the dielectric
continuum model (see Ref. [21] and references therein). Phonon
confinement is shown to be important whenever the transverse
dimensions of a quantum wire are smaller than the phonon
coherence length [16] and should be taken into account in order
to obtain realistic estimates for electron–phonon scattering in low-
dimensional structures [25–27]. Phonon confinement affects the
optically-detected electrophonon resonance (ODEPR) effect mainly
through changes in the selection rules for transitions involving
subband electrons, and affects the ODEPR line-width (ODEPRLW)
through changes in the probability of electron–phonon scattering.
The LW is defined by the profile of curves describing the depen-
dence of the absorption power (AP) on the photon energy or
frequency [28,29]. Recently, our group has proposed a method,
called the profile method, to computationally obtain the LW from
graphs of the AP [30], and we used this method to determine the
cyclotron resonance LW in CQWs [31] and in GaAs/AlAs quantum
wires [32].

In the present work, we investigate the intersubband
ODEPRLW in a CQW. We study the dependence of the ODEPRLW
on the wire's radius and the temperature of system. The results of
the present work are fairly different from the previous results
because the phonon confinement is taken into account and
because the results can be applied to optically detect the resonant
peaks. The paper is organized as follows: calculations of analytic
expression of the AP in CQWs taking into account the phonon
confinement effect are presented in Section 2. The graphic depen-
dence of the AP on the photon energy in the GaAs/AlAs CQW is
shown in Section 3. From this dependence, we obtain the LW and
examine the dependence of the LW on temperature and wire's
radius. Finally, remarks and conclusions are shown briefly in
Section 4.

2. Absorption power in a cylindrical quantum wire

Let us consider a cylindrical GaAs wire of radius R and length L
ðLbRÞ embedded in AlAs. Under the infinitely deep well approx-
imation, the electron wave function can be written as [33]

ψℓj;kz r!
� �

¼ eikzzffiffiffi
L

p DℓjJℓ xℓj
r
R

� �
eiℓϕ; ð1Þ

with the corresponding energy

Eℓj kzð Þ ¼ ℏ2k2z
2me

þℏ2ðxℓjÞ2
2meR

2 ; ð2Þ

where ℓ¼ 0; 71; 72;…; j¼ 1;2;3;…, r!¼ ðr;ϕ; zÞ are the cylind-
rical coordinates for the system and kz denotes the axial wave-
vector component. Dℓj ¼ 1=ð ffiffiffiffi

π
p

yℓjRÞ is the normalization factor, xℓj
is the jth zero of the ℓ th order Bessel function, i.e., JℓðxℓjÞ ¼ 0 and
yℓj ¼ Jℓþ1ðxℓjÞ, and me is the effective mass of electron.

When an electromagnetic wave characterized by the time-
dependent electric field of amplitude E0 and angular frequency ω
is applied to this system along the r-direction, the AP delivered to
the system, PðωÞ, is given by [34]

PðωÞ ¼ ðE20=2Þ RefsrðωÞg; ð3Þ
where “Re” denotes “the real part of”, srðωÞ is the r-component of
the optical conductivity tensor. This component can be written
further in a tangible form using the projection method on the
linear response scheme as [35,36]

Re sr ωð Þ� �¼ e2∑
α;β

jjαβr jjrαβj
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½ℏω�ðEβ�EαÞ�2þ½γαβðωÞ�2; ð4Þ

here e is the charge of a conduction electron, Eα � Eℓα jα ðk
α
z Þ and

Eβ � Eℓβ jβ ðk
β
z Þ are the energies of the initial and the final states,

f α � f ðℓα; jα; kαz Þ being the Fermi–Dirac distribution function for an
electron at the state jα〉, rαβ and jαβr are the matrix elements of the
position operator and the current operator, respectively, given by
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In these expressions, it is difficult to determine the explicit forms
of the matrix elements Nℓα jαℓβ jβ ðRÞ and Mℓα jαℓβ jβ ðRÞ for arbitrary
states. So, in the following calculation we will only make use of the
radial wave function for the ground state employed recently by
Masale and Constantinou [37] and Gold and Ghazali [38]. The
component γαβðωÞ in Eq. (4) is called the damping term [35,36]
and is given by the following equation:

γαβðωÞðf β�f αÞ
¼ π∑

μ;q
jCβμðqÞj2 ½ð1þNqÞf αð1�f μÞ

n
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n
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o
; ð7Þ

here δð…Þ is the Dirac's delta function; Nq is the Planck distribution
function for a phonon in the state jq〉¼ jm;n; qz〉; ω2

q ¼ω2
0�

γ2ðq2mnþq2z Þ where ω0, γ, qz are, respectively, the zone-center LO
phonon frequency, the velocity parameter (4.73�103 m s�1 for
GaAs [39]), the wave vector of phonon along the wire axis; and
CβμðqÞ is the matrix elements of electron–phonon interaction and
depends on the scattering mechanism. In this model, it is given by

CβμðqÞ ¼ CmnðqzÞIℓβ jβℓμ jμ ðqmnÞδkβz ;kμz þqz
; ð8Þ

where [33,40]
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with qmnR¼ xmn [41], V ¼ πR2L is the volume of the quantum wire,
χ0 and χ1 are the static and high-frequency dielectric constants,
respectively.

To obtain a detailed expression for the AP, we need to calculate
γαβðωÞ in Eq. (7) and then substitute it into Eqs. (4) and (3). To do
this, we change the summations over q and μ into integrals as

∑
q
-

L
2π

∑
m;n

Z þ1

�1
dqz; ∑

μ
-

L
2π

∑
ℓμ jμ

Z þ1

�1
dkμz : ð11Þ

Also, the power absorption in the system for the transition
between the two lowest sublevels is simply calculated at the band
edge ðkαz ¼ 0Þ. Note that the selection rule requires kαz ¼ kβz or a
direct transition. After some mathematical manipulation, we have

γαβ ωð Þ f β�f α
h i

¼ ∑
ℓμ ;jμ

∑
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jIℓμ jμℓβ jβ j2
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� �h i
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with EF being the Fermi level.
We can see that these analytical results appear very involved.

However, physical conclusions can be drawn from graphical
representations and numerical results, obtained from adequate
computational methods.

3. Numerical results and discussion

The expression of γαβðωÞ in Eq. (7) exhibits a resonant behavior
due to the ODEPR condition

ℏω7ΔEβα7ℏωq ¼ 0; ð14Þ
where ΔEβα �ΔEℓβ jβℓα jα ¼ Eβ�Eα . Eq. (14) is the ODEPR condition
in quantum wires. This result is the same as Lee's result for a
quantum wire with the Woods–Saxon potential [42] and in a
quantum well [43]. For the projection method in present calcula-
tion, there are three electron states involved in γαβðωÞ: the initial
state jα〉, the intermediate state jμ〉, and the final state jβ〉. This
means that an electron at the initial state can move directly to the
final state or to the intermediate state and then to the final state.
When the ODEPR conditions are satisfied, in the course of scatter-
ing events electrons in the state jℓα; jα〉 can transit to another state
jℓβ ; jβ〉 by absorbing a photon of energy ℏω during the absorption
and/or emission of a confined LO-phonon of energy ℏωq. To clarify
the obtained results we numerically evaluate the AP, PðωÞ, for a
specific GaAs/AlAs CQW. The AP is considered to be a function of
the photon energy. The parameters used in our computational
evaluation are as follows [37]: χ1 ¼ 10:9; χ0 ¼ 13:1, me ¼ 0:067�
m0 (m0 being the mass of free electron), ℏω0 ¼ 36:25 meV,
EF ¼ 0:5� 10�18 J, E0 ¼ 5� 106 V m�1, and L¼100 nm. The follow-
ing conclusions are obtained in the extreme quantum limit, where
only the lowest subbands are occupied: jℓα; jα〉¼ jℓμ; jμ〉¼ j0;1〉,
jℓβ ; jβ〉¼ j1;1〉.

In Fig. 1, the dashed curve (R¼16 nm) corresponds to
ΔE1101 ¼ 19:2259 meV and to the energy of confined phonon
ℏωq ¼ 36:2469 meV. From the graph we can see that each peak
describes a different resonance. By using the computational
method, we easily determine that from the left to the right the

first and the third peaks (of this curve) correspond to the values of
the photon energy ℏω� ¼ 17:0210 meV and ℏωþ ¼ 55:4728 meV,
respectively. They satisfy the ODEPR conditions ℏω8 ¼ ℏωq8
ΔE1101 ðℏω8 ¼ 36:2469819:2259 meVÞ and describe the inter-
subband transitions of an electron from the initial state j0;1〉 to the
final state j1;1〉 by absorbing (emitting) a phonon ℏωq and
emitting (absorbing) a photon ℏω�ðℏωþ Þ. The second peak corre-
sponds to the photon energy ℏω0 ¼ 36:2469 meV, satisfying the
condition ℏω0 ¼ ℏωq. This condition implies that an electron
absorbs (emits) a photon along with emitting (absorbing) a
phonon with the energy equals the photon energy so that energy
of electron does not change. The cases of R¼14 nm (solid curve)
and R¼18 nm (dotted curve) can be understood similarly. The
ODEPR conditions give rise a possibility to determine the differ-
ence between energy levels experimentally by using an electro-
magnetic wave. In fact, from the figure and above ODEPR
conditions we easily see that the first and the third peaks of each
curve are always symmetrical to the second one and the distance
between these two peaks (in the unit of energy) is always twice as
much as ΔE1101. So, if this distance is measured, the energy
difference ΔE1101 can be obtained. Furthermore, as the CQW's
radius increases the difference between two energy levels ðΔE1101Þ
decreases, so the first and the third peaks shift to the second one
as seen in the figure. As R becomes infinite (bulk semiconductor),
the first and the third peaks are disappeared. In the following, we
will use the third peak of each curve to investigate the influence of
the phonon confinement on the LWs of ODEPR peaks. To do this
we plot the dependence of the AP on the photon energy for both
models: the bulk-phonon (3D) and the confined-phonon models.

In Fig. 2 we can see that all the peaks in the case of bulk
phonons are located at the photon energy of 55.4730 meV while
the peaks in the case of confined-phonon absorption are at the
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Fig. 1. Dependence of the AP on the photon energy for the different values of the
wire's radius. The solid, the dashed and the dotted curves correspond to R¼14 nm,
R¼16 nm and R¼18 nm, respectively. Here, T¼300 K.
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Fig. 2. The AP as a function of photon energy in the GaAs/AlAs CQW of R¼16 nm
for three values of temperature: the solid, the dashed, and the dotted curves
correspond to 100 K, 200 K, and 300 K, respectively.
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photon energy of 55.4728 meV. The difference between these two
values is seen not to be considerable and can be neglected. Thus,
the phonon confinement effect does not have an effect on the peak
location of the ODEPR. The appearances of resonant peaks at the
same value of the photon energy also show that the ODEPR does
not depend on the temperature. However, the influence of the
phonon confinement is much more considerable when we con-
sider the LW. It is easy to see that the LWs in the case of confined
phonons are larger than they are in the case of bulk phonons.
However, a detailed evaluation can be performed by using the
profile method. This is a method of determining the LW based on
graphs of the AP versus the photon energy with the help of a
computational program. It was suggested by our group and has
been applied successfully in some of our recent works [30–32].
Utilizing this method we obtain the dependence of the LW on the
temperature as shown in Fig. 3. From Fig. 3 we can see that the LW
increases with increasing temperature in both models of phonon
(the bulk-phonon and confined-phonon models). Physically, this is
reasonable because the possibility of the electron–phonon scatter-
ing rises as the temperature increases. It is also seen that the LW
for confined phonons are larger than they are for the correspond-
ing bulk phonons. This means that phonon confinement gives rise
to the possibility of the electron–phonon scattering.

In Fig. 4, the AP is plotted versus the photon energy for the two
above-mentioned models of phonons at the different values of the
wire's radius. From the figure, we can see that the resonant peaks
shift to smaller photon energy when the wire's radius increases.
The appearance of these peaks can be explained by using the
ODEPR condition, as shown above in Fig. 1. For each value of the
photon energy at the resonance, the LW for confined phonons is
always larger than it is for the corresponding bulk phonons. A
detailed consideration based on the profile method is shown in
Fig. 5 where we plot the dependence of the LW on the wire's

radius. From Fig. 5, we can see that the LW decreases with
increasing wire's radius for both models of the phonon. The result
is consistent with that shown in some previous works [2,8,9]. This
can be explained physically by a decrease in the possibility of
electron–phonon scattering when the wire's radius increases.
Furthermore, the LW for the confined-phonon case varies faster
and has a larger value than it does for the bulk-phonon case, and
the smaller the wire's radius is, the more pronounced the
difference is. Thus, as the wire's radius decreases, the phonon
confinement becomes more important and cannot be neglected.
For wires with radii larger than 30 nm, the influence of phonon
confinement on the LW is very small and can be ignored.

4. Conclusions

In the present paper, we have calculated analytical expressions
for the conductivity tensor and the AP in CQWs due to confined
electron–confined-LO phonon interaction. From the graphs of the
AP, we obtained the LW as a profile of curves. Computational
results show that in the cases of both bulk and confined phonons,
the LW increases with increasing temperature and decreases with
increasing the wire's radius. In addition, the value of the LW in the
case of confined phonons is greater than and asymptotic to that in
the case of bulk phonons when R increases. However, for wires
with radii larger than 30 nm, the influence of the phonon
confinement on the LW is very small and can be ignored. This
result is the same as that obtained in a two-dimensional system
which is verified by theory and experiments.

References

[1] J.M. Miloszewski, M.S. Wartak, P. Weetman, O. Hess, Journal of Applied Physics
106 (2009) 063102.

[2] H.N. Spector, J. Lee, P. Melman, Physical Review B 34 (1986) 2554.
[3] S.H. Park, S.L. Chuang, Applied Physics A 78 (2004) 107.
[4] S. Melnik, G. Huyet, A.V. Uskov, Optics Express 14 (2006) 2950.
[5] F. Zhang, L. Li, X.H. Ma, Z.G. Li, Q.X. Sui, X. Gao, Y. Qu, B.X. Bo, G.J. Liu, Acta

Physica Sinica 61 (2012) 054209.
[6] P.K. Kondratko, S.L. Chuang, G. Walter, T. Chung, N. Holonyak, Applied Physics

Letters 83 (2003) 4818.
[7] H. Weman, L. Sirigu, K.F. Karlsson, K. Leifer, A. Rudra, E. Kapon, Applied Physics

Letters 81 (2002) 2839.
[8] H. Ham, H.N. Spector, Physical Review B 62 (2000) 13599.
[9] H. Ham, H.N. Spector, Journal of Applied Physics 90 (2001) 2781.
[10] W.H. Seo, B.H. Han, Solid State Communications 119 (2001) 367.
[11] C. Matthiesen, A.N. Vamivakas, M. Atatüre, Physical Review Letters 108 (2012)

093602.
[12] C.Y. Lin, F. Grillot, N.A. Naderi, Y. Li, L.F. Lester, Applied Physics Letters 96

(2010) 051118.
[13] K.C. Kim, I.K. Han, J.I. Lee, T.G. Kim, Nanotechnology 21 (2010) 134010.
[14] A. Ulhaq, S. Ates, S. Weiler, S.M. Ulrich, S. Reitzenstein, A. Löffler, S. Höfling,

L. Worschech, A. Forchel, P. Michler, Physical Review B 82 (2010) 045307.
[15] F.X. Peng, M.J. Hai, L.X. Jin, X.G. Yong, Z.H. Yong, Y. Tao, Optics Letters 37 (2012)

1298.
[16] C.R. Bennett, K. Guven, B. Tanatar, Physical Review B 57 (1998) 3994.

100 200 300 400 500

1

2

3

4

Temperature K

Li
ne

w
id

th
m

eV
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Fig. 4. The AP as a function of the photon energy in GaAs/AlAs CQW at T¼250 K for
two models of phonon; the solid, the dashed, and the dotted curves correspond to
radius R¼14 nm, 16 nm, and 18 nm, respectively.
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Fig. 5. Comparison of the LW in GaAs/AlAs CQW at T¼250 K between the cases of
bulk phonons (the closed squares) and confined phonons (the closed circles).
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