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Abstract—Checkpointing Aided Parallel Execution (CAPE) is a
paradigm using checkpointing technique to distribute sequential
programs equipped with OpenMP directives in distributed sys-
tems. In its first prototype, the use of a complete checkpointer
strongly decreased global performance. This paper shows how
the performance of the CAPE paradigm have been improved
using discontinuous incremental checkpointing and provide an
in-depth analysis of this performance.

I. INTRODUCTION

The architecture of parallel machines has drastically chan-
ged over the past fifteen years, from mainframes that were
the typical solution for parallel computing at the beginning
of the 90’s to the clusters [1] at the end of the 90’s or more
recently to grids [2]. Available tools to develop applications
on top of these platforms also have evolved but differently.
As two main architectures have been identified for parallel
machines, shared-memory architectures on the one hand and
distributed-memory architecture on the other hand, specific
tools have been developed to cope with their specificities. One
is OpenMP [3], developed for shared-memory machines and
PVM, and the other is MPI [4], for distributed-memory sys-
tems. If the programming paradigm associated with OpenMP
is quite simple to handle by programmers for its similarities
with the more traditional sequential paradigm, the message-
passing paradigm associated with distributed-memory system
is more difficult to convince a large public to use it. As a result,
there have been several attempts to develop a compiler that
automatically generates a version of OpenMP programs that
is capable of running on a distributed-memory architecture.
They can be divided into two categories.

The first category consists in using a Single System Image
(SSI) in order to hide the distributed nature of the underlying
architecture to the parallel application [5]. An SSI aims at
providing an abstraction layer on top of a distributed system
so that users and applications can use resources as they were
parts of a single monolithic machine. Typically, this means
that the set of processors is seen as an SMP or a single
multicore processor; the set of available RAMs in each node
is seen as a single memory; and the set of file systems is
accessible as a single one. Several SSI are now available
and mature with different capabilities and targeting different
architectures. Some solutions for clusters are Genesis [6],
Millipede [7], Nomad [8] and Kerrighed [9]. A newer solution

for grids is XtreemOS [10], a derivative product from Ker-
righed. XtreemOS is still an ongoing work and also targeting
clouds [11]. The main advantage of using an SSI to run an
OpenMP program is that the program can run as is, with no
need to recompile if an executable file is already available.

The second category consists in using a parallel library and
translating OpenMP directives and memory updates to call to
the parallel library functions. Two solutions have emerged as
of today, one developed on top of MPI [12] and the other
one on top of Global Arrays [13]. The main criticism towards
solutions based on a parallel library is that they have lots of
difficulties to take into account all memory accesses. Typically,
when a memory location is accessed through a differentiation
or a set of differentiation, it is sometimes very difficult for the
compiler to identify the data type associated to the memory
area.

Apart from the above two categories, we have been develop-
ing CAPE (which stands for Checkpointing Aided Parallel Ex-
ecution) [14] [15], a method that uses checkpointing technique
to execute OpenMP programs on distributed architectures. The
first prototype of CAPE proved the feasibility of the approach
but the use of a complete checkpointer as the base tool strongly
decreased the global performance. This article aims at showing
how the performance of the CAPE paradigm have been
improved using the discontinuous incremental checkpointer
we developed and at providing an in-depth analysis of this
performance.

The article is organized as follows: section II presents the
principles inherent to CAPE. The next one focusses on the
discontinuous checkpointer and develops how these principles
have been modified to cope with incremental checkpoints. The
last section before the conclusion is dedicated to the in-depth
analysis of the performance measurements.

II. CAPE PRINCIPLES

CAPE, which stands for Checkpointing Aided Parallel Ex-
ecution, aims at automatically transforming a parallel shared-
memory program so that it can be executed on a distributed-
memory architecture. In the current implementation that we
developed, CAPE is able to handle OpenMP directives pro-
vided in a C programming language program. However, CAPE
is not language dependent and could be extended to any
programming language and/or parallel library or tool.



The basic idea of CAPE is that while many researches have
been conducted in order to develop checkpointing applications
to save the state of a program, CAPE makes use of checkpoints
in order to allow programs to run on a distributed-memory ar-
chitecture instead of a shared-memory architecture. The main
difference between these two architectures remains in the fact
that two segments out of three (both text and data segments
vs. the stack) are shared by the different threads belonging to
a single parallel process while the two processes belonging to
a single parallel application are executing in two completely
different memory address spaces. For both architectures, stacks
belonging to different threads are stored at different locations.
And as a thread should not access the private data of another
directly, there should be no portability problem from a shared-
memory architecture to a distributed-memory architecture. As
most programs executing on distributed-memory architectures
are SPMD, the text segment which is read-only by definition
is not changed during execution and is therefore consistent
among all the nodes. Thus, this segment involves no problem
either. The situation is different for the data segment which
memory locations may be accessed by any thread at any time.
In the scope of CAPE, the virtual address space is taken into
account as a whole and no difference is made among the
different segments.

# pragma omp parallel for
for ( A ; B ; C )

D

↓ automatically translated into ↓

parent = create ( original )
if ( ! parent )

exit
copy ( original, target )
for ( A ; B ; C )

parent = create ( beforei )
if ( parent )

ssh hostx restart ( beforei )
else

D
parent = create ( afteri )
if ( ! parent )

exit
diff ( beforei, afteri, deltai )
merge ( target, deltai )
exit

parent = create ( final )
if ( parent )

diff ( original, final, delta )
wait for ( target )
merge ( target, delta )
restart ( target )

Fig. 1. Template for OpenMP with complete checkpoints.

Figure 1 presents the effective transformation that is per-
formed on a code that specifies a parallel for that has all
loop iterations D satisfy Bernstein’s conditions using OpenMP
directives. The parent, i.e. the master node, is in charge of
managing the slaves only and does not execute any loop
iteration in the parallel part. However, this is not mandatory
and the master node could also take part in the execution of
one or more loop iterations. The translation is based on the
following functions:

• create creates a checkpoint and saves it in the file
provided as a parameter. The value returned by the
function is used to identify whether the function has
just created the checkpoint and returned, or the process
has been created after resuming the execution from the
checkpoint. This function is very similar to the fork
system call, except that create returns TRUE after
generating the checkpoint and FALSE after resuming the
execution from the checkpoint.

• copy copies a file into another one.
• diff saves into the last file provided as a parameter the

list of modifications that should be applied on the first
file to obtain the second one.

• merge applies the list of modifications saved in the
second file provided as a parameter to the checkpoint
file provided as the first parameter.

• wait_for returns after the file whose the name is
provided as a parameter is available.

• restart resumes the execution of the current process
from the checkpoint file provided as a parameter.

Note that the operation that consists in resuming the execution
of the checkpoints generated for each loop iteration, the line
in italic in Fig. 1, is executed on the master node but delegated
to an external process in charge of managing the distribution
of processes on a set of remote resources. BOINC [16], used
in the scope of the Seti@Home project, is probably one of the
most famous tool aiming at distributing works among a set
of computing resources. For an in-depth description of CAPE,
refer to [14] and [15].

III. DICKPT AND A NEW MODEL FOR CAPE

The performance analysis of the implementation of CAPE
based on a complete checkpointer showed that an important
part of the program execution is spent in creating checkpoints,
sending checkpoints over the network, computing the differ-
ence between two checkpoints, and injecting the previously
computed difference into a process [17]. An optimization
had been introduced by distributing the computation of the
differences between two checkpoints on the set of nodes and
then return to the master node the difference only instead of the
complete checkpoint, but performance results still remained
quite poor as at least one complete checkpoint had to be sent
over the network. It clearly appeared that the unique viable
solution consists in using incremental checkpoints only.

The main idea behind using incremental checkpoints is
twofold: first, this allows to transmit far less data over the



network; second, the time needed to deal with incremen-
tal checkpoints is more interesting. For example, instead
of creating a checkpoint and then compute the differences
between this new checkpoint and another one that serves as
a reference, it is now possible to directly generate the set of
differences as it is the checkpoint itself. Moreover, the use
of incremental checkpoints also allows to avoid the copy of
complete checkpoints that is time consuming.

Despite the availability of several incremental checkpoint-
ers, we decided to implement our own one in order to make
sure it perfectly matches our needs [18]. In fact, the imple-
mentation of CAPE based on incremental checkpoints requires
the ability to suspend and resume the checkpointer. Thus,
we developed DICKPT [18] (which stands for DIscontinuous
ChecKPoinTing) that allows to start and stop checkpointing
at any location in the program. It is based on a buffer and
a set of three primitives. The buffer aims at storing all the
modifications that occurred on the process since the last time
the checkpointer started or resumed its execution. These three
primitives behave as follows:

• start clears the buffer and then starts or resumes check-
pointing. Any modifications occurring on the process
after the call to start are reported in the buffer. A
call to start while the checkpointer is active results
in clearing the content of the buffer which is definitively
lost.

• stop stops checkpointing, i.e. any modifications that oc-
curs on the process after the call to stop is not reported
in the buffer. A call to stop while the checkpointer is
not active is just discarded.

• create saves the content of the buffer in the file
provided as a parameter. Several calls to create may
occur inside a start/stop pair. In this case, the buffer
containing the modifications that have been performed
on the process is reinitialized for each call. There are
two sub cases depending on the name of created files.
The first case occurs when the file name matches the one
of previous call. In this case the new file will be merged
with the existed file. In the other case, the new file will be
independently created. Function create may be called
while the checkpointer is active.

For the rest of the paper, the meaning of function create
is the one above.

Figure 2 presents the new version of the piece of code
that is substituted to an OpenMP parallel for construct. The
semantic associated to functions merge on this figure are
exactly the same as the one presented for Fig. 1. The other
functions are defined as follows:

• master returns TRUE when executing on the master
node and FALSE when executing on a slave.

• last_parallel returns TRUE when the current paral-
lel block is the last one of the entire program and FALSE
otherwise.

• send transfers the content of the file provided as the first
parameter to the node provided as the second parameter.

# pragma omp parallel for
for ( A ; B ; C )

D

↓ automatically translated into ↓

1 if ( master ( ) )
2 start ( )
3 for ( A ; B ; C )
4 create ( before )
5 send ( before, slavex )
6 create ( final )
7 stop ( )
8 wait for ( after )
9 inject ( after )
10 if ( ! last parallel ( ) )
11 merge ( final, after )
12 broadcast ( final )
13 else
14 receive ( before )
15 inject ( before )
16 start ( )
17 D
18 create ( afteri )
19 stop ( )
20 send ( afteri, master )
21 if ( ! last parallel ( ) )
22 receive ( final )
23 inject ( final )
24 else
25 exit

Fig. 2. Template for OpenMP with incremental checkpoints.

• broadcast sends a file to all the slaves. This function
can only be executed on the master node.

• receive waits for the file provided as a parameter to
be available.

• inject updates the current process with the information
provided in the checkpoint file provided as a parameter.
Note that this function does not update the instruction
pointer.

• wait_for waits and merges all the components of the
file provided as a parameter.

Two assumptions have been made to make the template
works. The first one is that the platform for the master node
and the slaves are homogeneous. This is easy to achieve,
especially today with the rapid growth of virtualization. The
second assumption states that no slave process has interactions
with its environment. This second assumption can easily be
handled by intercepting the calls to system calls and returning
the result of the execution of the system call on the master
node. In fact, if the master node is the only one to execute
system calls, it becomes easy to detect whether a system call
had already been executed and thus avoid its execution the



second time.
Apart from the use of incremental checkpoints instead of

complete checkpoints, one of the most noticeable improve-
ments between the original template and the one in Fig. 2 is
that the process is never restarted. Checkpoints, which are far
lighter than in the previous case, can only be used to inject
the differences into a process and cannot be used to restart
the process directly. Also note that this new template can be
applied several times one after another inside a single program,
or can be nested.

IV. PERFORMANCE EVALUATION

In order to validate our approach, some performance mea-
surements have been conducted on a Desktop Grid. This
testbed is composed of nodes including Intel(R) Core(TM)2
Duo E8400 CPUs running at 3 GHz and 2 GB RAM, operated
by Linux kernel 2.6.35 with Ubuntu 10.10 flavour, and con-
nected by a standard Ethernet. In order to avoid as much as
possible external influences, the entire system was dedicated
to the tests during performance measurements.

The program used for tests is a matrix-matrix product for
which the size varies from 3,000×3,000 to 12,000×12,000.
Matrices are supposed to be dense and no specific algorithm
has been implemented to take into account sparse matrices.
Each experiment has been performed at least 10 times and a
confidence interval of at least 90% has always been achieved
for the measures. Data reported here are the means of the
10 measures.

Size Sequential OpenMP
3,000 258.9 142.4
6,000 1,852.7 1,048.7
9,000 7,314.5 3,986.2

12,000 14,990.5 8,999.4

TABLE I
EXECUTION TIME (IN SECONDS) ON A SINGLE NODE.

The execution of both the sequential version and the
OpenMP version of the program on one of the nodes gives
the result provided in Table I. A single core was used for
the sequential execution of the program, while the OpenMP
program took benefits of the two cores. One can check that
results in the Table I are consistent as the execution time for
both sequential and OpenMP versions are directly proportional
to the cube of the matrix size. Typically, this means that
no important cache effects have polluted the performance
measurements, probably because almost all data were fitting
into memory. Moreover, the speed-up obtained by OpenMP is
1.8 for the first three matrix sizes and 1.65 for the fourth one,
which are expected values.

Figure 3 and 4 present the execution time in seconds of
the matrix-matrix program for various number of nodes and
matrix sizes. Note that, despite the fact that processors are dual
core, a single core was used during the experiments. Three
measures are represented each time: the left one is associated

with CAPE using complete checkpoints, the middle one is
also associated with CAPE but with incremental checkpoints,
and the right one is associated with MPI. The MPI program
has been developed for reference as exchanges to keep all
processes consistent between nodes are kept minimal.

For both figures, two series of graphs are provided. The
upper series is related to the master node, while the lower
series is associated with the slave nodes. Each series is
composed of four graphs:

• Init is the elapsed time between the beginning of the
program and the beginning of the parallel for loop in
the matrix-matrix product. On Fig. 2, these are all lines
before the first one.

• Before is the time spent to create and send the check-
points (lines 2 to 5) on the master. On slave nodes, this
includes receiving and updating the slave process using
the checkpoint (lines 14 and 15). For the specific case of
MPI, this is the time to send data to slave nodes.

• Final is the time to generate the last checkpoint on the
master node (lines 6 and line 7) and the time to do the
job on the slaves (line 16 and line 17).

• Update is the time to receive all updates from the slave
nodes and inject them in the master node (lines 8 and
line 9). On slave nodes, this is the time to generate the
incremental checkpoints and send them to the master
node (lines 18 to 20). For the specific case of MPI, this
is the time to send data to the master node.

Figure 3 presents the execution time for different number
of nodes. The size of matrices are 9,000×9,000. However,
similar trends are observed for the other matrix sizes. One
can remark that the 3-node case apart, the execution time
when using incremental checkpoints is always better than the
execution time when using complete checkpoints. The larger
the number of nodes, the smaller the execution time for both
CAPE using incremental checkpoints and MPI. Moreover, the
execution time for CAPE using incremental checkpoints is
getting closer and closer as the number of nodes is increasing.
The case for CAPE using complete checkpoints is different.
When few nodes are used for the computation (up to 11),
the execution time is decreasing as the number of nodes is
increasing and the value is quite similar to the other two cases
(CAPE using incremental checkpoints and MPI). However, for
larger number of nodes, the execution time for CAPE using
complete checkpoints is directly proportional to the number
of nodes. This is due to the time needed to generate the
checkpoints to be sent and the time to send these checkpoints
over the network (there is at least one complete checkpoint for
each slave node). This clearly justifies the use of incremental
checkpoints for CAPE.

At first, the performance for three nodes may look strange as
the execution time of the program with CAPE using complete
checkpoints is better than the execution time with CAPE using
incremental checkpoints. In fact, for small number of nodes,
the amount of data transmitted over the network between the
different nodes is almost the same for both complete and incre-



On the master node.

(a) Init (b) Before (c) Final (d) Update

On the slave nodes.

(e) Init (f) Before (g) Final (h) Update

Fig. 3. Execution time (in seconds) vs. number of nodes.

On the master node.

(a) Init (b) Before (c) Final (d) Update

On the slave nodes.

(e) Init (f) Before (g) Final (h) Update

Fig. 4. Execution time (in seconds) vs. problem size.

mental checkpoints as in the case of incremental checkpoints
slave nodes receive a big part of matrices. However, in the case
of incremental checkpoints, processes are monitored in order
to capture the memory pages that are accessed for writing.
The monitoring of the slave processes involves a computing
overhead that is reduced proportionally with the amount of
computation, and therefore with the number of nodes, when
a large number of nodes is used. Fortunately, this is not a
problem for CAPE. Processors with 4 and even 8 cores are
available on the market and, as a result, CAPE is targeting
architectures with a larger number of nodes.

Figure 4 presents the execution time for difference matrix

sizes. The number of nodes involved in the parallel machine
is 31. However, the remarks below would be the same with
other number of nodes. The figure clearly shows that the
execution time for CAPE using complete checkpoints is di-
rectly proportional to the square of the matrix size, while the
execution time for both CAPE using incremental checkpoints
and MPI is directly proportional to the matrix size. This is
due to the fact that the virtual address space of the processes
is mainly composed of the matrices, and that the complete
virtual address space is transmitted over the network for
complete checkpoints. However, for CAPE using incremental
checkpoints and MPI, the complete virtual address spaces are



not transmitted over the network and only the data that have
been updated during the computation of the matrix-matrix
product are considered. Moreover, one can remark that the
execution time for CAPE using incremental checkpoints and
MPI are usually very close. This in-depth analysis of the
performance results shows that globally the execution time for
CAPE using incremental checkpoints is only 10% higher than
the execution time for MPI, excepts for 3,000×3,000 matrices
where the ratio is 1.3.

Note that graphs (c) on Fig. 3 and 4 do not show any data for
CAPE with incremental checkpoints and MPI as the execution
time for both is too small to be represented.

Fig. 5. Speedup vs. number of nodes.

Figure 5 shows the speedup of CAPE using incremental
checkpoints for various number of nodes and matrix sizes.
The red line represents the theoretical maximum speedup.
The figure clearly shows that the solution is efficient with an
efficiency (the ratio of the speedup over the number of nodes)
in the range from 75% to 90%. Also, it highlights that the
larger the size of the matrices, the higher the speedup, which
was not the case with the complete checkpoint implementation.

V. CONCLUSION AND FUTURE WORKS

This article presented CAPE and more specifically the
modifications that have been applied on the template algorithm
to translate automatically parallel programs with OpenMP
directives into a parallel program targeted for distributed-
memory architectures together with the discontinuous incre-
mental checkpointer we developed. An in-depth performance
analysis is also provided that shows the legitimation of the
incremental checkpointing approach.

At present, CAPE has proven its efficiency for the gen-
eration of code satisfying the Bernstein’s conditions for
distributed-memory architecture. In the near future, we have
planed to go further the Bernstein’s conditions and take into
account shared variables.
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[15] Éric Renault. Parallelization of For Loops Using Checkpointing Tech-
niques. Proceedings of the 2005 International Conference on Parallel
Processing Workshops, Oslo, Norway, pp. 313–319, June 2005.

[16] David P. Anderson. BOINC: A System for Public-Resource Computing
and Storage. Proceedings of 5th IEEE/ACM International Workshop on
Grid Computing, Pittsburg, PA, pp. 4–10, November 2004.
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