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Abstract. The aim of this note is to establish some connections of weak convergence

of L1- random variables with the convergence of the dispersion functions.

1. Introduction

In this note, let (Ω,A, P ) denote a probability space, and let L1 denote the set
of all L1- random variables. Let X ∈ L1 and FX be the distribution function of
X . We define the dispersion function of X by

DX(u) := E | X − u | for every u ∈ R = (−∞, +∞),

that is, the absolute moment of order r = 1 of the random variable X with
respect to u, for all u ∈ R.

In recent years some results concerning the dispersion function DX(u) have
been investigated by Munoz-Perez and Sanchez-Gomez in [1, 2], Thu and Turkan
in [3], Thu and Hung in [4 - 6], Hung in [7].

It is worth pointing out that the dispersion function DX(u) can be considered
as a generalization of the mean absolute deviation and the median absolute
deviation (see for more details [3 - 6]).

The dispersion function has the following elementary properties (see [1, 2, 4
- 7] for the complete bibliography).
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a. The function DX(u) is almost everywhere differentiable on R and its deriva-
tive has at most a countable number of discontinuity points.

b. The function DX(u) is convex on R.
c. lim

u→+∞D′
X(u) = 1 and lim

u→−∞D′
X(u) = −1.

d. lim
u→+∞(DX(u) − u) = −EX and lim

u→−∞(DX(u) + u) = EX.

e. FX(u) = 1
2 (D′

X(u) + 1), for all u ∈ CF , where D′
X(u) is derivative of the

function DX(u) and CF denotes a set of continuity points of FX .

f. DX(u) =
+∞∫
−∞

| FX(x) − Fu(x) | dx, where Fu(x) is the distribution function

of the degenerate random variable at u.

g.
+∞∫
−∞

| DX(u) − DEX(u) | du = σ2.

The main purpose of this note is to establish some connections between
the weak convergence of the L1- random variables (denoted by ⇒) and the
convergence of the dispersion functions in order to outline the relation between
the dispersion functions and the distribution functions. The following theorems
are main results of this paper.

Theorem 1. Let X, X1, X2, . . . , Xn, . . . ∈ L1. If there exists a p > 1, such
that

sup
n∈N

E | Xn |p< +∞ (A)

and if
FXn ⇒ FX , as n → +∞,

then
DXn(u) → DX(u) as n → ∞, for every u ∈ R.

Theorem 2. Let {Xn, n ≥ 1} be a sequence of L1- random variables and let
{Dn, n ≥ 1} be the corresponding sequence of dispersion functions. Suppose that
Dn(u) → D(u) as n → ∞, for every u ∈ R. Then
a. D(u) is a convex function in R.
b. Let H be the set of all points u ∈ R, such that D′(u), D′

n(u), n ∈ N exist.
Then H is a dense set in R and

lim
n→∞D′

n(u) = D′(u), ∀u ∈ H.

c. Let H0 be a set of all points such that D′(u) exists. Then for every u ∈ H0,

lim
u→+∞D′(u) = 1, and lim

u→−∞D′(u) = −1.

Theorem 3. Let X, X1, X2, . . . Xn, . . . ∈ L1 and let D, D1, D2, . . .Dn, . . . be
the corresponding dispersion functions. Assume that Dn(u) → D(u) as n → ∞,
for every u ∈ R. Then
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a. Fn ⇒ FX .
b. lim

n→∞sup
u∈R

| Dn(u) − D(u) | = 0.

Theorem 4. Let {Xn, n ≥ 1} be a sequence of L1- random variables and let
{Dn, n ≥ 1} be the corresponding sequence of dispersion functions. Let assump-
tion (A) of Theorem 1 hold, and Dn(u) → D(u), as n → ∞ for every u ∈ R.
Then there exists a distribution function F such that D(u) =

∫
R
| x− u | dF (x).

The results obtained are intended to show that a connection between the
weak convergence of L1- random variables and the convergence of the dispersion
measures based on the dispersion functions can be used in studying weak limit
theorems.

2. Proofs.

Proof of Theorem 1. By assumption (A) of Theorem 1 and since Xn ∈ L1, for
all n ∈ N, we see that (Xn)n∈N are uniformly integrable. We thus get

lim
n→∞

∫
R

| x | dFXn(x) =
∫

R

| x | dFX(x).

It follows easily that the function gu(x) =| x − u | − | x |, x ∈ R, is continuous
and bounded on R, so we have

lim
n→∞

∫
R

(| x − u | − | x |)dFXn (x) =
∫

R

(| x − u | − | x |)dFX(x)

or

lim
n→∞

∫
R

| x − u | dFn(x) =
∫

R

| x − u | dF (x).

The proof is complete. �

Remark to Theorem 1. It should be noted that Theorem 1 does not hold without
the assumption (A).

Let {Xn, n ≥ 1} be a sequence of random variables with the distribution
functions

Fn(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if x ≤ 0,

1 − exp(−x), if 0 < x ≤ n,

1
exp(2n) − n exp(n)

(x − n) + 1 − exp(−n), if n < x ≤ exp(n),

1, if exp(n) < x.

and let X be a random variable with the distribution function

F (x) =
{

0, if x ≤ 0,

1 − exp(−x), if 0 < x.

Then, although
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sup
n∈N

E | Xn |< +∞,

and
lim

n→∞Fn(x) = F (x), ∀x ∈ R

but DXn(u) � DX(u) as n → +∞.

Lemma 1. The family of (DX)X∈L1 is equally continuous on R.

Proof. Let X ∈ L1. For every u ∈ R, we have

−1 ≤ D′−
X (u) ≤ D′+

X (u) ≤ 1, ∀u ∈ R.

Consequently, with h > 0

−1 ≤ D′+
X (u) ≤ DX(u + h) − DX(u)

h
≤ D′−

X (u + h) ≤ 1,

it follows that
| DX(u + h) − DX(u) |≤ h.

The proof of Lemma 1 is complete. �

Proof of Theorem 2.
a. For every α, u, v ∈ R, 0 ≤ α ≤ 1, we have

Dn(αu + (1 − α)v) ≤ αDn(u) + (1 − α)Dn(v), ∀n ∈ N.

It follows that
lim

n→∞Dn(αu + (1 − α)v) ≤ lim
n→∞(αDn(u) + (1 − α)Dn(v)).

Consequently,
D(αu + (1 − α)v) ≤ αD(u) + (1 − α)D(v).

Therefore D(u) is convex on R.
b. Since a convex function R has at most a countable number of undifferentiable
points, it follows that R \ H has at most a countaible number, too. Thus, the
set H is dense in R.

To complete the proof it remains to show that

lim
n→∞D′

Xn
(u) = D′

X(u), ∀u ∈ H. (2.1)

Let a, b ∈ R, a < b. Since the sequence (Dn)n∈N is equally continuous on [a, b]
(see Lemma 1), it follows that the sequence (Dn)n∈N converges to D at every
point in [a, b]. Thus we get

lim
n→∞ sup

u∈[a,b]

| Dn(u) − D(u) |= 0.

Assume that δ > 0, then there exists a n0 such that

D(u) − δ < Dn(u) < D(u) + δ, ∀n > n0.
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Then, we can show that for every u ∈ R,

D′−(u) ≤ lim inf
n→∞ D′−

n (u) ≤ lim sup
n→∞

D′+
n (u) ≤ D′+(u),

and consequently the proof follows.
c. Since H ⊂ H0 and H is a dense set in R, and D′(u) is not a decreasing
function on H0, from (2.1), we deduce that −1 ≤ D′(u) ≤ 1.

On the other hand

| E(Xn) |≤
∫

R

| x | dFn(x),

and
lim

n→∞

∫
R

| x | dFn(x) = lim
n→∞Dn(0) = D(0).

Thus (E(Xn))n∈N are bounded, i.e. there exists M > 0 such that 0 ≤| E(Xn) |<
M, for all n ∈ N.

Since Dn(u) ≥| E(Xn) − u |, for all u ∈ R, n ∈ N, it follows that

Dn(u) − u ≥ −E(Xn) > −M, ∀u ∈ R, n ∈ N,

and
Dn(u) + u ≥ E(Xn) > −M, ∀u ∈ R, n ∈ N.

Therefore
lim

n→+∞Dn(u) − u = D(u) − u ≥ −M, ∀u ∈ R,

and
lim

n→+∞Dn(u) + u = D(u) + u ≥ −M, ∀u ∈ R.

Finally, the functions f(u) = D(u) − u and g(u) = D(u) + u are convex on R,
where f

′
(u) ≤ 0, and g′(u) ≥ 0. We thus conclude that

lim
u→+∞f ′(u) = 0

and
lim

u→−∞g′(u) = 0,

thus, for u ∈ H0,

lim
u→+∞D′(u) = 1, lim

u→−∞D′(u) = −1.

�

Proof of Theorem 3.
a. The proof is immediate from the part b) of Theorem 2 and the properties of
the dispersion function from Sec. 1.
b. We have

Dn(u) − u ≥ −E(Xn), Dn(u) + u ≥ E(Xn), ∀n ∈ N,

and
D(u) − u ≥ −E(X), D(u) + u ≥ E(X).
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By virtue of the properties of dispersion functions and remark above, it follows
that for all ε > 0, there exist u0 and n0, such that

−E(X) ≤ D(u) − u ≤ −E(X) +
ε

2
, ∀u ≥ u0,

and
D(u0) − u0 +

ε

2
≥ Dn(u0) − u0, ∀n > n0.

In short, we have

−E(X) + ε ≥ D(u0) − u0 +
ε

2
≥ Dn(u0) − u0 ≥ −E(Xn), ∀n > n0, u ≥ u0,

or for all ε > 0, there exists n0 such that

E(X) ≤ E(Xn) + ε, ∀n > n0.

In the same manner we can see that for all ε > 0, there exists n1 such that

E(X) ≤ E(Xn) − ε, ∀n > n1.

Consequently,
lim

n→∞E(Xn) = E(X).

According to properties of the dispersion function, one finds that

sup
u∈R

| Dn(u) − D(u) | < +∞.

It remains to prove that

lim
n→∞sup

u∈R

| Dn(u) − D(u) | = 0. (2.2)

Let (2.2) be not true, i.e. there exists ε > 0 such that for all n0, there exists
n > n0 such that

sup
u∈R

| Dn(u) − D(u) | > ε.

For every k ∈ N, let us put

nk = inf{n ∈ N | n > n1 + k, sup
u∈R

| Dn(u) − D(u) | > ε}, (2.3)

where n1 is a positive integer number satisfying sup
u∈R

| Dn1(u) − D(u) | > ε.

It follows that, for every k ∈ N, there are unk
such that

| Dnk
(unk

) − D(unk
) |> ε. (2.4)

According to Theorem 2, the sequence (unk
)k∈N is not bounded. Thus we can

extract from (unk
)k∈N a subsequence convergent to +∞ or to −∞. Without loss

of generality we can assume
lim

k→∞
unk

= +∞.

Then we have
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lim
m→∞ lim

k→∞
(Dm(unk

) − unk
) = lim

m→∞(−EXm) = −E(X),

lim
k→∞

lim
m→∞(Dm(unk

) − unk
) = lim

k→∞
(D(unk

) − unk
) = −E(X).

Thus
lim

k→∞
(Dnk

(unk
) − unk

) = −E(X). (2.5)

On the other hand, it is obvious that

lim
k→∞

(D(unk
) − unk

) = −E(X). (2.6)

But this shows that (2.3) - (2.6) are in contradictions, and we have the desired
proof. �

Proof of Theorem 4. According to the Theorem 3, if we put

F (x) =

⎧⎨
⎩

1
2
(D

′
(x) + 1), if x ∈ H,

lim
xn→x

F (xn) if x /∈ H(xn < x, xn ∈ H),

then F (x) is a distribution function and Fn ⇒ F.
On the other hand, for all a, b ∈ H, a < b, we have

lim
n→∞

∫ b

a

| x | dFn(x) =
∫ b

a

| x | dF (x).

Since
∫

R
| x | dFn(x) < M, it shows that

∫
R
| x | dF (x) < M, thus we conclude

that F is a distribution function of a random variable with finite mean.
Let D�(u) be a corresponding dispersion function of the function F. By virtue

of the Theorem 1 we have

lim
n→∞Dn(u) = D�(u), ∀u ∈ R.

It follows that D�(u) = D(u), for all u ∈ R, and this completes the proof of
the theorem. �
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