World Scientific

Journal of Algebra and Its Applications \\p
www.worldscientific.com

Vol. 8, No. 3 (2009) 379-387
© World Scientific Publishing Company

ON SMALL INJECTIVE RINGS AND MODULES*

LE VAN THUYET! and TRUONG CONG QUYNH?

Department of Mathematics
Hue University, Vietnam
Tlwthuyethue @gmail.com
Hequynh@dce.udn.on

Received 26 April 2007
Accepted 19 November 2008

Communicated by D. V. Huynh

A right R-module Mp is called small injective if every homomorphism from a small
right ideal to M i can be extended to an R-homomorphism from Rr to Mpg. A ring R
is called right small injective, if the right R-module Rp is small injective. We prove that
R is semiprimitive if and only if every simple right (or left) R-module is small injective.
Further we show that the Jacobson radical J of a ring R is a noetherian right R-module
if and only if, for every small injective module Er, E® is small injective.
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1. Introduction

Throughout the paper, R represents an associative ring with identity 1 # 0 and all
modules are unitary R-modules. We write Mp (resp., gM) to indicate that M is
a right (resp., left) R-module. By J (resp., Z,, S,) we denote the Jacobson radical
(resp., the right singular ideal, the right socle) of R. For a module Mg, E(Mg)
stands for its injective hull. If X is a subset of R, the right (resp., left) annihilator
of X in R is denoted by rr(X) (resp., [r(X)) or simply r(X) (resp., /(X)) if no
confusion appears. If N is a submodule of M (resp., proper submodule) we denote
it by N < M (resp., N < M). Moreover, we write N <¢ M,N < M, N <% M
and N <™ M to indicate that N is an essential submodule, a small submodule,
a direct summand and a maximal submodule of M, respectively. A module M is
called uniform if M # 0 and every nonzero submodule of M is essential in M.
Recall that a ring R is called right mininjective if every homomorphism from a
minimal right ideal to R is given by left multiplication by an element of R. R is called
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right Kasch if every simple right R-module embeds in R; or equivalently, I(I) # 0
for every maximal right ideal I of R. A ring R is called quasi-Frobenius (briefly,
QF-ring) if it is right (or left) artinian and right (or left) self-injective. R is said
to be right pseudo-Frobenius (briefly, PF-ring) if Rp is an injective cogenerator in
the category of right R-modules.

Yousif and Zhou [13] proved that, for a semiperfect ring R with an essential
right socle, R is right self-injective if and only if R is right small injective. In [10],
Shen and Chen proved that if R is semilocal, then R is right self-injective if and
only if R is right small injective. They also gave some new characterizations of QF
rings and right PF rings in terms of small injectivity.

In this paper, we show that R is PF if and only if R is right small injective,
right Kasch and left min-CS. We also prove that if every simple right (resp., left)
R-module is small injective, then R is semiprimitive. Finally, using the small injec-
tivity, we give some characterizations for the Jacobson radical of a ring R to be a
noetherian right R-module.

General background materials can be found in [2, 4, 8, 12].

2. Results

A module My is called small injective if every homomorphism from a small right
ideal to Mg can be extended to an R-homomorphism from Rp to Mg. A ring R is
called right small injective if Rp is small injective.

Examples. (i) Let R = Z be the ring of integers, then R is small injective but not
self-injective.

(ii) Let R ={(y ,)ln € Z,x € Zs} (see [13, Example 1.6]). Then R is a com-
mutative ring and J = S, = {(8 o)z € Zy}. Therefore R is small injective.

We claim that R is not injective. Let I = {(20" 2on)|n € Z} be an ideal of R
and g : I — R with f((QSL 2(31)) = (8 §), then g is a homomorphism. Assume

that g : R — R be a homomorphism that extends g. There exists ('j' ') € R

ny
such that g((5 ) = (5 1)(5 o) for all (1) € R Thus f(( 5,)) =
(o )(26’ ). Tt implies that (8 5) = (2”0“:1 8). This is a contradiction.

A ring R is defined to be right minsymmetric (cf. [8]) if, for k € R, whenever
kR is a minimal right ideal of R then Rk is a minimal left ideal of R.
Next, we show the following lemmas.

Lemma 2.1 (McCoy’s Lemma). Let R be a ring and a,c € R. If b= a-aca is a
reqular element of R, then so is a.

Proof. This follows easily from the definition. O
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Lemma 2.2. Let R be a right minsymmetric ring with S, <® Rp. If the ascending
chain r(ar) < r(agar) < ---rlapan—1---a1) < --- terminates for every infinite
sequence ay,as, ... in R, then R is right perfect.

Proof. Since R is right minsymmetric, S, < S;. Then J < (S,) = Z, since S, <¢
Rg. Now we prove that Z,. is right T-nilpotent. In fact that, let x1,x2,...,2p,... €
Z,. We have

r(zy) <r(zexy) < ---.

By hypothesis, there exists k € N such that r(zy - - zow1) = r(Tpp12k - - - T2x1).
If xp---xoxy # 0, then zp - zox1R N 1r(xk41) # 0 (since zxy1 € Z,). There
exists 7 € R such that 0 # zy - - zox17 € T(Tky1) and S0 xpp1xg - - xow1T = 0.
That means r € r(xgp12k - Tow1) = 7(Tg - Tax1) OF T -+ - xaxyr = 0, this is a
contradiction. Hence xj, - - - xox1 = 0. Thus Z, is right T-nilpotent. It implies that
Z, < J.Thus J =1(S,) = Z,. And then J is also right T-nilpotent.

Now we prove that R/J is a von Neumann regular ring. Let a; ¢ J, then
r(a1) is not an essential right ideal of R. Hence there exists I < Rp such that
I # 0 and I Nr(a;) = 0. But S, <° Rpg, there exists a simple right ideal
bR of R such that bR < I. Then bR N r(a;) = 0, that is a1b # 0. Therefore
R =1(bRNr(a1)) =1(b) + Ray by [8, Proposition 2.26], write 1 = cya; + ¢, where
t €l(b),c1 € R. So b = ciarb. It is easy to see that 0 # b € r(a1 — a1c1a1)\r(a1),
r(a1) < r(a; — arcrar). Put as = a1 — ajcia;. We denote by a = a+ J € R/J.
If ay € J, then we have a; = a@jicia1, i.e., @i is a regular element of R/J. If
as ¢ J, there exists ag € R such that r(a2) < r(as) with as = as — ascaas for
some co € R by the preceding proof. Repeating the above-mentioned process, we

get a strictly ascending chain r(a;) < r(a2) < ---, where a;,11 = a; — a;c;a; for
somec; € R,i=1,2,.... Let by = a1,bo =1 —ajcy,...,0i41 =1 —ac;, ..., then
a1 = by,as = baby,...,a;401 = bip1b;---baby, ..., whence we have the following

strictly ascending chain r(by) < r(bab1) < -- -, which contradicts the hypothesis. So
there exists a positive integer m such that a,,+1 € J, i.e., amym — amemam € J.
This shows that @, is a regular element of R/J, and hence @y,—1,Gm—2,--
a; are regular elements of R/J by Lemma 2.1, ie., R/J is von Neumann

)

regular.

To show that R/.J is semisimple, by [7, Corollary 2.16], we only need to prove
that R/J contains no infinite sets of nonzero orthogonal idempotents. This can be
proved by arguing as [3, p. 2107]. |

From above lemma, we give some properties of PF and QF rings.

Corollary 2.3. Let R be a right small injective ring with S, <¢ Rg. If the ascend-
ing chain r(a1) < r(azar) < - -r(anan-1---a1) < --- terminates for every infinite
sequence ay,as, ... in R, then R is right PF.
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Proof. By Lemma 2.2, R is right semiperfect. But since R is right small injec-
tive, R is right self-injective by [10, Theorem 3.16]. Thus R is right self-injective,
semiperfect and S, <¢ Rp; i.e., R is right PF by [6, Theorem 2.1]. O

Corollary 2.4. A ring R is QF if and only if R is right small injective with
S, <¢ Rpg, I(J?) is countable generated as a left ideal and the ascending chain

r(a1) < r(agar) < -+ < rlapapn—1---a1) < --- terminates for every infinite
sequence ai,asz, ... in R.
Proof. By Lemma 2.2, [9, Lemma 2.2] and [13, Theorem 2.18]. O

With a left and right small injective ring, we have:

Proposition 2.5. Let R be a ring. Then the following conditions are equivalent:

(1) R s QF.

(2) R is a right and left small injective ring with S, <¢ Rpr and the ascending
chain r(a1) < r(azar) < -+ < rlapap—1---a1) < --- terminates for every
infinite sequence ai,as,... in R.

Proof. (1) = (2) is clear.
(2) = (1). By Lemma 2.2, R is right perfect. But R is also left small injective
which yields R is left self-injective. Thus R is QF by [6, Corollary 2.3]. O

Remark. The condition “S, <¢ Rg” in Proposition 2.5 can be not omitted. Let
R = Z be the ring of integer numbers, then R is small injective, noetherian but R
is not QF.

A ring R is called left CS (resp., left min-CS) if every left ideal (resp., minimal
left ideal) is essential in a direct summand of rR. It is well-known that R is right
PF if and only if R is right self-injective, right Kasch. But it is unknow whether a
right small injective, right Kasch ring is right PF.

Theorem 2.6. Let R be a ring. Then the following conditions are equivalent:

(1) R is right PF.

(2) R is right small injective, right Kasch and left min-CS.

(3) R is right small injective, right Kasch and lr(a) is essential in a direct summand
of rR for every simple right (resp., left) ideal aR (resp., Ra) of R.

Proof. (1) = (2) is clear.

(2) = (3). Assume that Ra is a simple left ideal. If (Ra)? # 0 then Ra <® zR
which implies that lr(a) = Ra. Otherwise, a®> = 0 and so a € J. Since R is right
small injective, Ra = Ir(a) is a simple left ideal. Then by (2), lr(a) is essential in a
direct summand of rR. On the other hand, if bR is a simple right ideal then Rb is
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a simple left ideal (because R is right minsymmetric). It is easy to see that Ir(b) is
essential in a direct summand of gR.

(3) = (1). Let T be a maximal right ideal of R. Since R is right Kasch, [(T") # 0.
There exists 0 # a € [(T) or T < r(a) which yields T' = r(a). But aR = R/r(a) and
so aR is a right simple ideal. Therefore [(T) = Ir(a) <¢ Re for some e¢? = ¢ € R by
hypothesis. Thus R is semiperfect by [8, Lemma 4.1]. This implies that R is right
self-injective and so right PF by [8, Corollary 7.32]. O

Corollary 2.7. If R is right small injective, right Kasch and left CS, then R is
right PF.

Recall that a ring R is called semiprimitive if J = 0.
Theorem 2.8. Let R be a ring. Then the following conditions are equivalent:

(1) R is semiprimitive.
(2) Ewery right (or left) R-module is small injective.
(3) Ewvery simple right (or left) R-module is small injective.

Proof. It is clear that (1) = (2) = (3).

(3) = (1). Suppose that J # 0, let 0 # a € J, that is aR < Rp. If J+7r(a) < R,
then we take a maximal right ideal I of R such that J + r(a) < I. Then R/I is
small injective by (3). We define ¢ : aR — R/I by @(ar) = r 4+ I. Then ¢ is
a well-defined R-homomorphism. So there exists ¢ € R such that 1 + 1 = ca +
I and then 1 —ca € I. But ca € J < I which yields 1 € I, a contradiction.
Therefore J + r(a) = R and so r(a) = R (because J < Rp). So a = 0, which is a
contradiction. |

Proposition 2.9. If every simple singular right R-module is small injective, then
for every a € J, r(a) <® Rr and aR is projective.

Proof. For every a € J, let L = RaR + r(a). There exists Kr < Rp such that
L& K <° Rg. Assume that L & K # R, then there exists a maximal right ideal
I of R such that L ® K < I and so I <¢ Rp. Therefore R/I is small injective
by hypothesis. We define ¢ : aR — R/I by p(ar) = r + I. Then ¢ is a well-
defined R-homomorphism. So there exists ¢ € R such that 1+ I = ca + I and then
1—ca € I. But ca € RaR < I which yields 1 € I, a contradiction. Thus L& K = R
or RaR + (r(a) ® K) = R which implies that r(a) ® K = R (since RaR < RRg).
Then 7(a) = (1 — e)R for some e? = ¢ € R and it follows that a;z = alz. Let
¥ : eR — aeR be defined by i(er) = aer for all r € R. Then ¢ is a well-defined
R-epimorphism. It is easy to see that Ker(¢¥) = eR N r(a) = 0. Hence v is an
isomorphism and then aR = aeR is projective. O

Corollary 2.10. If every simple singular right R-module is small injective, then
Z,NJ=0.
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Recall that a ring R is called zero insertive (briefly ZI) [11], if for a,b € R,ab =0
implies aRb = 0. Note that if R is a ZI ring, then every idempotent in R is central
and r(a),l(a) are two-sided ideals with a € R.

Lemma 2.11. If R is a ZI ring, then RaR + r(a) is an essential right ideal of R,
for every a € R.

Proof. Given a € R and assume that (RaR + r(a)) NI =0, where I < Rp. Then
al <INRaR = 0. Hence I <r(a); whence I = 0. O

Proposition 2.12. Let R be a ZI ring. If every simple singular right (or left)
R-module is small injective, then R is semiprimitive.

Proof. Suppose that there exists 0 # a € J; whence RaR < Ri. If RaR+r(a) <
R, then there exists a maximal right ideal I of R such that RaR 4+ r(a) < I. By
Lemma 2.11, T is an essential right ideal of R. Therefore R/I is small injective by
hypothesis. Let ¢ : aR — R/I be defined via ¢(ar) = r+ 1 for all r € R. Tt is
easy to see that ¢ is a well-defined R-homomorphism. Since R/I is small injective,
there exists ¢ € R such that 1+ 1 = ¢(a) = ca+ I. But ca € RaR < I which yields
1 € I, a contradiction. Therefore RaR 4 r(a) = R which implies that r(a) = R
(since RaR < Rp). So a = 0, which is a contradiction. m|

Finally we consider the direct-sum representation of small injective module.

Let M be a right R-module. We denote that r;(N) = {a € J|Na = 0} and
Im(I) = {m € M|mI = 0} where N C M and I C J. Then r;(X) < Jg and
ZM(I) < SM where S = End(MR).

Lemma 2.13. The following conditions are equivalent for a right R-module M:

(1) R satisfies the ACC for right ideals of form the r;(X), where X C M.
(2) For each right ideal Ip < Jg there corresponds a finitely generated right ideal
I < Ii such that ZM(I) = ZM(Il).

Proof. (1) = (2). The condition that R satisfies the ACC for right ideals of the
form r;(X), where X C M is equivalent to that R satisfies the DCC for [5/(A)
where A C J. Let I; be a finitely generated right ideal of I such that {y/([7) is
minimal in the set

O = {ly(K)|Kp is finitely generated and Kr < Ir}.

Ifx €I, then H =1 + xR < I is finitely generated and {;(H) < l5(I1). By the
choice of I7, we have Iy, (H) = lp(11), so Iy ([1)x = 0. It implies that {y([1)] = 0,
that is lM(Il) S l]yj([) But Il S I implies lM(Il) Z l]w([)7 SO lM(I) = l]y[(_[]_).

(2) = (1). Let I < I < --- < I,--- be a chain of right ideals, where
I; = rj(M;) and M; C M for each i, let X; = lp(L;) for each ¢ = 1,2,..., and
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I =2, I, then I < Jg. By (2), there exists a finitely generated right ideal I
of I such that lar(I) = lpr(I1). Since I is finitely generated, there is an integer k
such that I; < I, for all m > k, that is {p/([1) > Iy (L) = Xy for all m > k.
But ZZW(II) = nfil lM(Il) = mfil Xi, that is ZZW(II) = Xm for all m 2 k. Then
I, = r7(X) = Iy for all m > k, proving (1). m|

Now an argument of the proof of Faith [5, Proposition 3], we have:

Proposition 2.14. The following conditions on a small injective module Er are
equivalent:

(1) EM s small injective.
(2) R satisfies the ACC for right ideals of form rj(X), where X C E.
(3) EY) is small injective for any index set S.

Proof. (3) = (1) is clear.
(1) = (2). Assume that 7;(X1) <r;(X2) <--- <ry(X,) <--+,X; C E. Then

lpry(Xq1) > lpry(Xo) > - > lpry(X,) > -

because r;lgr;(X) = r;(X) for any X C E. For each i > 1, choose m; €
lgry(Xi)\lgrs(X;+1). Hence there exists a;41 € rj(X;41) such that m;a;41 # 0.
Let T = ;2 rs(X;) which yields T < Rp. Then, for all ¢ € T there exists
ng > 1 such that ¢t € r;(X;) for all © > ny. Then m;t = 0 for all i« > ny;, and
if m = (m;);, then mt € EM™ for every t € T. Hence 5 : T — EM is well-
defined by @, (t) = mt. Since EM is small injective by hypothesis, ¢y, extends to
Y : R — EM. So ¢n(t) = mt = (t) = (1)t for all t € T. But ¢(1) € EM™, so
there exists k > 1 such that m;t = 0 for all i > k and all ¢ € T. In particular,
m;a;+1 = 0 for all ¢ > k, which is a contradiction.

(2) = (3). Let I be a right ideal and Ip < Jgr. By Lemma 2.13, there is
I =rmR+roR+---r,R < Ip such that Iy (I) = lp(I1). Let p : I — E®) be
an R-homomorphism. Since E? is small injective by [10, Proposition 3.5, there
exists an element a € E° such that ¢(r) = ar for all r € I. In particular p(r;) =

ar; € E®) i =1,2,..., there exists an element o’ € E® such that asr; = a’r
for all s € S, = 1,2,..., where g, is the s th-coordinate of any g € E®. Since
{r1,72,...,rn} generates I, this implies that ar = a'r for all r € I;, whence

(as —al) € (1) for all s € S. Since Uy (I) = lp(I7), it follows that asz = alx for
all s € S,z € I, that is ax = o’z for all x € I. Thus ¢(x) = o’z for all x € I with
a' € E®) so E®) is small injective. O

Lemma 2.15 ([1]). Let M be a right R-module. Then Rad(M) is noetherian if
and only if M has ACC on small submodules.

Lemma 2.16. FEvery direct summand of a small injective module is small injective.
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Proof. It is clear. O

It is well-know that R is right noetherian if and only if E® is injective for every
injective module Fr. We also have:

Theorem 2.17. For a ring R, the following conditions are equivalent:

(1) J is noetherian as a right R-module.

(2) Every direct sum of small injective right R-modules is small injective.

(3) If My, My, ... are simple right modules then @;-, E(M;) is small injective.
(4) EW) is small injective for every small injective module Ex.

Proof. (2) = (3) and (2) = (4) are clear.

(1) = (2). Let £ = @, i, where each E; is small injective, Tr < Jg, and
¢ : T — FE an R-homomorphism. Since T is finitely generated by (1), we can
write o : T — Ey = @ieh E;, where I} C I is a finite subset. Since E; is small
injective, let ¢ : R — Ej extends ¢. Then tp extends ¢, where ¢ : F; — E is the
inclusion.

(3) = (1). Let Iy < I < --- be a strictly ascending chain of small finitely
generated right ideals of R. Let I = Ufio I;, then I is a small right ideal of R.
For each i > 1 choose M; <™&* [, such that I,_1 < M;. Thus K; = I,/M; is a
simple right R-module. We define n; : I;/I;_1 — K; by ni(x + I,_1) = = + M,,
and write ¢; : K; — E(K;) for the inclusion. Since E(Kj;) is injective, let ¢; :
I/I,_1 — E(K;) be the homomorphism such that ¢; = ¢;1; (see the following
diagram):

Ii/Iifl “— I/Ii,1
ni |

K; 7 i
il
E(K;)

Since M; < I;, there exists ¢; € I;\M; such that p;(c; + I;—1) # 0. For each t € I,
choose n; > 1 such that ¢t € I, for all i > n; and so p;(t+1;—1) = 0 for all i > ny,
so we can define o : I — @;2, E(K;) by a(t) = (¢;(t + I;_1));. Since @;-, F(K;)
is small injective by (3), a extends to a : R — @;-, E(K;). Write a(1) = (b;);,
so there exists n > 1 such that b; = 0 for all i > n. Given any t € I, we have
((pi(t + Ii—l))i = Oz(t) = @(t) = @(l)t = (bit)l Thus (,Oi(t + Ii—l) =0foralli>n
and all t € I. But ¢, (¢, + I,—1) # 0 by the definition of ¢;, and this contradiction
proves (1).

(4) = (1). Let I; < Iy < --- be a chain of small right ideals. For each i, let
Ei = E(R/Il), and F = @;}il E1 For every ) Z 1,1_[?.;1 Ej = E1®(H];él Ej)
Let M; = H‘;’;l E;, then M; is small injective by [10, Proposition 3.5]. By above
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notation, we have

S~ () (D11~

i=1 i=1 i=1 j#i
By assumption, ;- M; is small injective. Thus E itself is small injective by
Lemma 2.16. Now the R-homomorphism f : |J;2, I; — E defined by f(t) = (t+1;);
extends to f: R — E. Let n > 1 such that f(1) € @]_, E;. Then f(UZ, L;) <
@?:1 Ej;. So, if t € |J;2, I; then t € I,,, for all m > n, and so |J;=, I; = I,4+1 and
the chain should terminate. |

Corollary 2.18. The following conditions are equivalent for a ring R:

(1) J is noetherian as a right R-module.
(2) Ewvery direct sum of injective right R-modules is small injective.
(3) EM is small injective for every injective modules Eg.
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