

ON SMALL INJECTIVE RINGS AND MODULES*

LE VAN THUYET[†] and TRUONG CONG QUYNH[‡]

Department of Mathematics Hue University, Vietnam [†]lvthuyethue@gmail.com [‡]tcquynh@dce.udn.vn

Received 26 April 2007 Accepted 19 November 2008

Communicated by D. V. Huynh

A right *R*-module M_R is called *small injective* if every homomorphism from a small right ideal to M_R can be extended to an *R*-homomorphism from R_R to M_R . A ring *R* is called right small injective, if the right *R*-module R_R is small injective. We prove that *R* is semiprimitive if and only if every simple right (or left) *R*-module is small injective. Further we show that the Jacobson radical *J* of a ring *R* is a noetherian right *R*-module if and only if, for every small injective module E_R , $E^{(\mathbb{N})}$ is small injective.

Keywords: Small injective rings (modules); PF rings; QF rings.

2000 Mathematics Subject Classification: 16D50, 16D70, 16D80

1. Introduction

Throughout the paper, R represents an associative ring with identity $1 \neq 0$ and all modules are unitary R-modules. We write M_R (resp., $_RM$) to indicate that M is a right (resp., left) R-module. By J (resp., Z_r , S_r) we denote the Jacobson radical (resp., the right singular ideal, the right socle) of R. For a module M_R , $E(M_R)$ stands for its injective hull. If X is a subset of R, the right (resp., left) annihilator of X in R is denoted by $r_R(X)$ (resp., $l_R(X)$) or simply r(X) (resp., l(X)) if no confusion appears. If N is a submodule of M (resp., proper submodule) we denote it by $N \leq M$ (resp., N < M). Moreover, we write $N \leq^e M, N \ll M, N \leq^{\oplus} M$ and $N \leq^{\max} M$ to indicate that N is an essential submodule, a small submodule, a direct summand and a maximal submodule of M, respectively. A module M is called uniform if $M \neq 0$ and every nonzero submodule of M is essential in M.

Recall that a ring R is called *right mininjective* if every homomorphism from a minimal right ideal to R is given by left multiplication by an element of R. R is called

^{*}The work was supported by the Natural Science Council of Vietnam.

right Kasch if every simple right R-module embeds in R; or equivalently, $l(I) \neq 0$ for every maximal right ideal I of R. A ring R is called quasi-Frobenius (briefly, QF-ring) if it is right (or left) artinian and right (or left) self-injective. R is said to be right pseudo-Frobenius (briefly, PF-ring) if R_R is an injective cogenerator in the category of right R-modules.

Yousif and Zhou [13] proved that, for a semiperfect ring R with an essential right socle, R is right self-injective if and only if R is right small injective. In [10], Shen and Chen proved that if R is semilocal, then R is right self-injective if and only if R is right small injective. They also gave some new characterizations of QF rings and right PF rings in terms of small injectivity.

In this paper, we show that R is PF if and only if R is right small injective, right Kasch and left min-CS. We also prove that if every simple right (resp., left) R-module is small injective, then R is semiprimitive. Finally, using the small injectivity, we give some characterizations for the Jacobson radical of a ring R to be a noetherian right R-module.

General background materials can be found in [2, 4, 8, 12].

2. Results

A module M_R is called *small injective* if every homomorphism from a small right ideal to M_R can be extended to an *R*-homomorphism from R_R to M_R . A ring *R* is called right small injective if R_R is small injective.

Examples. (i) Let $R = \mathbb{Z}$ be the ring of integers, then R is small injective but not self-injective.

(ii) Let $R = \{ \begin{pmatrix} n & x \\ 0 & n \end{pmatrix} | n \in \mathbb{Z}, x \in \mathbb{Z}_2 \}$ (see [13, Example 1.6]). Then R is a commutative ring and $J = S_r = \{ \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} | x \in \mathbb{Z}_2 \}$. Therefore R is small injective.

We claim that R is not injective. Let $I = \{ \begin{pmatrix} 2n & 0 \\ 0 & 2n \end{pmatrix} | n \in \mathbb{Z} \}$ be an ideal of Rand $g : I \to R$ with $f(\begin{pmatrix} 2n & 0 \\ 0 & 2n \end{pmatrix}) = \begin{pmatrix} 0 & \bar{n} \\ 0 & 0 \end{pmatrix}$, then g is a homomorphism. Assume that $\bar{g} : R \to R$ be a homomorphism that extends g. There exists $\begin{pmatrix} n_1 & x_1 \\ 0 & n_1 \end{pmatrix} \in R$ such that $\bar{g}(\begin{pmatrix} n & x \\ 0 & n \end{pmatrix}) = \begin{pmatrix} n_1 & x_1 \\ 0 & n_1 \end{pmatrix} \begin{pmatrix} n & x \\ 0 & n \end{pmatrix}$ for all $\begin{pmatrix} n & x \\ 0 & n \end{pmatrix} \in R$. Thus $f(\begin{pmatrix} 2n & 0 \\ 0 & 2n \end{pmatrix}) = \begin{pmatrix} n_1 & x_1 \\ 0 & n_1 \end{pmatrix} \begin{pmatrix} 2n & 0 \\ 0 & 2n \end{pmatrix}$. It implies that $\begin{pmatrix} 0 & \bar{n} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2nx_1 & 0 \\ 0 & 0 \end{pmatrix}$. This is a contradiction.

A ring R is defined to be *right minsymmetric* (cf. [8]) if, for $k \in R$, whenever kR is a minimal right ideal of R then Rk is a minimal left ideal of R.

Next, we show the following lemmas.

Lemma 2.1 (McCoy's Lemma). Let R be a ring and $a, c \in R$. If b = a-aca is a regular element of R, then so is a.

Proof. This follows easily from the definition.

Lemma 2.2. Let R be a right minsymmetric ring with $S_r \leq^e R_R$. If the ascending chain $r(a_1) \leq r(a_2a_1) \leq \cdots r(a_na_{n-1}\cdots a_1) \leq \cdots$ terminates for every infinite sequence a_1, a_2, \ldots in R, then R is right perfect.

Proof. Since R is right minsymmetric, $S_r \leq S_l$. Then $J \leq l(S_r) = Z_r$ since $S_r \leq e$ R_R . Now we prove that Z_r is right T-nilpotent. In fact that, let $x_1, x_2, \ldots, x_n, \ldots \in Z_r$. We have

$$r(x_1) \le r(x_2 x_1) \le \cdots.$$

By hypothesis, there exists $k \in \mathbb{N}$ such that $r(x_k \cdots x_2 x_1) = r(x_{k+1} x_k \cdots x_2 x_1)$. If $x_k \cdots x_2 x_1 \neq 0$, then $x_k \cdots x_2 x_1 R \cap r(x_{k+1}) \neq 0$ (since $x_{k+1} \in Z_r$). There exists $r \in R$ such that $0 \neq x_k \cdots x_2 x_1 r \in r(x_{k+1})$ and so $x_{k+1} x_k \cdots x_2 x_1 r = 0$. That means $r \in r(x_{k+1} x_k \cdots x_2 x_1) = r(x_k \cdots x_2 x_1)$ or $x_k \cdots x_2 x_1 r = 0$, this is a contradiction. Hence $x_k \cdots x_2 x_1 = 0$. Thus Z_r is right *T*-nilpotent. It implies that $Z_r \leq J$. Thus $J = l(S_r) = Z_r$. And then *J* is also right *T*-nilpotent.

Now we prove that R/J is a von Neumann regular ring. Let $a_1 \notin J$, then $r(a_1)$ is not an essential right ideal of R. Hence there exists $I \leq R_R$ such that $I \neq 0$ and $I \cap r(a_1) = 0$. But $S_r \leq^e R_R$, there exists a simple right ideal bR of R such that $bR \leq I$. Then $bR \cap r(a_1) = 0$, that is $a_1b \neq 0$. Therefore $R = l(bR \cap r(a_1)) = l(b) + Ra_1$ by [8, Proposition 2.26], write $1 = c_1a_1 + t$, where $t \in l(b), c_1 \in R$. So $b = c_1 a_1 b$. It is easy to see that $0 \neq b \in r(a_1 - a_1 c_1 a_1) \setminus r(a_1)$, $r(a_1) < r(a_1 - a_1c_1a_1)$. Put $a_2 = a_1 - a_1c_1a_1$. We denote by $\bar{a} = a + J \in R/J$. If $a_2 \in J$, then we have $\bar{a}_1 = \bar{a}_1 \bar{c}_1 \bar{a}_1$, i.e., \bar{a}_1 is a regular element of R/J. If $a_2 \notin J$, there exists $a_3 \in R$ such that $r(a_2) < r(a_3)$ with $a_3 = a_2 - a_2 c_2 a_2$ for some $c_2 \in R$ by the preceding proof. Repeating the above-mentioned process, we get a strictly ascending chain $r(a_1) < r(a_2) < \cdots$, where $a_{i+1} = a_i - a_i c_i a_i$ for some $c_i \in R$, $i = 1, 2, \dots$ Let $b_1 = a_1, b_2 = 1 - a_1 c_1, \dots, b_{i+1} = 1 - a_i c_i, \dots$, then $a_1 = b_1, a_2 = b_2 b_1, \ldots, a_{i+1} = b_{i+1} b_i \cdots b_2 b_1, \ldots$, whence we have the following strictly ascending chain $r(b_1) < r(b_2b_1) < \cdots$, which contradicts the hypothesis. So there exists a positive integer m such that $a_{m+1} \in J$, i.e., $a_m - a_m c_m a_m \in J$. This shows that \bar{a}_m is a regular element of R/J, and hence $\bar{a}_{m-1}, \bar{a}_{m-2}, \ldots$, \bar{a}_1 are regular elements of R/J by Lemma 2.1, i.e., R/J is von Neumann regular.

To show that R/J is semisimple, by [7, Corollary 2.16], we only need to prove that R/J contains no infinite sets of nonzero orthogonal idempotents. This can be proved by arguing as [3, p. 2107].

From above lemma, we give some properties of PF and QF rings.

Corollary 2.3. Let R be a right small injective ring with $S_r \leq^e R_R$. If the ascending chain $r(a_1) \leq r(a_2a_1) \leq \cdots r(a_na_{n-1}\cdots a_1) \leq \cdots$ terminates for every infinite sequence a_1, a_2, \ldots in R, then R is right PF. **Proof.** By Lemma 2.2, R is right semiperfect. But since R is right small injective, R is right self-injective by [10, Theorem 3.16]. Thus R is right self-injective, semiperfect and $S_r \leq^e R_R$; i.e., R is right PF by [6, Theorem 2.1].

Corollary 2.4. A ring R is QF if and only if R is right small injective with $S_r \leq^e R_R$, $l(J^2)$ is countable generated as a left ideal and the ascending chain $r(a_1) \leq r(a_2a_1) \leq \cdots \leq r(a_na_{n-1}\cdots a_1) \leq \cdots$ terminates for every infinite sequence a_1, a_2, \ldots in R.

Proof. By Lemma 2.2, [9, Lemma 2.2] and [13, Theorem 2.18].

With a left and right small injective ring, we have:

Proposition 2.5. Let R be a ring. Then the following conditions are equivalent:

- (1) R is QF.
- (2) R is a right and left small injective ring with $S_r \leq^e R_R$ and the ascending chain $r(a_1) \leq r(a_2a_1) \leq \cdots \leq r(a_na_{n-1}\cdots a_1) \leq \cdots$ terminates for every infinite sequence a_1, a_2, \ldots in R.

Proof. $(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (1)$. By Lemma 2.2, R is right perfect. But R is also left small injective which yields R is left self-injective. Thus R is QF by [6, Corollary 2.3].

Remark. The condition " $S_r \leq R_R$ " in Proposition 2.5 can be not omitted. Let $R = \mathbb{Z}$ be the ring of integer numbers, then R is small injective, noetherian but R is not QF.

A ring R is called *left CS* (resp., *left min-CS*) if every left ideal (resp., minimal left ideal) is essential in a direct summand of $_RR$. It is well-known that R is right PF if and only if R is right self-injective, right Kasch. But it is unknow whether a right small injective, right Kasch ring is right PF.

Theorem 2.6. Let R be a ring. Then the following conditions are equivalent:

- (1) R is right PF.
- (2) R is right small injective, right Kasch and left min-CS.
- (3) R is right small injective, right Kasch and lr(a) is essential in a direct summand of _RR for every simple right (resp., left) ideal aR (resp., Ra) of R.

Proof. $(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (3)$. Assume that Ra is a simple left ideal. If $(Ra)^2 \neq 0$ then $Ra \leq \mathbb{P}_R R$ which implies that lr(a) = Ra. Otherwise, $a^2 = 0$ and so $a \in J$. Since R is right small injective, Ra = lr(a) is a simple left ideal. Then by (2), lr(a) is essential in a direct summand of RR. On the other hand, if bR is a simple right ideal then Rb is

a simple left ideal (because R is right minsymmetric). It is easy to see that lr(b) is essential in a direct summand of $_{R}R$.

 $(3) \Rightarrow (1)$. Let T be a maximal right ideal of R. Since R is right Kasch, $l(T) \neq 0$. There exists $0 \neq a \in l(T)$ or $T \leq r(a)$ which yields T = r(a). But $aR \cong R/r(a)$ and so aR is a right simple ideal. Therefore $l(T) = lr(a) \leq^e Re$ for some $e^2 = e \in R$ by hypothesis. Thus R is semiperfect by [8, Lemma 4.1]. This implies that R is right self-injective and so right PF by [8, Corollary 7.32].

Corollary 2.7. If R is right small injective, right Kasch and left CS, then R is right PF.

Recall that a ring R is called *semiprimitive* if J = 0.

Theorem 2.8. Let R be a ring. Then the following conditions are equivalent:

- (1) R is semiprimitive.
- (2) Every right (or left) R-module is small injective.
- (3) Every simple right (or left) R-module is small injective.

Proof. It is clear that $(1) \Rightarrow (2) \Rightarrow (3)$.

 $(3) \Rightarrow (1)$. Suppose that $J \neq 0$, let $0 \neq a \in J$, that is $aR \ll R_R$. If J + r(a) < R, then we take a maximal right ideal I of R such that $J + r(a) \leq I$. Then R/I is small injective by (3). We define $\varphi : aR \to R/I$ by $\varphi(ar) = r + I$. Then φ is a well-defined R-homomorphism. So there exists $c \in R$ such that 1 + I = ca + I and then $1 - ca \in I$. But $ca \in J \leq I$ which yields $1 \in I$, a contradiction. Therefore J + r(a) = R and so r(a) = R (because $J \ll R_R$). So a = 0, which is a contradiction.

Proposition 2.9. If every simple singular right R-module is small injective, then for every $a \in J$, $r(a) \leq^{\oplus} R_R$ and aR is projective.

Proof. For every $a \in J$, let L = RaR + r(a). There exists $K_R \leq R_R$ such that $L \oplus K \leq e R_R$. Assume that $L \oplus K \neq R$, then there exists a maximal right ideal I of R such that $L \oplus K \leq I$ and so $I \leq e R_R$. Therefore R/I is small injective by hypothesis. We define $\varphi : aR \to R/I$ by $\varphi(ar) = r + I$. Then φ is a well-defined R-homomorphism. So there exists $c \in R$ such that 1 + I = ca + I and then $1 - ca \in I$. But $ca \in RaR \leq I$ which yields $1 \in I$, a contradiction. Thus $L \oplus K = R$ or $RaR + (r(a) \oplus K) = R$ which implies that $r(a) \oplus K = R$ (since $RaR \ll R_R$). Then r(a) = (1 - e)R for some $e^2 = e \in R$ and it follows that $a_s x = a'_s x$. Let $\psi : eR \to aeR$ be defined by $\psi(er) = aer$ for all $r \in R$. Then ψ is a well-defined R-epimorphism. It is easy to see that $\operatorname{Ker}(\psi) = eR \cap r(a) = 0$. Hence ψ is an isomorphism and then aR = aeR is projective.

Corollary 2.10. If every simple singular right *R*-module is small injective, then $Z_r \cap J = 0$.

Recall that a ring R is called zero insertive (briefly ZI) [11], if for $a, b \in R, ab = 0$ implies aRb = 0. Note that if R is a ZI ring, then every idempotent in R is central and r(a), l(a) are two-sided ideals with $a \in R$.

Lemma 2.11. If R is a ZI ring, then RaR + r(a) is an essential right ideal of R, for every $a \in R$.

Proof. Given $a \in R$ and assume that $(RaR + r(a)) \cap I = 0$, where $I \leq R_R$. Then $aI \leq I \cap RaR = 0$. Hence $I \leq r(a)$; whence I = 0.

Proposition 2.12. Let R be a ZI ring. If every simple singular right (or left) R-module is small injective, then R is semiprimitive.

Proof. Suppose that there exists $0 \neq a \in J$; whence $RaR \ll R_R$. If RaR + r(a) < R, then there exists a maximal right ideal I of R such that $RaR + r(a) \leq I$. By Lemma 2.11, I is an essential right ideal of R. Therefore R/I is small injective by hypothesis. Let $\varphi : aR \to R/I$ be defined via $\varphi(ar) = r + I$ for all $r \in R$. It is easy to see that φ is a well-defined R-homomorphism. Since R/I is small injective, there exists $c \in R$ such that $1 + I = \varphi(a) = ca + I$. But $ca \in RaR \leq I$ which yields $1 \in I$, a contradiction. Therefore RaR + r(a) = R which implies that r(a) = R (since $RaR \ll R_R$). So a = 0, which is a contradiction.

Finally we consider the direct-sum representation of small injective module.

Let M be a right R-module. We denote that $r_J(N) = \{a \in J | Na = 0\}$ and $l_M(I) = \{m \in M | mI = 0\}$ where $N \subseteq M$ and $I \subseteq J$. Then $r_J(X) \leq J_R$ and $l_M(I) \leq SM$ where $S = \text{End}(M_R)$.

Lemma 2.13. The following conditions are equivalent for a right R-module M:

- (1) R satisfies the ACC for right ideals of form the $r_J(X)$, where $X \subseteq M$.
- (2) For each right ideal $I_R \leq J_R$ there corresponds a finitely generated right ideal $I_1 \leq I_R$ such that $l_M(I) = l_M(I_1)$.

Proof. (1) \Rightarrow (2). The condition that R satisfies the ACC for right ideals of the form $r_J(X)$, where $X \subseteq M$ is equivalent to that R satisfies the DCC for $l_M(A)$ where $A \subseteq J$. Let I_1 be a finitely generated right ideal of I_R such that $l_M(I_1)$ is minimal in the set

 $\Omega = \{l_M(K) | K_R \text{ is finitely generated and } K_R \leq I_R \}.$

If $x \in I$, then $H = I_1 + xR \leq I_R$ is finitely generated and $l_M(H) \leq l_M(I_1)$. By the choice of I_1 , we have $l_M(H) = l_M(I_1)$, so $l_M(I_1)x = 0$. It implies that $l_M(I_1)I = 0$, that is $l_M(I_1) \leq l_M(I)$. But $I_1 \leq I$ implies $l_M(I_1) \geq l_M(I)$, so $l_M(I) = l_M(I_1)$.

 $(2) \Rightarrow (1)$. Let $I_1 \leq I_2 \leq \cdots \leq I_n \cdots$ be a chain of right ideals, where $I_i = r_J(M_i)$ and $M_i \subseteq M$ for each i, let $X_i = l_M(I_i)$ for each $i = 1, 2, \ldots$, and

 $I = \bigcup_{i=1}^{\infty} I_i$, then $I \leq J_R$. By (2), there exists a finitely generated right ideal I_1 of I such that $l_M(I) = l_M(I_1)$. Since I_1 is finitely generated, there is an integer k such that $I_1 \leq I_m$ for all $m \geq k$, that is $l_M(I_1) \geq l_M(I_m) = X_m$ for all $m \geq k$. But $l_M(I_1) = \bigcap_{i=1}^{\infty} l_M(I_i) = \bigcap_{i=1}^{\infty} X_i$, that is $l_M(I_1) = X_m$ for all $m \geq k$. Then $I_m = r_J(X_m) = I_k$ for all $m \geq k$, proving (1).

Now an argument of the proof of Faith [5, Proposition 3], we have:

Proposition 2.14. The following conditions on a small injective module E_R are equivalent:

- (1) $E^{(\mathbb{N})}$ is small injective.
- (2) R satisfies the ACC for right ideals of form $r_J(X)$, where $X \subseteq E$.
- (3) $E^{(S)}$ is small injective for any index set S.

Proof. $(3) \Rightarrow (1)$ is clear.

(1)
$$\Rightarrow$$
 (2). Assume that $r_J(X_1) < r_J(X_2) < \cdots < r_J(X_n) < \cdots, X_i \subseteq E$. Then

$$l_E r_J(X_1) > l_E r_J(X_2) > \dots > l_E r_J(X_n) > \dots$$

because $r_J l_E r_J(X) = r_J(X)$ for any $X \subseteq E$. For each $i \geq 1$, choose $m_i \in l_E r_J(X_i) \setminus l_E r_J(X_{i+1})$. Hence there exists $a_{i+1} \in r_J(X_{i+1})$ such that $m_i a_{i+1} \neq 0$. Let $T = \bigcup_{i=1}^{\infty} r_J(X_i)$ which yields $T \ll R_R$. Then, for all $t \in T$ there exists $n_t \geq 1$ such that $t \in r_J(X_i)$ for all $i \geq n_t$. Then $m_i t = 0$ for all $i \geq n_t$, and if $\overline{m} = (m_i)_i$, then $\overline{m}t \in E^{(\mathbb{N})}$ for every $t \in T$. Hence $\varphi_{\overline{m}} : T \to E^{(\mathbb{N})}$ is well-defined by $\varphi_{\overline{m}}(t) = \overline{m}t$. Since $E^{(\mathbb{N})}$ is small injective by hypothesis, $\varphi_{\overline{m}}$ extends to $\psi : R \to E^{(\mathbb{N})}$. So $\varphi_{\overline{m}}(t) = \overline{m}t = \psi(t) = \psi(1)t$ for all $t \in T$. But $\psi(1) \in E^{(\mathbb{N})}$, so there exists $k \geq 1$ such that $m_i t = 0$ for all $i \geq k$ and all $t \in T$. In particular, $m_i a_{i+1} = 0$ for all i > k, which is a contradiction.

 $(2) \Rightarrow (3)$. Let I be a right ideal and $I_R \leq J_R$. By Lemma 2.13, there is $I_1 = r_1R + r_2R + \cdots r_nR \leq I_R$ such that $l_M(I) = l_M(I_1)$. Let $\varphi: I \to E^{(S)}$ be an R-homomorphism. Since E^S is small injective by [10, Proposition 3.5], there exists an element $a \in E^S$ such that $\varphi(r) = ar$ for all $r \in I$. In particular $\varphi(r_i) = ar_i \in E^{(S)}, i = 1, 2, \ldots$, there exists an element $a' \in E^{(S)}$ such that $a_s r_i = a'_s r_i$ for all $s \in S, i = 1, 2, \ldots$, where g_s is the s th-coordinate of any $g \in E^S$. Since $\{r_1, r_2, \ldots, r_n\}$ generates I_1 , this implies that ar = a'r for all $r \in I_1$, whence $(a_s - a'_s) \in l_M(I_1)$ for all $s \in S$. Since $l_M(I) = l_M(I_1)$, it follows that $a_s x = a'_s x$ for all $s \in S, x \in I$, that is ax = a'x for all $x \in I$. Thus $\varphi(x) = a'x$ for all $x \in I$ with $a' \in E^{(S)}$, so $E^{(S)}$ is small injective.

Lemma 2.15 ([1]). Let M be a right R-module. Then Rad(M) is noetherian if and only if M has ACC on small submodules.

Lemma 2.16. Every direct summand of a small injective module is small injective.

Proof. It is clear.

It is well-know that R is right noetherian if and only if $E^{(\mathbb{N})}$ is injective for every injective module E_R . We also have:

Theorem 2.17. For a ring R, the following conditions are equivalent:

- (1) J is noetherian as a right R-module.
- (2) Every direct sum of small injective right R-modules is small injective.
- (3) If M_1, M_2, \ldots are simple right modules then $\bigoplus_{i=1}^{\infty} E(M_i)$ is small injective.
- (4) $E^{(\mathbb{N})}$ is small injective for every small injective module E_R .

Proof. $(2) \Rightarrow (3)$ and $(2) \Rightarrow (4)$ are clear.

(1) \Rightarrow (2). Let $E = \bigoplus_{i \in I} E_i$, where each E_i is small injective, $T_R \leq J_R$, and $\varphi : T \to E$ an *R*-homomorphism. Since *T* is finitely generated by (1), we can write $\varphi : T \to E_1 = \bigoplus_{i \in I_1} E_i$, where $I_1 \subseteq I$ is a finite subset. Since E_1 is small injective, let $\bar{\varphi} : R \to E_1$ extends φ . Then $\iota \bar{\varphi}$ extends φ , where $\iota : E_1 \to E$ is the inclusion.

(3) \Rightarrow (1). Let $I_0 < I_1 < \cdots$ be a strictly ascending chain of small finitely generated right ideals of R. Let $I = \bigcup_{i=0}^{\infty} I_i$, then I is a small right ideal of R. For each $i \ge 1$ choose $M_i \le^{\max} I_i$ such that $I_{i-1} \le M_i$. Thus $K_i = I_i/M_i$ is a simple right R-module. We define $\eta_i : I_i/I_{i-1} \to K_i$ by $\eta_i(x + I_{i-1}) = x + M_i$, and write $\iota_i : K_i \to E(K_i)$ for the inclusion. Since $E(K_i)$ is injective, let $\varphi_i :$ $I/I_{i-1} \to E(K_i)$ be the homomorphism such that $\varphi_i = \iota_i \eta_i$ (see the following diagram):

$$I_i/I_{i-1} \hookrightarrow I/I_{i-1}$$

$$\eta_i \downarrow$$

$$K_i \swarrow \varphi_i$$

$$\iota_i \downarrow$$

$$E(K_i)$$

Since $M_i < I_i$, there exists $c_i \in I_i \setminus M_i$ such that $\varphi_i(c_i + I_{i-1}) \neq 0$. For each $t \in I$, choose $n_t \geq 1$ such that $t \in I_{i-1}$ for all $i \geq n_t$ and so $\varphi_i(t + I_{i-1}) = 0$ for all $i \geq n_t$, so we can define $\alpha : I \to \bigoplus_{i=1}^{\infty} E(K_i)$ by $\alpha(t) = (\varphi_i(t + I_{i-1}))_i$. Since $\bigoplus_{i=1}^{\infty} E(K_i)$ is small injective by (3), α extends to $\bar{\alpha} : R \to \bigoplus_{i=1}^{\infty} E(K_i)$. Write $\bar{\alpha}(1) = (b_i)_i$, so there exists $n \geq 1$ such that $b_i = 0$ for all $i \geq n$. Given any $t \in I$, we have $(\varphi_i(t + I_{i-1}))_i = \alpha(t) = \bar{\alpha}(t) = \bar{\alpha}(1)t = (b_it)_i$. Thus $\varphi_i(t + I_{i-1}) = 0$ for all $i \geq n$ and all $t \in I$. But $\varphi_n(c_n + I_{n-1}) \neq 0$ by the definition of φ_i , and this contradiction proves (1).

(4) \Rightarrow (1). Let $I_1 \leq I_2 \leq \cdots$ be a chain of small right ideals. For each *i*, let $E_i = E(R/I_i)$, and $E = \bigoplus_{i=1}^{\infty} E_i$. For every $i \geq 1, \prod_{j=1}^{\infty} E_j = E_i \bigoplus (\prod_{j \neq i} E_j)$. Let $M_i = \prod_{j=1}^{\infty} E_j$, then M_i is small injective by [10, Proposition 3.5]. By above

notation, we have

$$\bigoplus_{i=1}^{\infty} M_i = \left(\bigoplus_{i=1}^{\infty} E_i\right) \bigoplus \left(\bigoplus_{i=1}^{\infty} \prod_{j \neq i} E_j\right).$$

By assumption, $\bigoplus_{i=1}^{\infty} M_i$ is small injective. Thus E itself is small injective by Lemma 2.16. Now the R-homomorphism $f: \bigcup_{i=1}^{\infty} I_i \to E$ defined by $f(t) = (t+I_i)_i$ extends to $\overline{f}: R \to E$. Let $n \ge 1$ such that $\overline{f}(1) \in \bigoplus_{j=1}^n E_j$. Then $f(\bigcup_{i=1}^{\infty} I_i) \le \bigoplus_{j=1}^n E_j$. So, if $t \in \bigcup_{i=1}^{\infty} I_i$ then $t \in I_m$ for all m > n, and so $\bigcup_{i=1}^{\infty} I_i = I_{n+1}$ and the chain should terminate.

Corollary 2.18. The following conditions are equivalent for a ring R:

- (1) J is noetherian as a right R-module.
- (2) Every direct sum of injective right R-modules is small injective.
- (3) $E^{(\mathbb{N})}$ is small injective for every injective modules E_R .

Acknowledgment

The authors wish to thank the referee for many useful suggestions and comments.

References

- I. Al-Khazzi and P. F. Smith, Modules with chain conditions on superfluous submodules, *Comm. Algebra* 19 (1991) 2331–2351.
- [2] F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules* (Springer-Verlag, New York, 1974).
- [3] J. Chen and N. Ding, On general principally injective rings, Comm. Algebra 27 (1999) 2097–2116.
- [4] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, *Extending Modules* (Pitman, London, 1994).
- [5] C. Faith, Rings with ascending chain conditions on annihilators, Nagoya Math. J. 27 (1966) 179–191.
- [6] C. Faith and D. V. Huynh, When self-injective rings are QF: A report on a problem, J. Algebra Appl. 1 (2002) 75–105.
- [7] K. R. Goodearl, Von Neumann Regular Rings (Pitman, London, 1979).
- [8] W. K. Nicholson and M. F. Yousif, *Quasi-Frobenius Rings* (Cambridge University Press, Cambridge, 2003).
- [9] T. C. Quynh, On semiperfect F-injective rings, Int. Electronic J. Algebra 1 (2007) 18–29.
- [10] L. Shen and J. Chen, New characterizations of quasi-Frobenius rings, Comm. Algebra 34 (2006) 2157–2165.
- [11] G. Shin, Prime ideal and sheaf representation of a pseudo symmetric rings, Trans. American Math. Soc. 84 (1973) 43–60.
- [12] R. Wisbauer, Foundations of Module and Ring Theory (Gordon and Breach, 1991).
- [13] M. F. Yousif and Y. Q. Zhou, FP-injective, simple-injective and quasi-Frobenius rings, Comm. Algebra 32 (2004) 2273–2285.

Copyright of Journal of Algebra & Its Applications is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.