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Abstract—The generalized sidelobe canceller (GSC) algorithm 
makes the optimum linearly constrained minimum variance 
(LCMV) beamformer much more efficient. However, when 
scattering the desired signal’s direction of arrival (DOA) or 
scattering the interference’s DOA, they cause severe degradation 
of the optimum solution. To improve this situation, at first, the 
general GSC algorithm with many constraints and the way to 
find the blocking matrix are showed in detail. Then, the modified 
constraint matrix with the new nominal angle constraint for 
scattering the desired signal’s DOA is proposed. And the 
combination of the optimum weight vector and the window 
functions such as Hamming, Hanning, Kaiser, Chebyshev 
windows is used for scattering the interference’s DOA. The good 
performance are evaluated by beam pattern and signal to 
interference plus noise ratio (SINR). Finally, numerical examples 
demonstrate that our proposals can enhance the performance of 
the GSC algorithm in the optimum beamformer.                  

Keywords—Generalized sidelobe canceller (GSC), direction of 
arrival (DOA), beam pattern, signal to interference plus noise 
(SINR), statistically optimum beamformer. 

I.  INTRODUCTION 
Beamformers have important applications in fields such as 

radar, sonar, seismology, radio astronomy, medical imaging, 
microphone array speech processing, and wireless 
communications [1], [2], [3]. Beamformers can be classified 
according to data independent, satistically optimum, or 
adaptive , depending on how weights are chosen. The weights 
in a data independent beamformer do not depend on the array 
data and are chosen to present a specified response for all 
signal and interference scenarios. The weights in a statistically 
optimum beamformer are chosen based on the statistics of the 
array data to “optimize” the array response. Optimum 
beamforming requires some knowledge of the desired signal 
characteristics, either its statistics or its direction. The statistics 
of the array data are not usually known and may change over 
time so adaptive algorithms are typically employed to 
determine  the weights. The adaptive algorithm is designed so 
the beamformer response converges to a statistically optimum 
solution.  

The famous representative of statistically optimum 
beamformer is the linearly constrained minimum variance 
(LCMV) beamformer considered by Frost [4]. The basic idea 
of LCMV beamformer is to constrain the response of the 

beamformer so signals from the direction of interest are passed 
with specified gain and phase. The weight vector is calculated 
to minimize output variance or power subject to the response 
constraint. The generalized sidelobe canceller (GSC) proposed 
in [5]  represents an alternative formulation of the LCMV 
problem. Essentially, the GSC is a mechanism for changing a 
constrained minimization problem into unconstrained form. 

When there is a slight mismatch between the presumed and 
actual direction of arrival (DOA) of the desired signal, the 
statistically optimum LCMV beamformer has still high 
performance in interference suppression. Unfortunately, that is 
not true in case that the actual desired signal’s DOA is 
scattered around the nominal angle that is completely different 
from presumed. The GSC tends to misinterpret the desired 
signal in input as interference and to suppress this component 
instead of maintaining distortionless response toward it. 
Especially, when the actual interference’s DOA  is scattered, 
the optimization of Wiener solution is no longer accurate. 
Thus, this may cause severe degradation of the optimum  
beamforming  performance. Until recently, there are several 
approaches to robust adaptive beamforming based on GSC [6], 
[7], but there is no published work concerning the robustness of 
GSC optimum beamforming.  

In this paper, we discuss the GSC algorithm on the 
statistically optimum LCMV beamformer  and how to improve 
the performance of GSC when the signal’s DOA is scattered. 
This paper is organized as follows. In section II, the signal 
model of a narrowband GSC beamformer and the model of 
scattering arrival angle are presented. In section III, the solution 
of GSC are described in detail and we add the method of 
finding the blocking matrix. In section IV, we propose how to 
improve GSC algorithm to robust against scattering the desired 
signal’s DOA and the interference’s DOA. Finally, simulation 
results of numerical examples and conclusions are given in 
section V and VI, respectively. 

II. BACKGROUND 

A. Signal Model 
Consider a uniform linear array (ULA) of 

M omnidirectional antenna elements spaced by the distance 
d . Let a desired signal from far field impinge on the array 
from a known DOA 0  with ( 1)L   uncorrelated interfering 



signals from known DOAs  1 2 1, ,..., L    , ( 1)N L   
uncorrelated interfering signals from unknow DOAs 
 1, ,...,L L N   , respectively. With the first element as the 
reference point, the 1M   signal’s steering vector is given by 

        ( 1)( ) 1, , ..., (0 )s k k
Tj j M

k e e k N            (1) 

where 1j   and ( 2 / ) sin( )k kd    is electrical 
angle according to DOA k , in which   is the signal 
wavelength. Then, the nth snapshot of the 1M   received 
equivalent baseband signal vector at the ULA can be written as  
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where ( )desu n  denotes the desired signal,  

_ ( ) (1 1)known lu n l L    the lth interference known DOA, 

_ ( ) ( )unknown ku n L k N   the kth interference unknown DOA.  

In this model, we ignore the additive noise in the array,  we 
concentrate on keeping the desired signal, cancelling the 
known DOA interference and decreasing the unknow DOA 
interference.   

B. Scattering Arrival Angle 
When scattering arrival angle happens, e.g, the antenna is 

placed on the wall [8], the arrival angle of signal is splitted into 

                             scat scat                                        (3) 

where scat is the nominal angle and   is the deviation. As 

scat is a random variable, the deviation angle   remains a 
random variable.  

For the uniform distribution, the pdf of    is: 

  1 , ( 3 , 3 )
2 3

p
    



   


  
          (4) 

For the Gauss distribution, the pdf of    is: 
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where  is the standard deviation of the standard distribution. 

III. GSC IMPLEMENTATION  

A. GSC Algorithm 
The output of GSC can be expressed as: 

                      ( ) ( )Hy n n w u                                            (6) 

where 0 1 1[ , , ..., ]w = T
Mw w w   is the weight vector, 

 ( ) ( ), ( 1),..., ( 1) Tn u n u n u n M   u  is the input vector. 

Let  2( )J E y n  denote a cost function if mean-squared 

error (MSE). The LCMV beamformer determines w by 
minimizing output power under appropriate linear weight 
constraints, which is given as 

                min
w

J , subject to C w = gH                            (7) 

where the M L matrix C is the constraint matrix, 
[1, 0, 0,...,0]g = T  is  a 1L  gain vector, with L is the number 

of constraints. With this gain vector g , the beamfomer is 
constrained to preserve a signal of interest, at the same time, to 
suppress the interferences that known the arrival angle.  

The GSC is an alternative formulation of the LCMV 
beamformer. It has been shown that the GSC can convert the 
constrained optimization into an unconstrained one. The 
structure of the GSC is illustrated in the Fig.1. As shown in the 
figure, the upper path includes the quiescent weight vector wq . 
The lower path includes the blocking matrix Ca  and the 
interference cancelling filter wa . 

qw
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 ( )y n( )nu

( )d n
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Figure 1.  Block diagram of GSC 

The 1M   quiescent weight vector wq , 

  1
w = C C C gH

q


,  sastifies the constraints. In contrast, the 

( ) 1M L   vector wa  is unaffected by the constraints. 

We get: q a aw = w C w                                                   (8) 

The beamformer output: 

( ) ( ) ( )H H H
q a ay n n n w u w C u                                            (9) 

Define : ( ) ( )w uH
qd n n   and  ( ) ( )x C uH

an n  

We may rewrite in a form that resembles the standard 
Wiener filter: ( ) ( ) ( )H

ay n d n n  w x                                   (10) 

The ( ) ( )M L M L    matrix xR : ( ) ( )HE n n  xR = x x  (11) 

The ( ) 1M L  vector xp : ( ) ( )E n d n   xp x              (12)            

Then, we can find the optimum wa : -1
, x xw R pa opt         (13) 



In practice, the covaricance matrix xR and the cross 
correlation vector xp  are estimated by : 
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where N is the number samples. 

B. Calculate Blocking Matrix  
From the equation C C OH

a  , we’ll find the blocking 
matrix Ca . Ca  is of dimension ( )M M L  and with the 
independent columns. 

The constraint space is determined by the L  independent 
column vectors of the constraint matrix C . The projection 
matrix of this space is :  

                           1

CP C C C CH H
                               (16) 

Thus, the space that is orthogonal to the constraint space 
has the projection matrix given by: 

                1

C CP I P I C C C CH H                      (17) 

Clearly, CP sastifies the equation C C OH
a  , because of  

  1
. .( )CC P C I C C C CH H H H    

              1
. .C I C C C C C OH H H H

    

Then, we use the Gram-Schmidt orthogonalization 
procedure to CP with M columns in order to determine the 
blocking matrix Ca with ( )M L  independent columns.  

IV. ADJUST GSC TO ROBUST AGAINST SCATTERING 
ARRIVAL ANGLE 

A. Robust Against Scattering Arrival Angle of  Desired 
Signal 
When the actual desired signal’s DOA is scattered around 

the nominal angle 0scat : 

0 0scat scat      

The desired signal become the interference for the optimum 
weight vector of the beamformer installed at this time. 
Therefore, both the output power of desired signal and  SINR 
decreases.  

To robust SINR against this mismatch condition, we need 
to do the GSC algorithm again with the new constraint. First, 
we need to replace the 0 distortionless constraint with the 

0scat distortionless constraint. Thus, the electrical angle of 

0scat is 0 02 sin( )scat scat
d  


  and the corresponding steering 

vector is   00 0 12
0( ) 1 ... scatscat scat

Tj Mj j
scats e e e         . 

Then, we adjust the constraint matrix C and keep the GSC 
algorithm as section III to have the optimum weight vector 

,wo scat  for the beamformer. 

And we can find the optimum M antenna number of array 
to have the mainbeam width that is large enough to receive the 
signal corresponding to the scattering interval of the actual 
arrival angle. We can compare the scattering interval to 
mainbeam width by referring to Table I to choose the antenna 
number. 

TABLE I.  MAINBEAM WIDTH CORRESPONGDING TO ANTENNA 
NUMBER 

M 8 9 10 11 12 13 14 

BW 012.9  011.3  010.2  09.2  08.4  08.0  07.1  
M 15 16 17 18 19 20 21 

BW 06.5  06.3  05.9  05.6  05.3  05.0  04.8  
M 22 23 24 25 26 27 28 

BW 04.6  04.4  04.1  04.0  03.8  03.7  03.6  
M 29 30      

BW 03.5  03.3       
a. M: Number of Antenna; BW: MainBeam Width 

B. Robust Against Scattering Arrival Angle of Interference 
When the actual interference’s DOA is not the same as the 

presumed DOA, the beam pattern with the optimum weight 
vector installed has not reduced the power of interference as 
much as before. Although the sidelobes of beam pattern are 
very low to decrease the interference, SINR that interference’s 
DOA is scattered is still much smaller than SINR in case of  
optimum.  

To improve SINR in this case, we combine the GSC 
algorithm to find the optimum weight vector wopt  with the 
window functions to decrease the interference as much as 
possible. We make the Hadamard product of wopt and 
wwindow to have the new weight vector : 

                ,int_ ( ) ( ) ( )w w wo scat opt windown n n                     (18) 

We use the Hamming window, Hanning window, Kaiser 
window and Chebyshev window [9] in this case and get the 
good results in beam pattern and SINR. 

V. NUMERICAL EXAMPLES 
In examples 1 and 2 , we assume a uniform linear array 

(ULA) with 16M  omnidirectional antennas spaced half a 
wavelength apart. The transmitted symbols are randomly 
generated from 1 . 



A. Example 1:  GSC algorithm 
We consider one desired source ( 60 dBm) coming from 

00 , four uncorrelated interfering sources (0 dBm each source, 
known arrival angle) coming from 015 , 020 , 040  , 065  and 
one uncorrelated interfering source (0 dBm, unknown arrival 
angle) assumed coming from 060 . 

desired signal

int 5 
(unknow)

int 1
int 2int 3

int 4

65 15

 

Figure 2.  Beam pattern of GSC with 16 antennas, 5 constraints  

TABLE II.  SINR  RESULT 

SINR_element SINR_optimum 

-66.9897 dB 15.7188 dB 

 

Figure 2 shows that  the desired signal is preserved, the 
interferences 1, 2, 3, 4 are null  at the known arrival angle and 
the unknown interference 5 is decreased so much. In table II, 
SINR also increases from -66.9897 dB to 15.7188 dB. 

B. Example 2:  Scattering Arrival Angle of  Desired Signal  
We consider one desired source ( 60 dBm) coming from 

00 , two uncorrelated interfering sources (0 dBm each source, 
known arrival angle) coming from 020 , 015 and one 
uncorrelated interfering source (0 dBm, unknown arrival angle) 
assumed coming from 060 . 

Now, the desired signal comes with scattering arrival angle, 
The actual arrival angle is a random value 0scat , with 

0 0scat scat      , where 0scat is 030  and the pdf of   is  
uniform in 0 0[ 3 , 3 ] .  

We adjust the GSC algorithm as section IV.A, the results of 
beam pattern and SINR are shown in Figure 3 and Table III. 

0
0 30scat  

3050

 

Figure 3.  Beam pattern of  adjusted GSC 

TABLE III.  SINR  RESULT 

SINR 
_element 

SINR_  
optimum 
(presumed 

desired 
signal) 

SINR_scattering 
(actual desired 

signal and haven’t 
adjusted GSC yet) 

SINR_adjusted 
(actual desired 

signal and adjusted 
GSC) 

-64.7712 dB 13.9383 dB -7.4913 dB 11.5679 dB 

 

Figure 3 shows that  the beam pattern moves to the position 
that receives the scattered desired signal, the interferences 1, 2 
are still in nulling. In table III, SINR also increases from -
7.4913 dB to 11.5679 dB after GSC is adjusted. 

C. Example 3: Scattering Arrival Angle of Interference 
In case of using the window functions, we need the antenna 

number of beamformer to be large enough to have the effect of 
the window functions on the optimum weight vector. In this 
example, we simulate with 30M  omnidirectional antennas 

We consider one desired source ( 60 dBm) coming from 
00 , one uncorrelated interfering source (0 dBm, unknown 

arrival angle) assumed coming from 060 . 

Now, the interference comes with scattering arrival angle, 
The actual arrival angle is a random value 1scat , with 

1 1scat scat      , where 1scat is 060  and the pdf of   is  
uniform distribution in 0 0[ 3 , 3 ] .  

We adjust the GSC algorithm as section IV.B, the results of 
beam pattern and SINR are shown in Figure 4, 5 and Table IV. 



  0
1 60scat

 

Figure 4.  Beam pattern of  GSC and Hamming, Hanning windows. 

  0
1 60scat

 

Figure 5.  Beam pattern of  GSC and Kaiser, Chebyshev windows. 

TABLE IV.  SINR  RESULT 

Antenna number M = 30 

SINR_element -60 dB 

SINR_optimum 32.3958 dB 

SINR_scattering -23.7096 dB 

SINR_Hamming -7.8536 dB 

SINR_Hanning -0.3132 dB 

SINR_Kaiser -0.2514 dB 

SINR_Chebyshev -2.9599 dB 

 

Figures 4, 5 show that the sidelobes are decreased a lot with 
the window functions so the scattered interference is still 
reduced so much. In table IV, when using the windows 
function,  SINR increases from -23.7096 dB to  -7.8536 dB, -
0.3132 dB, -0.2514 dB, -2.9599 dB according to Hamming, 
Hanning, Kaiser, Chebyshev windows, respectively.     

VI. CONCLUSION 
In this paper, we clearly show the general GSC algorithm to 

reduce interference with one desired signal, several known 
DOA interferences and several unknown DOA interferences 
for the optimum beamformer. And how to find the blocking 
matrix is presented. In the scattering desired signal’s DOA 
situation, the GSC algorithm with the new desired steering 
vector needs to perform again to get the new optimum weight 
vectors. In the scattering interference’s DOA situation, the 
window functions such as Hamming, Hanning, Kaiser and 
Chebyshev windows are combined with the optimum weight 
vector of the GSC algorithm to improve SINR. The 
performance are evaluated by beam pattern and SINR. The 
good result of our proposal has been demonstrated via three 
numerical examples with computer simulations.    
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