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Abstract—The demand for system scalability, reusability, and
the decoupling between computation and communication have
motivated the growth of Network-on-Chip (NoC) paradigm in
the recent years. The system design has changed from the
computation centric design to the communication centric design.
Researchers have proposed a number of NoC architectures. Most
of these works focus on network architectures and routing algo-
rithms, however, the interfaces between network architectures
and processing units also need to be addressed to improve
the overall performance of the system. This paper presents an
efficient AXI (Advanced eXtensible Interface) compliant network
adapter for 2D mesh Wormhole-based NoC architectures, named
AXI-NoC adapter. The proposed network adapter achieves high
frequency of 650MHz with a low area footprint (952 cells,
approximate to 2, 793µm2 with a CMOS 45nm technology) by
using an effective micro-architecture and with zero latency by
using the mux-selection method.

I. INTRODUCTION

With the increase in the complexity of electronic systems,
the design requirements such as time-to-market, reusability,
reliability, testability, along with many difficult design con-
straints in performance, power consumption and variability
lead to a new design methodology. The Network-on-Chip
(NoC) paradigm has been emerging as a promising solution to
satisfy the communication needs for high performance designs
in the future System-on-Chips (SoCs) [1]–[3].

In NoC architectures, the main components are routers,
interconnection links, and network interfaces. The IP cores
are connected to the network using the network interfaces.
Unlike bus-based method, NoCs are router-based communica-
tion networks implemented packet switching communication
among IP cores in the network. At each node, before being
transmitted on the network, messages are split into many
successive packets. Each packet, itself, consists of a number
of control/data units (so called flits). It is led by a header
flit which stores routing information and followed by other
control/data information. The router-based network enables
the communication infrastructure as well as IP modules to
be easily reused. Different reusable IP cores may not be
developed to compatible with the NoC; therefore, a network
adapter is needed to provide the interface between the IP
core and its associated router. The development of a net-
work adapter allows the IP cores and the communication
infrastructure to be independently developed, achieving the
decoupling between the computation and communication. The

challenge of deploying the network adapter is the increase
of the complexity, area, latency, and the reduction of the
maximum frequency [4].

Researchers have proposed a number of NoC architectures.
Most of these works focus on network architectures and
routing algorithm, however, the interfaces between network
architecture and processing units also need to be addressed
to improve the overall performance of the system. A network
adapter implementing the standard socket was developed to
comply with the Æthereal NoC in [5]. However, the forward
latency of the network adapter is quite high. In [6], an OCP-
compliant adapter for the Xpipes NoC was presented. In [7],
a network adapter between clocked OCP bus protocol and an
asynchronous MANGO NoC was addressed. In [8], the paper
presents an OCP compliant NoC adapter for 2D mesh NoCs.

In this paper, we present an AXI-compliant network adapter
for 2D mesh Wormhole-based NoCs. Our network adapter,
named AXI-NoC adapter, operates as a bidirectional bridge
during the data transfer between an ARM processor and the
NoC switching fabrics. The AXI-NoC adapter is implemented
to support both AXI read and write burst transactions with dif-
ferent configurations of burst length, burst size and burst type.
The network adapter also supports source routing algorithms
and package switching with Wormhole communication mode.
Our main contribution is an efficient micro-architecture for
network adapter with low area footprint and high performance.
The modularity of the design is also considered to allow easy
maintenance and/or further development to support different
standard socket protocols. To maximize the throughput and
reduce the latency of the network adapter, a mux-selection
method is applied. During the data transfer, the network
adapter becomes transparent to the whole system.

The remaining part of the paper is organized as follows. In
Section II, the proposed architecture for the AXI-NoC adapter
is presented. This section also explains the main contributions
of the paper. Section III shows the discussion about the
implementation results and the verification of the design. A
comparison with the other related works is also presented.
Finally, conclusions will be given in Section IV.

II. AXI-NOC ADAPTER DESIGN

In this work, we have designed two types of network
adapters to implement the synchronization between AXI inter-
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faces and the NoC switching fabric, named Master Network
Adapter (MNA) and Slave Network Adapter (SNA), as in
Fig. 1. The MNA is used to create the connection between
a master IP core and the NoC architecture while a slave
IP core connects to the NoC router through the SNA. Each
network adapter includes two sub-modules: Request Flow and
Response Flow.

Fig. 1. Master Network Adapter and Slave Network Adapter.

The basic operation of the AXI interface is the burst transac-
tion. The burst-based transactions enable the use of bandwidth
more effectively. We have designed a network adapter that
supports three AXI burst types: fixed burst, incremental burst,
and wrapped burst. In a fixed burst transaction, the address will
be the same for every transfer. This type of burst transactions is
useful for accessing to FIFO memories. Unlike fixed burst, in
incremental burst, the address for each transfer is an increment
of the previous transfer address, and the address just need to
be issued once with the read or write request. The incremental
burst is suitable for writing/reading to/from a large array of
memories. The wrapped bursts operate in the same manner
as the incremental bursts, but when a boundary is reached,
the address wraps around to the lower address. The network
adapter is also designed to support transactions with the burst
length varying from 1 to 16 transfers, and the burst size from 1
to 4 bytes. Our AXI-NoC adapter supports the source routing
algorithm with Wormhole commutation mode, in which the
path from the source node to the destination node is fixed.

In the NoC architecture [9], the basic data unit is packet, and
it is further divided into flits. There are two types of packets:
the request packet and the response packet. A request packet
is sent from the source to the destination. The destination
responses to that request packet by generating a response
packet. The following subsections will describe the packet
formats used in our design.

A. Packet format

Each packet contains one header flit, followed by several
body flits and one tail flit. Each flit has a size of 34 bits: 32
bits are used for data, and two most significant bits (“BoP” and
“EoP” – standing for “begin of packet” and “end of packet”,
respectively) are added for the control purpose. BoP and EoP
give information to determine whether the incoming flit is the
header flit (BoP = ‘1’, EoP = ‘0’), the body flit (BoP = ‘0’,
EoP = ‘0’), or the tail flit (BoP = ‘0’, EoP = ‘1’). In addition,

this structure enables a packet with just one flit by sending
the flit with both BoP and EoP equal ‘1’.

1) Request packet format: The request packets, which is
sent from a master IP to a slave IP, consist of the write request
packets and the read request packets. The packet format for the
write request packets and the read request packets are shown
in Fig. 2(a) and Fig. 2(b), respectively.

(a)

(b)

Fig. 2. Request packet formats: Write request packet (a); and Read request
packet (b).

The header flit of the request packet includes the burst
length, the burst size, the burst type, the source node, and
path-to-target which conforms to the NoC packet header. The
source node field in the header flit is the current node that
the master IP core is attached to. This information is used by
the slave IP core to calculate the return path for the response
packet. When the master IP core issues a read or write request
to a slave, the network adapter calculates the “path-to-target”
based on the destination address and puts it in the header flit
of the request packet. The first body flit is used to transfer
the destination address of the request. The system uses 32-
bit address. The address is further divided into global address
and local address. The 4 most significant bits in the address
are used for the global address which determines the node
to which the IP is attached. The remained bits are the local
address of the IP.

For the read request packet, data is not required; therefore,
it needs only two flits, and the tail flit contains the destination
address of the packet.

2) Response packet format: The formats of the read re-
sponse packets and the write response packets are given in
the Fig. 3(a) and Fig. 3(b), respectively.

When a slave IP core receives a read request, the network
adapter uses the source node field in the read request packet to
determine the “path-to-target”, and then adds it to the header
of the read response packet. While the write response packet,
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(a)

(b)

Fig. 3. Response packet formats: Read resonse packet (a); and Write response
packet.

which does not require data, has only one flit (BoP = ‘1’, and
EoP = ‘1’).

The proposed MNA architecture is presented in the next
subsection. Since the SNA is similar and less complex than
the MNA, therefore, the design of SNA is not presented in
this paper.

B. Master Network Adapter

The MNA encapsulates requests from the master core
into NoC packets. It also decapsulates responses from the
router and transfer it to the AXI master. The MNA mainly
composes of two data flows: MNA Request Flow and MNA
Response Flow, which are responsible for encapsulation and
decapsulation (Fig. 4).

Fig. 4. MNA Architechture.

1) MNA Request Flow: The MNA Request Flow consists of
two main modules: MNA Flit Builder and MNA Transmitter,
as shown in Fig. 5. The left hand side signals are the interface
with the master IP core, the right hand side signals are the
interface to the router of the NoC.

The purpose of the MNA Flit Builder module is to form
the flits for the request packets from the AXI master burst
transactions. The BoP and EoP are automatically added to the
flits. This module implements a look-up table to calculate the
“path-to-target”. The inputs of the look-up table are the 4-
most significant bits in the address bus. The outputs of the

Fig. 5. MNA Request Flow architecture.

Flit Builder module are 34-bit header, which is the header flit
of request packet, ‘sub header’, and ‘wdata i’. In a write burst
transaction, ‘sub header’ is the first body flit, and ‘wdata i’
contains the remain flits of the write request packet. In a read
burst transaction, ‘sub header’ is the tail flit.

The MNA Transmitter module manages the sequence of
flits created by MNA Flit Builder module to be sent to the
network (the header flit → the body flit(s) → the tail flit), and
to control the handshaking signals to the AXI master address
channel and the write data channel. The operation of the MNA
Transmitter module is based on a Finite State Machine (FSM).
Depending on the current state, the data output to the network
‘pdata to noc’ (packet data to be sent to the NoC) will be
‘header’, ‘sub header’, or ‘wdata i’ which are from the MNA
Flit Builder module. The MNA Transmitter module will select
the appropriate flits to be sent to the network. Hence, the
number of states is reduced, and the FSM is much simpler.

To increase the network adapter’s performance in terms of
throughput and latency, we proposed a mux-selection method
to optimize the design. The mux-selection method is the
combination of using FSM technique and implementing of
the additional MUXes to control handshaking signals at both
sides of the interfaces. In Fig. 6, two MUXes are added to
control the output signals of the network adapter, which are the
request signal (‘pvalid to noc’) to send data to the destination
interface, and the response signal (‘wready’) accepting data
from the source interface (AXI). Thanks to this arrangement,
‘wready’ and ‘pvalid to noc’ signals are controlled by the
FSM or they output the value of ‘wvalid’ signal directly
depending on the value of ‘hs sel’ signal (handshake selec-
tion). Fig. 6(b) presents the finite state machine of the MNA
Transmitter.

As the handshaking signals are controlled by the FSM,
this method has the advantages of the FSM based hand-
shaking method described in the previous subsection. The
state transition is easily managed by the FSM to ensure the
proper operations. The mux-selection method provides a way
to directly control the output signals of the network adapter.
This structure allows data at the AXI interface to appear at
the NoC interface intermediately resulting in the zero latency
in the data transfer.
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(a)

(b)

Fig. 6. MNA Transmitter module: Optimized micro-architecture (a); and
Finite State Machine (b).

When the MNA Transmitter module is in the state of ready
to accept data from the AXI interface, and the NoC is ready to
receive a new packet, the data is sent to the NoC at the same
clock cycle which the data on the AXI interface is available.
If the NoC is not ready, the data at AXI interface are buffered
until there is a response from the network.

2) MNA Response Flow: The structure of the MNA Re-
sponse Flow module is much simpler than that of the MNA
Request Flow module. The network is the source, and the
master core is the destination of the MNA Response Flow. The
packets from the network are decapsulated at AXI interface.

The MNA Response Flow manages data transfers to the
appropriate channel. When a packet is valid at the router
(‘pvalid fr noc’ is high), the MNA Response Flow reads the
header flit to determine whether it is a read response packet
or a write response packet. In the case of write response
packet (the packet has only one flit), the MNA Response Flow
extracts the information of the header flit and sends it to the
AXI write response channel of the master core. If it is a read
response packet (the header flit → the read data (1) → . . .→
the read data (n-1) → the tail flit (the read data (n))), the read
data will be transferred to the AXI read data channel. ‘rlast’
signal is high when the tail flit of a read response packet is
received. This indicates the last data transfer. Similarly to the

MNA Request Flow, the proposed mux-selection method has
been also applied for MNA Response Flow to improve the
performance. The optimized block diagram of MNA Response
Flow and its finite state machine are shown in Fig. 7.

(a)

(b)

Fig. 7. MNA Response Flow module: Optimized micro-architecture (a); and
Finite State Machine (b).

III. IMPLEMENTATION AND VERIFICATION

The AXI-NoC adapter design has been modelled in VHDL
at RTL level and implemented using a CMOS 45nm tech-
nology. It requires a low area cost compared to the NoC
routers (less than 10% area cost of a network router in
our case). Fig. 8 presents the relationship between power
consumption (in mW ), area cost (in µm2) versus the (synthe-
sized) operating frequency of the design. The design is able
to achieve a maximum operating frequency of 650MHz. At
650MHz, the area cost of the design is about 952 cells and
the total cell area is about 2, 793µm2. The design can achieve a
communication throughput of 2.6GBytes/s, and the network
adapter consumes approximately 4.14mW .

Table I shows a brief comparison of our work with some
related works including [5], [10], [11], and [12]. It is clear
from the table that our work achieves the highest performance
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TABLE I
IMPLEMENTATION RESULTS IN COMPARISON WITH THE RELATED WORKS

[5] [10] [11] [12] This work

Target bus interface OCP/AXI/DTL OCP NA OCP/AXI/Wishbone AXI

Technology 0.13µm 0.13µm 0.18µm 90nm 45nm

Max frequency 500MHz 400MHz 457− 490MHz NA 650MHz

Area (mm2) 0.143 0.02-0.064 0.055-0.103 0.024 0.0028

Power (mW) NA NA 19.5-44.0 NA 4.41

Latency (with packetization) 4-10 cycles 3-8 cycles NA NA 1

Throughput 16Gbit/s NA NA NA 20.8Gbit/s

in terms of operating frequency, processing delay and com-
munication throughput. Our design can operate at 650MHz
with 45nm technology while the others have the maximum
frequencies in the range from 400MHz to 500MHz but
with the older technologies. The occupied area of our work
is ten times smaller in comparison with the work presented
in [12]. The notable results in our work are the processing
latency and the communication throughput. With the applied
techniques, our design has no processing latency and the
highest communication throughput when comparing with [5].
The limitation of our work is to support only AXI interfaces
while [5] and [12] support multiple bus protocols.

Fig. 8. Power consumption and area cost at targeted frequencies.

To verify the proposed AXI-NoC adapter architecture, we
have developed a 2D mesh NoC test environment as shown
in Fig. 9. This environment includes 9 network routers, 8 IPs,
1 ARM model connected to the associated network router by
using the Master Network Adapter.

The dummy IP models (IP0 to IP7) are simple IPs that
can generate NoC packets and response to incoming NoC
packets. These dummy IPs act like simple memory models.
When receiving a write request packet, dummy modules store
write data to its internal memory. When receive a read request,
it extracts information of the request packet to calculate the
return path for the response packet; then, dummy IP sends
stored data to the node where the request packet is issued.

The ARM model is configured to generate both read and
write burst transactions with different settings of burst types,
burst lengths, and burst sizes. Timings at both sides of the

Fig. 9. Vefification environment with 9 network routers.

Master Network Adapter are observed. The response data to
the ARM model are compared with the expected results.

Each test case goes through several steps. Firstly, random
data are generated. Secondly, the ARM model issues a write
burst request to a dummy IP with the generated data in step
1. Then, a read burst is issued to the same location as in step
2. Finally, the read data are compared with the data that has
been written. In short, we do write to and read from the same
location. The write data and the read data must be identical.

Fig. 10 presents the layout of the MNA design.

Fig. 10. The final layout of the design.
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IV. CONCLUSIONS

In this paper, we have presented the AXI-NoC adapter,
which is used to adapt ARM cores into Network-on-Chip
architectures. The network adapter acts as a bi-directional
bridge between AXI interface and the NoC architectures. It
supports the source routing algorithm, Wormhole-switching
communication mode. In terms of the AXI interface spec-
ifications, both read burst and write burst transactions are
supported. One of the advantages of the AXI-NoC adapter
is that it offers a simple network adapter architecture, which
requires low area footprint to implement the design (about
2793µm2) and achieves a high throughput of 2.6GBytes/s.
Another advantage of the design is the usage of the mux-
selection method to decide whether the outputs to one-side
interface are controlled by the state machine or directly by
the input handshaking signals from the other side. This method
reduces the latency to zero and therefore improve the overall
performance of the system. The AXI-NoC adapter can be used
to connect other IPs conforming to the AXI specifications to
NoCs.
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